Fall 2015

Fang Yu

Software Security Lab.

Dept. Management Information
Systems,

National Chengchi University

Data Structures
Lecture 12

Announcement

= We will talk about Hash Table today and Graphs on Jan. 8
as the last two lectures

® The project demo is scheduled on Jan. 14

® The makeup exam will be held on Jan. 14.

® The questions cover the materials in the last three lectures:
dynamic programming, binary search tree, maps and hash
tables, and graphs

Advance ADTs

Maps and Hash Tables

Maps
= A map models a searchable collection of key-value entries
m Key is unique

= The main operations of a map are for searching, inserting, and
deleting items

= Multiple entries with the same key are not allowed

= Applications:
m address book
m student-record database

The Map ADT

m get(k): if the map M has an entry with key k, return its
associated value; else, return null

= put(k, v): insert entry (k, v) into the map M; if key k is not
already in M, then return null; else, return the old value
associated with k

= remove(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null

The Map ADT

m size(), isEmpty()

= entrySet(): return an iterable collection of the entries
in M

m keySet(): return an iterable collection of the keys in M

= values(): return an iterator of the values in M

Example

Operation Output Map

iSEmpty() true @

put(5,A) null (5,A4)

put(7,B) null (5,A)(7,B)

put(2,C) null (5,A,(7,B)(2,0)
put(8,D) null (5,A).(7,B)(2,0),(8,D)
put(2,£) c (5,A).(7,B),(2,E),(8,D)
get(7) B (5,A.(7,B)(2,E),(8,D)
get(4) null (5,A).(7,B)(2,E),(8,D)
get(2) E (5,A).(7,B),(2,E),(8,D)
size() 4 (5,A).(7,B)(2,E),(8,D)
remove(5) A (7,8),(2,E),(8,D)
remove(2) E (7,B),(8,D)

get(2) null (7,8),(8,D)

iSEmpty() false (7,B),(8,D)

A Simple List-Based Map

= We can efficiently implement a map using an unsorted list

= \We store the items of the map in a list S (based on a doubly-linked
list), in arbitrary order

header | nodes/ positions\‘: trailer

The get(k) Algorithm

Algorithm get(k):
B = S.positions() //B is an iterator of the positions in S
while B.hasNext() do
p = B.next() // the next position in B
if p.element().getKey() = k then
return p.element().getValue()

return null //there is no entry with key equal to k

The put(k,v) Algorithm
Algorithm put(k,v):
B = S.positions()
while B.hasNext() do
p = B.next()
if p.element().getKey() = k then
t = p.element().getValue()

S.set(p,(k,v))
return t //return the old value
S.addLast((k,v))
n=n-+1 //increment variable storing number of entries

return null //there was no entry with key equal to k

The remove(k) Algorithm

Algorithm remove(k):
B =S.positions()
while B.hasNext() do
p = B.next()
if p.element().getKey() = k then
t = p.element().getValue()
S.remove(p)
n=n-1 [/decrement number of entries
returnt [/return the removed value

return null / /there is no entry with key equal to k

Performance of a List-Based
Map

m Performance:

= put takes O(1) time since we can insert the new item at
the beginning or at the end of the sequence

m get and remove take O(n) time since in the worst case
(the item is not found) we traverse the entire sequence to
look for an item with the given key

® The unsorted list implementation is effective only for
maps of small size or for maps in which puts are the
most common operations, while searches and
removals are rarely performed (e.g., historical record
of logins to a workstation)

Hash Tables

m Use keys to store and access entries (in constant time)

keys buckets entries
000 | x : :
_ pu X | Lisa Smith | 521-8976
~ John Smith —
_ s ¢ | John Smith | 521-1234
151 | x ‘
~ SamDoe = x | sandra Dee | 521-9655
: : x| Ted Baker | 418-4165
1254 | o
& x| Sam Doe 521-5030
255 | x

Hash Functions and Hash
Tables

= A hash function & maps keys of a given type to integers
in a fixed interval [0, N - 1]

= Example:
h(x) =xmod N
is @ hash function for integer keys

= The integer h(x) is called the hash value of key x

= A hash table for a given key type consists of
= Hash function &
m Array (called table) of size ¥

= When implementing a map with a hash table, the goal is
to store item (%, o) at index i = h(k)

Example

0
= We design a hash table for a map %
storing entries as (SSN, Name), 3
where SSN (social security 4
number) is a nine-digit positive
integer
= Our hash table uses an array of 9997
size N = 10,000 and the hash 9998
function 9999

h(x) = last four digits of x

Hash Functions

= A hash function is usually specified as
the composition of two functions:

Hash code:
h,: keys — integers

Compression function:
h,: integers — [0, N — 1]

= The hash code is applied
first, and the compression
function is applied next on
the result, i.e.,

h(x) = hy(h (x))

= The goal of the hash
function is to “disperse”
the keys in an apparently
random way

Hash Codes

= Memory address: = Component sum:

= We reinterpret the memory address ® We partition the bits of the key

of the key object as an integer into components of fixed

(default hash code of all Java length (e.g., 16 or 32 bits) and
we sum the components

objects) (ignoring overflows)
= Good in general, except for numeric ¢ itahie for numeric keys of
and string keys fixed length greater than or
equal to the number of bits of
= Integer cast: the integer type (e.g., long and
= \We reinterpret the bits of the key double in Java)

as an integer

m Suitable for keys of length less than
or equal to the number of bits of
the integer type (e.qg., byte, short,
int and float in Java)

Hash Codes (cont.)

= Polynomial accumulation:

= We partition the bits of the key into a
sequence of components of fixed length
(e.g., 8, 16 or 32 bits)

aa, ...a,
= We evaluate the polynomial
pR)=a,+a,z +a, 7>+ ...
ot a, 7!
at a fixed value z, ignoring overflows

m Especially suitable for strings (e.g., the
choice z = 33 gives at most 6 collisions on
a set of 50,000 English words)

= Polynomial p(z) can be

evaluated in O(n) time using

Horner’s rule:

= The following polynomials are
successively computed, each
from the previous one in O(1)
time

Po(z) =a,

pi(@)=a,; +2zp;(2)
i=1,2,...,n-1)

= We have p(z) = p,-1(2)

Compression Functions

= Division:
"/, (y)=ymod N

m The size NV of the hash table is
usually chosen to be a prime

m The reason has to do with number

theory and is beyond the scope of
this course

= Multiply, Add and Divide
(MAD):

" h,(y)=(ay + b) mod N
® ¢ and b are nonnegative

integers such that
amod N =0

m Otherwise, every integer
would map to the same
value b

Collision Handling

m Collisions occur when different
elements are mapped to the same
cell

m Separate Chaining: let each cell in
the table point to a linked list of
entries that map there

B W —O
N NI R AN

m Separate chaining is simple, but
requires additional memory
outside the table

Map with Separate Chaining

Algorithm get(k): Algorithm remove(k):
t = A[h(k)].remove(k)
return A[h(k)].get(k) if t # null then //k was found
n=n-1
returnt

Algorithm put(k,v):

t = A[h(k)].put(k,Vv)

if t = null then //k is a new key
n=n+1

returnt

Linear Probing

= Open addressing: the = Example:
colliding item is placed in a ® /i(x) =x mod 13
different cell of the table = Insert keys 18, 41, 22, 44, 59,

_ _ 32, 31, 73, in this order
= |inear probing: handles

collisions by placing the colliding
item in the next (circularly)
available table cell

= Each table cell inspected is _

referred to as a “probe” 0123456 7289101112

® Colliding items lump together, ﬂ'

causing future collisions to cause [g 44593329517

a longer sequence of probes 0123456 789101112

Search with Linear Probing

= Consider a hash table 4 that uses | Algorithm ger(k)

: : i<— h(k
linear probing b 0()
= get(k) rel’cea: e
= \We start at cell a(k) ifo— O
= \We probe consecutive locations return rull
until one of the following occurs else if c.getKey () = k
= An item with key & is found, or el Szeturn c.getValue()
= An empty cell is found, or i< (i+1)mod N
m N cells have been unsuccessfully p<—p+1
probed until p =N

return null

Updates with Linear Probing

® To handle insertions and deletions, we introduce a
special object, called AVAILABLE, which replaces
deleted elements

= remove(k)
m We search for an entry with key k

m If such an entry (k, o) is found, we replace it with the
special item AVAILABLE and we return element o

m Else, we return null

Updates with Linear Probing

= put(k, o)
= We throw an exception if the table is full
= We start at cell h(k)

= We probe consecutive cells until one of the
following occurs

m A cell iis found that is either empty or stores
AVAILABLE, or

= N cells have been unsuccessfully probed
= We store (k, 0) in cell 7

Double Hashing

= Double hashing uses a = Common choice of
secondary hash function d(k) compression function for the
and handles collisions by secondary hash function:
placing an item in the first d,(k) =g - kmod g
available cell of the series
(i +jd(k)) mod N where
forj=0, lI,..., N—-1 mg<N

= The secondary hash function " ¢lsaprime

d(k) cannot have zero values = The possible values for d,(k)

m The table size N must be a are

prime to allow probing of all
the cells

1,2,...,q

Example of Double Hashing

= Consider a hash table fs h (Sk) d(3k) P;obes
storing integer keys that 4 2 1 |2
handles collision with 22 9 6 | 9
double hashing 44 5 5 |5 10
NT 59 7 4 |7
32 6 3 6
® h(k)=kmod 13 31 5 4 |5 9 0
" d(k)=7-kmod7 3 8 418
= Insert keys 18, 41, 22, 44, [T
59, 32, 31, 73, in this 0123456 789101112

order ﬂ
30 [af [[1d3d59792d44] |

01 23456 7289101112

Performance of Hashing

m In the worst case, searches, insertions and removals
on a hash table take O(n) time

m The worst case occurs when all the keys inserted into
the map collide

® The load factor a = n/N affects the performance of a
hash table

= Assuming that the hash values are like random
numbers, it can be shown that the expected number
of probes for an insertion with open addressing is
1/(1-a)

Performance of Hashing

m The expected running time of all the dictionary ADT
operations in a hash table is O(1)

» In practice, hashing is very fast provided the load
factor is not close to 100%

= Applications of hash tables:
= small databases
m compilers
m browser caches

HW11 (Due on Jan. 10)

Webrize BMI!

= Create a web page that takes users’ height and weight and
return his’/her BMI

® This 1s the final HW. Use the same skills to webrize your
project

BONUS HW12 (Due on Jan.
10)

Build a hash table for websites!

= A website w consists of three fields: (url, name, score)

= Use w’s url to compute w’s hash key
= Hash code: url - integer
m Compression function: integer > [0..N-1]

m Use separate chains/linear probing/double hashing to
resolve collisions

= You may use java.util.Hashtable

Operations

Given a sequence of operations in a txt file,
parse the txt file and execute each operation

accordingly

operations description

put(key k, website w)

find(key k)

remove(key k)

Put a new website by its key k to the hash
table

Return the website associated with k

Remove the website associated with k

An input file

Similar to HW10,

1. You need to read the sequence of operations from a txt file

2. The format is firm
3. Raise an exception if the input
does not match the format

put www.nccu.edu.tw NCCU 8
put www.cs.ucsb.edu UCSB 3
put www.google.com Google 5
find www.google.com

remove www.cs.ucsb.edu

find www.nccu.edu.tw

[Google, hitp://www.coogle.com, 5]
[NCCU, http://www.nccu.edu.tw, 8]

Project Demo on Jan. 14

Beat Google:

® Stage 1 : Rank web pages by keywords

m Stage 2 : Rank web sites by keywords

® Stage 3 : Re-rank google web sites by keywords

® Stage 4 : Derive relative keywords by top-ranked web sites
m Stage 5: Webrize your search engine

= Stage 6: Mobilize your search engine

Project Demo

® [.ocation: The MIS 5F PC classroom

= Each team gives 8 minutes PPT presentation focusing on
the project interests, key ideas, and achievements + 7
minutes system demo

® In the demo, each team needs to run your system to show
how 1t works and how it achieves the requirement for each
stage. I will also check your source code.

= BONUS: Students who successfully challenge other team’s
system may get extra points.

