Fall 2017

Fang Yu

Software Security Lab.

Dept. Management Information
Systems,

National Chengchi University

Data Structures
Lecture 4

Abstract List
Data Structures

Array Lists, Linked Lists, and Doubly Linked Lists

Array List

® The Array List ADT extends the notion of array by storing
a sequence of arbitrary objects

® An element can be accessed, inserted or removed by
specifying its index (number of elements preceding it)

® An exception is thrown if an incorrect index is given (e.g.,
a negative index)

Array List

® Main methods:

m oet(integer 1): returns the element at index 1 without
removing it

® set(integer i, object 0): replace the element at index 1 with o
and return the old element

® add(integer 1, object 0): insert a new element o to have index
i

® remove(integer 1): removes and returns the element at index
i

® Additional methods:
m size()
m ;sEmpty()

Array-based Implementation

® Use an array A of size N

m A variable n keeps track of the size of the array list
(number of elements stored)

® Operation get(i) is implemented in O(1) time by returning
Ali]

® Operation set(i,0) is implemented in O(1) time by
performing ¢ = A[i], A[i] = o, and returning ¢.

Insertion

® [n operation add(i, o), we need to make room for the new
element by shifting forward the n — i elements A[i], ..., A[n
— 1]

® [n the worst case (i = 0), this takes O(n) time

Element Removal

® [n operation remove(1), we need to fill the hole left by the
removed element by shifting backward the n —i — 1
clements A[i + 1], ..., A[n — 1]

® [n the worst case (i = 0), this takes O(n) time

S EEEEEE | EEEEE

Performance

® In the array based implementation of an array list:
® The space used by the data structure is O(n)
m size, isEmpty, get and set run in O(1) time
® add and remove run in O(n) time in the worst case

® [n an add operation, when the array is full, instead of throwing an
exception, we can replace the array with a larger one

Growthable Array-based Array
List

® [n an add(o) operation (without an index), we always
add at the end

® When the array 1s full, we replace the array with a
larger one

= How large should the new array be?

® [ncremental strategy: increase the size by a constant
c

® Doubling strategy: double the size

Growthable Array-based Array
List

Algorithm add(o)
if r=S.length - 1 then
A < new array of //create a new array A (larger than S)
size ...
fori<— Oton—1 do
Ali] < S[i] //copy the elements in S to A
S<—A4 //Replace S with A
t<—t+1 //increase the size by 1
S[t-1] <o //add o as the last element

Comparison of the Strategies

® We compare the incremental strategy and the doubling
strategy by analyzing the total time 7(n) needed to perform
a series of n add(o) operations

® We assume that we start with an empty stack represented by
an array of size 1

® We call amortized time of an add operation the average
time taken by an add over the series of operations, i.¢.,
T(n)/n

Incremental Strategy

®= We replace the array k = n/c times

® The total time 7(n) of a series of n add operations 1s
proportional to

n+c+2c+3ct4c+...+kc
® Since c is a constant, T(n) is O(n + k%), i.e., O(n?)

® The amortized time of an add operation 1s O(n)

Doubling Strategy

® We replace the array k = log, n times

® The total time 7(n) of a series of n add operations
is proportional to

n+1+2+4+8+. . +2k=
3n—1
® T(n)1s O(n)

® The amortized time of an add operation is O(1)

geometric series

Singly Linked List

® A concrete data structure consisting
of a sequence of nodes

® Each node stores
B clement
® |ink to the next node

\

The Node Class for Singly
Linked List

public class Node { // Instance variables
private Object element;

private Node next;)
public Node() { // Creates a node with null
this(null, null); // references to its element and next node.

b
public Node(Object e, Node n) {

element = e¢;
next = n;

// Creates a node with the given element
// and next node.

h
public Object getElement() { // Accessor methods
return element;

h
public Node getNext() {

return next;

b

public void setElement(Object newElem) {/ Modifier methods
element = newElem;

}
public void setNext(Node newNext) {

next = newNext;

h
b

Inserting at the Head

head

1. Allocate a new node
2. Insert the new element

3. Have the new node to
point to head

4. Update head to point to
the new node

I

i

\\ (Bahimorc)ll (Rome) (Seattle) (_Tommo_)
4

N

T

-

(b)
head

@

(_Ballimorc) (Rome) (Seattle _) (Tomnto)

)

Removing at the Head

head

1. Update head to point to

next node 1n the list &
2. Allow garbage collector (Ba,l.--) R IED D)
to reclaim the former :'.".':'.'.:‘ .
first node E e ".'
Y Baltimore 31 { Reme) € Scanle) Toroeto)

haad

Inserting at the Talil

Allocate a new node
Insert the new element

Have the new node to
point to null raga at

Have the old last node to
point to the new node

Update tail to point to
the new node - w

Jundh

Removing at the Tall

® Removing at the tail of a
singly linked list is not

efficient!
head tail

® There is no constant-time
way to update the tail to
point to the previous node

Iil
Q

Iil
Iil

Rome Seattle Toronto Zurich

Stack as a Linked List

® We can implement a stack with a singly linked list

® The top element is stored at the first node of the list

® The space used is O(n) and each operation of the Stack ADT takes O(1)
time

—_———————-——-———- V- — — - - —_ —_- - — — — ———— — — — —

~— ——— e —

~—— —_—— —_—— —— —_—_——— e -

—_———— _—_———-—-_- - —_—_——— _—_———-—- - —_——— —_—_——————_- - _—_— —— —_———

(

(G | a

| 6° . AN O
=) 3
| X c

|

elements

N —_——— e —_——_—_ e e —

Queue as a Linked List

® We can implement a queue with a singly linked list
®m The front element 1s stored at the first node

® The rear element 1s stored at the last node

® The space used is O(n) and each operation of the Queue ADT takes O(1)
time

r

—_———————————--— - — - - - - - — —_- - - — — - — — — ———— — —_—————

~—— —_—— —_—— —— —_—_——— e -

—_———— _—_———-—-_- - —_—_——— _—_———-—- - —_——— —_—_——————_- - _—_— —— —_———

\

. A A
e 'l
: (- :
I J S |
| , : i
\

elements

N —_——— e —_——_—_ e e —

/

Position ADT

® The Position ADT models the notion of place within a data
structure where a single object 1s stored

® [t gives a unified view of diverse ways of storing data, such
as

m 3 cell of an array

® 3 node of a linked list

® Just one method:

® object element(): returns the element stored at the position

Node ListADT

® The Node List ADT models a sequence of positions storing arbitrary objects

m [t establishes a before/after relation between positions

* QGeneric methods: * Update methods:
* size(), iIsSEmpty() * set(p, e)

» Accessor methods: » addBefore(p,), addAfter(p, e),
* first(), last() * addFirst(e), addLast(e)

* prev(p), next(p) « remove(p)

Doubly Linked List

® A doubly linked list provides a natural
implementation of the Node List ADT

® Nodes implement Position and store:
® clement
® Jink to the previous node

®]ink to the next node

® Special trailer and header nodes

—_—_———————————_—_—— e — ————

~ — e~

Doubly Linked List

header | nodes/positions ‘: trailer

E’% i\'
O 7 : QS V)%

Insertion

® We visualize operation insertAfter(p, X), which returns position q

Insertion Algorithm

Algorithm addAfter(p,e):
Create a new node v

v.setElement(e)

v.setPrev(p) //link v to its predecessor
v.setNext(p.getNext()) //link v to its successor
(p.getNext()).setPrev(v) //link p’s old successor to v
p.setNext(v) //link p to its new successor, v
return v //the position for the element e

Deletion

® We visualize remove(p), where p = last()

Deletion Algorithm

Algorithm remove(p):
t = p.element //a temporary variable to hold the return value
(p.getPrev()).setNext(p.getNext()) //linking out p
(p.getNext()).setPrev(p.getPrev())
p.setPrev(null) //invalidating the position p
p.setNext(null)
return t

HW4 (Due on 10/26)

Maintain an ordered keyword list.

® A keyword is a tuple of [String name, Integer count, Double
weight]

m Keep the list in order by its count while adding or deleting
elements

® For the list structure, you can
m Use java.util. ArrayList, or
® java.util.LinkedList, or
® Develop it by yourself

® Given a sequence of operations in a txt file, parse the txt file
and execute each operation accordingly

Add and Output

operations description

add(Keyword k)
outputIndex(int 1)
outputCount(int c)
outputHas(string s)
outputName(string s)
outputFirstN(int n)
outputScore()

Insert k to the list in order

Output the ith keyword in the list

Output all keywords whose count is equal to ¢
Output all keywords whose name contains s
Output all keywords whose name is equal to s
Output the first n keywords

Output the score of the whole list

Add In order

%)
add Fang 3 0.5
add Yu 5 1.8
add NCCU 3 2.8

add UCSB 2 2.5 Fang, 3

——

Fang, 3

Yu, 5 NCCU, 3 Fang, 3

Output operations

Yu, 5 NCCU, 3 Fang, 3 UCSB, 2
outputCount 3 [NCCU, 3] [Fang, 3]
outputName Yu [Yu, 5]
outputHas U [NCCU, 3] [UCSB, 2]
outputIndex 1 [Yu, 5]
outputFirstN 2 [Yu, 5] [NCCU,3]

outputScore Score: 24.3

Delete

operations description

deleteIndex(int 1) Delete the ith keyword in the list
deleteCount(int ¢) Delete all keywords whose count 1s equal to ¢
deleteHas(string s) Delete all keywords whose name contains s
deleteName(string s) Delete all keywords whose name is equal to s

deleteFirst(int n) Delete the first n keywords

Delete operations

Yu, 5 NCCU, 3 Fang, 3 UCSB, 2

deleteCount 3
deleteName Yu
deleteHas U
deletelndex 1
deleteFirstN 2
deleteAll

An input file

1. You need to read the sequence
of operations from a txt file

2. The format is firm

3. Raise an exception if the input
does not match the format

add Fang 3 1.5
addYu51.2
add NCCU 3 0.8
add UCSB 2 2.2
add MIS2 1.2
add Badminton 4 2.3
add Food 3 0.1
add Data 3 0.3
add Structure 4 2.1
outputScore
deleteCount 3
outputCount 2
outputName Yu
deleteName Yu
outputHas a
deleteHas a
outputIndex 2
deleteIndex 4
deleteFirstN 1
outputFirstN 3
deleteAll

Coming up...
= We will discuss stacks and queues on Oct. 26

= We will have programming tests in the lab on Nov. 6

m Read TB Chapter5 and Chapter 8

