Fall 2015

Data Structures
Lecture 15

Fang Yu
Department of Management Information Systems
National Chengchi University

Graphs |

Digraphs, Strongly Connective
Component, Topological Sorting,
and Minimum Spanning Tree

Digraphs

m A digraph is a graph
whose edges are all

directed
m Short for “directed graph”

= Applications
= one-way streets
= flights
= task scheduling

Digraph Properties
® A graph G=(V,E) such that

® Each edge goes in one direction:
m Edge (a,b) goes from a to b, but not b to a

m[fGissimple,m <n(n—1)

m [f we keep in-edges and out-edges in
separate adjacency lists, we can
perform listing of incoming edges
and outgoing edges in time
proportional to their size

Digraph Application

® Scheduling: edge (a,b) means task a must
be completed before b can be started

@
(o)

Directed DFS

® We can specialize the traversal algorithms
(DFS and BFS) to digraphs by traversing
edges only along their direction

® In the directed DFS algorithm, we have ,
four types of edges /

® discovery edges
® back edges
m forward edges \

® cross edges

m A directed DFS starting at a vertex s
determines the vertices reachable from s

Reachability

m DFS tree rooted at v: vertices reachable from v via
directed paths

Strong Connectivity

m Each vertex can reach all other vertices

=
.

m Pick a vertex vin G

m Perform a DFS from v in G
m If there’s a w not visited, print “no”

= Let G’ be G with edges reversed

m Perform a DFS from v in G’
m If there’s a w not visited, print “*no”
m Else, print “yes”

= Running time: O(n+m)

Strongly Connected
Components

= Maximal subgraphs such that each vertex can reach all other
vertices in the subgraph

= Can also be done in O(n+m) time using DFS, but is more
complicated (similar to biconnectivity).

@‘\‘@/@{a,c,g}

{f,d,e,b}

Transitive Closure

= Given a digraph @G, the
transitive closure of G is the
digraph G* such that

m G* has the same vertices as G

m if G has a directed path from
utov(u=v), G*¥has a
directed edge from u to v

® The transitive closure provides

reachability information about a
digraph

Computing the Transitive
Closure

If there's a way to get from A to
o
We C_an perform DFS B and from B to C, then there's a
starting at each vertex way to get from A to C.
= O(n(n+m))
O

Alternatively ... Use dynamic
programming: The Floyd-
Warshall Algorithm

Floyd-Warshall Transitive
Closure

m Jdea #1: Number the vertices 1, 2, ..., n.

m Jdea #2: Consider paths that use only vertices

numbered 1, 2, ..., k, as intermediate vertices:
Uses only vertices numbered 1,...,k
(add this edge if it’ s not already in)

.............
LN N}
..........
l..
Ty
g
Ny
4,
.
[
¥
»
g
.
.

Uses only vertices

numbered 1,..., k-1 _
Uses only vertices

numbered 1,...,k-1

Floyd-Warshall’ s Algorithm

Algorithm FloydWarshall(
Input digraph
= Number vertices v,, ..., v, Output transitive closure G* of G
<1
= Compute digraphs G, ..., G, for all v € G.vertices()
" GO:hG) o o denote v as v,
® (G, has directed edge (v, v,) if G has a c e 3
directed path fromgv,. go' vj’\)/vith il
intermediate vertices in G, < G
W5 e Vi for /c < 1 to n do
= We have that G,= G* Gy < Gy,
fori< lton(i=k)do
= In phase &, digraph G, is computed forj< 1 ton (j =i, k) do
from G, -, if G, _.areAdjacent(v, v,) A
= Running time: O(n?%), assuming G, _ .areAdjacent(v,, v;)
are?glj?cent is O(1) (e.g., adjacency if = G .areddjacent(v, v)
matrix g
d G,.insertDirectedEdge(v, v;, k)
return G,

Floyd-Warshall Example

Vs

Vi

Floyd-Warshall, Iteration 1

Vs

Vi

Floyd-Warshall, Iteration 2

Vs

Vi

Floyd-Warshall, Iteration 4

i

FIydW shall, Tteratio

Floyd-Warshall, Iteration 6

Floyd-Warshall, Conclusion

DAGs and Topological Ordering

= A directed acyclic graph (DAG) is a digraph that
has no directed cycles

DAG G

DAGs and Topological Ordering

= A topological ordering of a digraph is
a humbering v, ..., v, of the vertices
such that for every edge (v;, v,), we
have i<j

= Example: in a task scheduling Vs
digraph, a topological ordering a task
sequence that satisfies the

precedence constraints V) Topological

Theorem ordering of G

A digraph admits a topological
ordering if and only if it is a DAG

Topological Sorting

= Number vertices, so A typical student day
that (u,v) in E implies
u<v

Algorithm for Topological
Sorting

O Eotek: This algorithm is different than the one in the
00

Algorithm TopologicalSort(G)

H < G // Temporary copy of G

n < G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges
Labelv < n

n<—n-1

Remove v from H

= Running time: O(n + m)

Implementation with DFS

= Simulate the algorithm by using
depth-first search

= O(n+m) time.

Algorithm zopological DFS(G)
Input dag ¢

Output topological ordering of G
n < G.numVertices()

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

Algorithm topological DFS(G, v)
Input graph G and a start vertex v of G

Output labeling of the vertices of &
in the connected component of v

setLabel(v, VISITED)

for all ¢ € G.outEdges(v)
{ outgoing edges }

w < opposite(v,e)
if getLabel(w) = UNEXPLORED
{ e 1s a discovery edge }
topologicalDFS(G, w)
else
{ e 1s a forward or cross edge }
Label v with topological number n
n<n-1

Topological Sorting Example .

Topological Sorting Example .

/

|

\9

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

é\gﬁ
N
-/

Topological Sorting Example

\<(F
27

N

Topological Sorting Example

\<(F
27

N

Topological Sorting Example

\<(F
27

N

Topological Sorting Example .

/\//

7

A Quiz

® Fang loves CS courses and wants to plan his course
schedule. The course prerequisites are:

m (CS15: (none)
m CSl16: CS15

m CS22: (none)
m CS31: CS15 Please help Fang to find the sequence of courses

that allows him to satisfy all the prerequisities.
m (CS32: CS16, CS31

m CS126: CS22, CS32, CS16
m CS127: CS16

m CS141: CS22, CSl16

m CS169:CS32

Minimum Spanning Trees

Spanning subgraph
m Subgraph of a graph G containing all
the vertices of G

Spanning tree |
® Spanning subgraph that is itself a tree

Minimum spanning tree (MST)

® Spanning tree of a weighted graph with
minimum total edge weight

= Applications
= Communications networks
® Transportation networks

Cycle Property

Cycle Property:
m | et 7 be a minimum spanning tree
of a weighted graph G
m Let e be an edge of G that is not in
T and C let be the cycle formed by

e with T Replacing £ with e yields
m For every edge f of C, weight(f) < ﬂ a better spanning tree
weight(e)

Proof:
m By contradiction

m If weight(f) > weight(e) we can get a
spanning tree of smaller weight by
replacing e with f

Partition Property

= Partition Property:

m Consider a partition of the vertices
of G into subsets U and V

m Let e be an edge of minimum
weight across the partition

® There is @ minimum spanning tree
of G containing edge e

D Replacing f with e yields

nother MST

Kruskal’ s Algorithm

= Maintain a partition of the
vertices into clusters

m Initially, single-vertex clusters
m Keep an MST for each cluster

m Merge “closest” clusters and
their MSTs

= A priority queue stores the
edges outside clusters

= Key: weight
= Element: edge

= At the end of the algorithm
= One cluster and one MST

Algorithm KruskalMST(G)

for each vertex v in G do
Create a cluster consisting of v
let Q be a priority queue.
Insert all edges into Q
T
{T 1s the union of the MSTs of the clusters}
while 7 has fewer than n — 1 edges do
e < Q.removeMin().getValue()
[u, v] < G.endVertices(e)
A < getCluster(u)
B < getCluster(v)
if A = B then
Addedgeeto T
mergeClusters(A, B)
return 7

Minimum Spanning Trees

Example (contd.)

Prim-Jarnik’ s Algorithm

= We pick an arbitrary vertex s and we grow the
MST as a cloud of vertices, starting from s

= \We store with each vertex v label d(v)
representing the smallest weight of an edge
connecting v to a vertex in the cloud

= At each step:

m \We add to the cloud the vertex u outside the cloud
with the smallest distance label

m \We update the labels of the vertices adjacent to u

Prim-Jarnik’ s Algorithm (cont.)

= A heap-based adaptable priority | Algorithm PrimJarnikMST(

queue with location-aware
entries stores the vertices
outside the cloud

m Key: distance
m Value: vertex

m Recall that method

replaceKey(l,k) changes the key
of entry /

We store three labels with each
vertex:

m Distance
m Parent edge in MST
m Entry in priority queue

0 < new heap-based priority queue
s < a vertex of G
for all v € G.vertices()
if v=gs
setDistance(v, 0)
else
setDistance(v,)
setParent(v, D)
| < Q.insert(getDistance(v), v)
setLocator(v,[)
while -Q.isEmpty()

| < Q.removeMin()

u < LgetValue()
for all e € G.incidentEdges(u)
z < G.opposite(u,e)
r < weight(e)
if r < getDistance(z)
setDistance(z, r)
setParent(z,e)
Q.replaceKey(getEntry(z), r)

Example (contd.)

Baruvka’ s Algorithm

= Like Kruskal’s Algorithm, Baruvka’s algorithm grows
many clusters at once and maintains a forest T

= Each iteration of the while loop halves the number of
connected components in forest T

= The running time is O(m log n)

Algorithm BaruvkaMST(G)
T < V {just the vertices of G}
while 7 has fewer than n — 1 edges do
for each connected component C'in 7 do
Let edge e be the smallest-weight edge from C to another component in T

if e 1s not already in 7 then
Addedgeeto T
return 7'

Example of Baruvka’s
Algorithm (animated)

