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Abstract

In a dynamic and partially unpredictable environment, robot

motion planning must be on-line. The planner receives a

continuous 
ow of information about occurring events and

generates new plans, while previously planned motions are

being executed. This paper describes an on-line planner for

two cooperating arms whose task is to grab parts on a con-

veyor belt and transfer them to their respective goals, while

avoiding collision with obstacles. Parts arrive on the belt in

random order, at any time. This scenario is typical of man-

ufacturing cells serving machine-tools, assembling products,

or packaging objects. The proposed approach breaks the over-

all planning problem into subproblems, each involving a low-

dimensional con�guration or con�guration�time space, and

orchestrates very fast primitives solving these subproblems.

The resulting planner has been implemented and extensively

tested both in a simulated environment and with a real dual-

arm system. Its competitiveness has been evaluated against

an oracle making (almost) the best decision at any one time.

The planner compares extremely well.
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1 Introduction

O�-line robot motion planning is a one-shot computa-
tion prior to executing any motion. All pertinent data
must be available in advance. In contrast, on-line plan-
ning is an ongoing activity that receives a continuous

ow of information about the robot environment. While
planned motions are being executed, new plans are gen-
erated in response to incoming events.

O�-line planning is virtually useless in dynamic envi-
ronments that involve events whose occurrences in time
and space are not precisely known ahead of time. On
the other hand, while on-line planning can potentially
deal with such environments, it raises di�cult tempo-
ral issues which have not been thoroughly addressed by
previous research. Indeed, timing is highly critical since
motions must be both planned and executed while their

goals are still relevant. Opportunities to achieve a goal
may exist only during short periods of time. If the on-
line planner is too slow or does not focus on the right
subproblem at the right time, it will fail to achieve goals
that could have been attained otherwise. The e�ciency
of the planner measures against an instantaneous oracle
making the best decision at every time. The greater the
e�ciency, the better the planner; but failing to achieve
some goals is acceptable.

Here we investigate on-line motion planning for a spe-
ci�c, but practically interesting part-feeding scenario
where two robot arms must grab parts as they arrive on
a conveyor belt and transfer them to given goals with-
out collision. This scenario is typical of robotic cells
loading machines, assembling products, or packaging ob-
jects. Our planner breaks the overall planning problem
into a series of subproblems and orchestrates very fast
primitives solving these subproblems according to the
incoming 
ow of information. Experiments with this
planner in a simulated environment to evaluate its e�-
ciency against quasi-optimal oracles have shown that it
is quite competitive. We have also connected the planner
to a real robot system and successfully run experiments
with this integrated system.

2 Relation to Previous Work

Motion planning has attracted a great deal of interest
over the last 15 years. Most of the research, however,
has focused on o�-line planning in static environments.
A motion plan is then computed as a geometric path. A
major concept produced by this research is the notion
of the con�guration space, or C-space, of a robot [15].
Various path planning algorithms based on this concept
have been proposed [12]. A number of very fast planners
have been implemented for robots with few degrees of
freedom (usually, 3) [13, 2]. Reasonably e�cient plan-
ners have also been developed for robots with many de-
grees of freedom (6 or more) [5, 2, 9]. But they still take
too much time to be used on-line. Such path planners
can be used to facilitate o�-line robot programming. For
example, the path planner in [5] computes collision-free
paths of an 8-dof manipulator among pipes in a nuclear
plant. In [7], a planner generates paths of a 5-dof rivet-
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Figure 1: Two-arm robotic cell

ing machine to assemble portions of an airplane fuselage.
In [3], planning is used to generate paths for the main-
tenance of aircraft engines.

Motion planning in the presence of obstacles mov-
ing along known trajectories is a step toward dealing
with a dynamic environment [17, 6]. The C-space is
extended by adding a dimension, time, yielding the
con�guration�time space, or CT-space, of the robot.
Motion plans are generated in the form of robot's tra-

jectories, i.e., geometric paths indexed by time.

Motion planning for several robots has been addressed
in [8, 4, 2]. The centralized approach consists of treating
the various robots as if they were one single robot, by
considering the Cartesian product of their individual C-
spaces [2]. This space is called the composite C-space. A
drawback of this approach is that it often leads to explor-
ing a large-dimensional space, which may be too time-
consuming. An alternative is the decoupled approach,
which consists of planning for one robot at a time. One
technique plans the path of each robot separately and
then tunes the robots' velocities along their respective
paths so that no two robots ever collide [8]. However,
the decoupled approach is not complete, i.e., may fail to
�nd a motion of the robots even if one exists.

Manipulation planning extends motion planning by al-
lowing robots to move objects. It consists of inter-
weaving transit paths, where a robot moves alone, and
transfer paths, where it moves objects, separated by
grasp/ungrasp operations. These paths lie in di�erent
subspaces of the composite C-space de�ned as the Carte-
sian product of the C-spaces of all robots and movable
objects. Manipulation planning has been studied for a
single robot in [19, 1] and for multiple robots in [10, 11].
The regrasping issue with one robot has been speci�cally
investigated in [18].

3 Scenario

Our scenario involves two robot arms, a conveyor belt, a
working table, movable parts, and obstacles. The arms
must grab parts as they arrive on the belt and transfer
them to speci�ed goals on the table where, for example,
they will form an assembled product.

The robot system (Fig. 1-3) includes two identical
scara-type arms, each having three links and four de-

grees of freedom. The �rst two links of each arm form
a horizontal linkage with two revolute joints. The third
link, which carries the gripper, translates up and down
and rotates about its vertical axis. Each arm shares part
of its workspace with the other arm. The arm that is
closest to the beginning of the belt is called arm1. The
other arm is called arm2.

Parts of di�erent types arrive on the belt at any time, in
random order, and with arbitrary orientations. A vision
system detects and tracks them on the belt. The task
of the arms is to grab as many parts as possible and
transfer them to their goals, without collision. For each
part X , the position and orientation where a gripper
can grasp X is unique and given relative to X . The goal
of X is also unique. When an arm releases a part at
its goal, the part stays there until it is removed by an
external mechanism. We assume that this mechanism
never interferes with the arms.

Static obstacles are lying on the table. If an arm re-
leases a part on the table, this part also becomes an
obstacle. All obstacles lie below the horizontal volume
swept out by the �rst two links of each arm. Similarly,
an arm's gripper in its upmost position cannot collide
with any obstacle. Hence, if an arm is not holding a
part and its gripper is all the way up, it can only collide
with the other arm. Such an arrangement is classical for
scara-type arms, since otherwise motions would be too
constrained to perform any useful task. However, when
an arm holds a part, this part shares the same space
as the obstacles. The belt is low enough so that when
an arm holds a part with its gripper in its upmost posi-
tion above the belt, the part is not hit by other arriving
parts. This condition allows an arm to lift a part above
the belt and stay there for a while, e.g., waiting for the
next motion command.

A single-processor computer is dedicated to planning.
The planner must make the best possible use of this re-
source to decide which arm motions to execute to trans-
fer as many parts as possible to their goals.

Example: The above scenario is illustrated in Fig. 2
and 3, with a series of snapshots produced by our plan-
ner. Snapshots are indexed by time, with the run start-
ing at time 0 and the sampling rate being 0.25sec per
frame. The belt is on the left-hand side and moves down-
ward. Each snapshot displays two con�gurations of the
arms and moving parts; the one in darker grey is the
current con�guration, while the one in lighter grey is
a con�guration between the previous and the current
snapshot. Parts of two types are fed during the run.
We denote them by Xi and Yj , where X and Y refer to
the pentagonal and T-shaped parts, respectively, and i

and j indicate the order of arrival. Each part disappears
as soon as it is delivered to its goal.

In snapshots (2)-(4), arm1 (the top arm) and arm2 (the
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Figure 2: Example (part 1)

(34) (36) (38) (40)

(42) (44) (47) (51)
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(64) (66) (68) (70)

Figure 3: Example (part 2)

bottom arm) are simultaneously deliveringX2 andX1 to
their goals. In (6), X1 reaches its goal and disappears.
In (7)-(11) arm1 performs the deliver motion of X2,
while arm2 clears the way for this motion. There are
two new parts, Y1 and X3, arriving on the belt. In (12),
immediately after arm1 has delivered X1 to its goal,
arm2 starts executing a motion to grasp Y1. Simulta-
neously, arm1 performs a short motion to free the way
for arm2, as shown in snapshots (12)-(13). Snapshots
(12)-(21) display the grasp motion of arm2. Concur-
rently, in (15)-(21), arm1 performs a motion to catch
X3. In (21), the arms grab X3 and Y1.

In (24)-(34) arm2 delivers Y1 to its goal, while arm1
is staying still holding X3 above the belt. In (36)-(38)
arm2 clears the way for arm1, which starts executing
the deliver motion of X3. Note that the goal of Xi has
changed between (34)-(36). This change is taken into ac-
count in arm1's deliver motion, as shown in snapshots
(40)-(51). In (40)-(42) arm2 executes a grasp motion to
catch Y2 and starts moving Y2 toward its goal in (51).
In (53), since X3's goal is not reachable by arm1, arm1
releases X3 at an intermediate location reachable by
arm2. X3 then becomes an additional obstacle which is
taken into account by the deliver motion of arm2 shown
in (56)-(66). In (53)-(60) arm1 performs a grasp motion
to catch Y3 and in (64)-(66) it starts moving Y3, while
arm2 is delivering Y2 to its goal. In (68)-(70), arm2
clears the way for arm1, which delivers Y3 to its goal in
(70) and beyond.

4 Overview

In the following, we denote the arms by A1 and A2, with
A1 standing for either arm1 or arm2, and A2 standing
for the other arm.

Planning primitives: In principle, if the arrival times
of the parts were known in advance, the planning prob-
lem of our scenario could be solved o�-line by searching
through the high-dimensional composite C-space of the
two arms and the parts. But this search would take
prohibitive time. So, the problem needs to be simpli-
�ed. Planning on-line makes simpli�cations even more
necessary. One way to proceed is to break the composite
C-space into several low-dimensional spaces.

How much simpli�cation is suitable? We use the fol-
lowing rule-of-thumb: Planning a motion should take
signi�cantly less time than executing this motion. If
planning is longer, the performance of the robot system
degrades quickly. But if it only takes a small fraction of
the time needed for execution, making it even faster has
little e�ect on the system e�ciency. This rule leads us
to reduce the planning problem to a series of subprob-
lems in spaces of dimension three. Indeed, there exist
techniques that plan motions in such spaces much un-
der the second on current workstations, while planning
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in spaces of dimension four or higher takes one or several
orders of magnitude longer [2].

Our planner mainly searches through two types of 3D
spaces: the CT-space of an arm and the C-space of a
part. We brie
y discuss below the assumptions and
heuristics which allow us to decompose the problem and
limit planning to these spaces.

We allow the �rst two links of an arm to move only when
its gripper is all the way up. Hence, an arm can only
collide with the other arm. This allows us to represent
the two arms in a 2D workspace as shown in Fig. 2-3. To
reduce the problem further, we decouple arm planning
so that we always plan for a single arm, say A1, at a
time while the other arm, A2, can be idling or executing
a previously planned trajectory. This simpli�ed problem
can be formulated as computing a trajectory in the 3D
CT-space of A1.

To shorten our presentation, we assume that translating
the gripper to (un)grasp a part is instantaneous, and
that orienting the gripper can always be coordinated
with the motions of the other two links. We also consider
that parts disappear immediately after they have been
delivered to their goals. These assumptions can easily be
removed and are not made in the implemented planner.

We represent a part X by its 2D projection into the hor-
izontal plane. When X is being transferred by an arm,
the part both translates and rotates in the plane, hence
tracing a path in a 3D C-space. Obstacles map into this
C-space as forbidden regions. Our planner computes
X 's path between its grasp and goal con�gurations in
the subset of its C-space that is reachable by at least
one arm. Through the arm's inverse kinematics, this
path then entails the path of the arm holding X . If
X leaves the space reachable by this arm, the planner
will command the arm to ungrasp X at an intermediate
location on the table where it can be regrasped by the
other arm. If another part Y is currently being moved,
this motion is temporarily ignored. When the paths of
X and the arm holding it have been computed, they are
coordinated with the ongoing motion of Y by tuning X 's
velocity appropriately.

In addition to the simpli�cations made above, our plan-
ner assumes that the arms can perfectly track the
planned trajectories, with each joint being able to in-
stantaneously change velocity. Unlike previous simpli-
�cations, this assumption yields discrepancies between
the planning model and the real world. In Section 7
we will discuss how we overcome these discrepancies in
order to run the planner with real robots.

Planning processes: A crucial issue in on-line plan-
ning is to react to events by focusing quickly on urgent
subproblems and sizing opportunities to grab parts be-
fore they vanish. Planning processes are used by our
planner to manage its activities over time.

At any time, all the parts currently on the belt or at
intermediate locations on the table are listed in a queue
Q. Assume that the planner starts with no parts in Q,
and no arms moving. The arrival of a part on the belt
triggers planning which consists of selecting a part X in
Q (here, there is no choice, but usually there is one) and
an arm A1, and setting up a planning process whose task
is (X;A1), i.e., plan a motion of A1 to grasp and deliver
X to its goal. This process will be terminated upon the
completion or failure of its task. Although its main task
is to plan forA1, this process may also generate a motion
of A2. E.g., if A2 is currently immobile, the process may
command A2 to free the way for A1. A new process is
created whenever a process is killed or interrupts itself
to allow for the execution of an already planned motion,
and there exist a part X 2 Q and a non-moving arm Ai

such that neither are currently assigned to a planning
process.

The robot operations may be accomplished with di�er-
ent orderings of the parts and di�erent assignments of
arms to parts. Computing plans for all possible order-
ings/assignments and choosing the one that can grasp
the largest number of parts in the shortest time would
take prohibitive time to run. Instead, we assign tasks to
processes according to the following heuristic rules:

1. The parts at intermediate locations on the table have
higher priorities than those on the conveyer belt, since
they may obstruct possible paths for these new parts.

2. The parts that are more advanced on the belt have
higher priorities than those which are less advanced,
since they will leave the arms' workspace earlier.

3. When both arms are not moving, arm1 has higher
priority than arm2, since arm2 is at the ending side of
the belt and thus can be used as a backup for arm1.

Concurrent planning: While a process is solving for a
task (X;A1), new parts may arrive on the belt and arm
A2 may be idling. The planner deals with this situation
by breaking the task into two subtasks: the grasp subtask
{ plan a trajectory to grasp X { and the deliver subtask
{ plan a trajectory to deliver X to its goal.

A planning process interrupts and puts itself on hold
between the two subtasks, allowing for the creation of
a new process. More precisely, suppose that a process
P1 is created to plan for the task (X;A1). P1 �rst plans
the motion for the grasp subtask and then puts itself on
hold if a feasible motion has been found. While A1 is
executing this motion, the processor is free and can be
used by other processes, say P2, to plan for other tasks.
Once A1 has grasped X , P1 resumes and solves for the
deliver subtask. However, if P2 is currently running, P1
is put in the waiting state until P2 is either interrupted
or killed. While waiting for a deliver path, A1 stays still
with its gripper holding X all the way up above the belt.
Processes thus take turns in using the processor.
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Hence, a planning process P may traverse the following
states during its lifetime:
- Running: P is running if it uses the computing re-
source to compute a plan.
- On hold: P is on hold while the arm assigned to it
performs the grasp motion.
- Waiting: P is waiting if it needs to compute a deliv-
ery motion, but the computer resource is being used by
another process.

If a process whose task is (X;A1) fails to solve either the
grasp or deliver subtask, it is immediately killed. How-
ever, in the second case, A1 is already holding X . Then
A1 releases X on the belt as soon as there is enough
distance between two incoming parts. There might still
be a chance that the other arm can accomplish the task.

A planning process P1 may be unable to plan the motion
of an arm A1 to deliver a part X because the goal lies
outside the space reachable by A1 or obstacles forceX to
leave A1's reachable space. Then P1 produces a motion
of A1 that moves X to an intermediate position where
it can be regrasped by the other arm A2. P1 is killed
and it will require another process P2 (with arm A2) to
move X to its goal.

5 Planning Techniques

We now present a more detailed account of the activities
carried out by the planner. The planner distinguishes
between a variety of cases and applies a speci�c treat-
ment to each one. Here, we consider a few representative
cases; see [14] for an exhaustive description.

Representation of C-spaces and CT-spaces: Each
arm Ai is modeled as a planar two-revolute-joint link-
age, hence has a 2D C-space Ci. We parameterize a
con�guration qi of Ai by the arm's joint angles �i1 and
�i2. We use the following metric over Ci: Let !i;1 and
!i;2 be the maximal velocities of the �rst and second
joints of arm Ai. Let qi = (�i1; �i2) and q

0

i = (�0

i1; �
0

i2) be
two con�gurations of Ai. The distance D(qi; q

0

i) between
these two con�gurations is:

D(qi; q
0

i) = maxf
j�i1 � �0

i1j

!i;1

;
j�i2 � �0

i2j

!i;2

g:

This de�nition is consistent with our assumption that
arm joints achieve their planned velocities instanta-
neously: D(qi; q

0

i) then measures the minimal time that
Ai takes to travel between qi and q0

i.

The CT-space CTi of Ai is de�ned as Ci � [0;+1),
with the third dimension being time. At every point
(�i1; �i2; t) in CTi, the maximum velocities !i;1 and !i;2

de�ne a cone of points reachable from (�i1; �i2; t).

All C- and CT-spaces searched by our planner are repre-
sented as bitmaps. Cells containing \1"s designate the
forbidden region where collision occurs. Cells containing

\0"s form the free region in which paths and trajecto-
ries must lie. The cells in a CT-space bitmap projecting
onto the same time interval form a time slice.

Planning a grasp motion: Let us consider the grasp
subtask of the task (X;A1). X may either be a part ar-
riving on the belt, or a part previously ungrasped at an
intermediate location on the table. Here we only con-
sider the �rst case. Let tc stand for the current time
and qs

1
designate the con�guration of A1 when it starts

executing the grasp motion. For any given time t, qg
1
(t)

denotes the con�guration of A1 at which it can grasp X .
The map qg

1
is de�ned over the time interval [tmin

g ; tmax

g ]
during which X is on the belt within A1's reach. It
may yield two con�gurations, since the inverse kinematic
equations of A1 usually have two distinct solutions cor-
responding to two arm postures. The planner selects the
con�guration which is closest to qs

1
according to D.

The treatment applied by the planner depends on
whether the other arm is currently moving, or not. Here
we only consider the case where it is moving. This
motion, which constrains the future motion of A1, is
mapped to a forbidden region in CT1. Let us assume
that A2's motion is scheduled to end after time tmax

g ;
therefore, if A1 can grasp X , its motion will terminate
before the one of A2. (The case where A2's motion may
terminate before A1's is slightly more complicated, but
is treated in a similar way.) The planner iteratively de-
termines the time tg when A1 grasps X . For every se-
lected tg such that A1 at qg

1
(tg) does not obstruct A2's

trajectory at any time t � tg, it searches CT1 for a tra-
jectory joining the line f(qs

1
; t)jt > tcg to (qg

1
(tg); tg),

avoiding the forbidden region and satisfying the joint
velocity constraints.

The planner performs this search backward, starting
from the selected (qg

1
(tg); tg). At every iteration of the

search, it selects a pending node (q1; t) of the current
search tree such thatD(qs

1
; q1) is minimum over all pend-

ing nodes. It computes nine potential successors of this
node by successively setting the velocity of each joint
to zero, its maximal value with positive sign, and its
maximal value with negative sign, and integrating the
corresponding motion over the duration of a time slice
in CT1's bitmap. If a potential successor q belongs to
a \0" cell c of this bitmap and c has not been visited
before, then q is included in the search tree as a new
pending node and c is marked `visited'. This best-�rst
algorithm and the de�nition of D guarantee that the
computed trajectory takes minimal time over all valid
trajectories in the discretized search space. The search
fails when no leaves in the search tree lie in time slices
occurring after tc.

The planner selects the successive values of tg in in-

creasing order between tmin

g and tmax

g , at the centers
of the time slices in CT1's bitmap. If the search fails
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for one value of tg and another value is considered, the
new search discards every node's successor lying in a cell
visited by a previous search. Indeed, at the bitmap res-
olution, this successor cannot be on a valid trajectory,
otherwise the previous search would not have failed. So,
each new value of tg yields a small amount of additional
computation.

Planning a deliver motion: We now consider the de-
liver subtask of (X;A1). The planner �rst generates a
path connecting the initial and goal con�gurations of X
by conducting a best-�rst search in the bitmap repre-
senting X 's C-space. This search is guided by a goal-
oriented potential �eld similar to the NF2 function de-
scribed in [12] and is restricted to the con�gurations of
X where A1 and/or A2 can grasp X . If the search fails,
A1 puts X down on the belt or the table at its current
location and the planning process is killed.

If a path is found for X , it entails a path for A1 through
the arm's inverse kinematics. The initial posture of A1

is the one at the end of the previous grasp path. If in
this posture one joint of A1 reaches a limit, the planner
includes an ungrasp operation in A1's path, a subpath
changing A1's posture, and a regrasp operation, before
resuming tracking X 's path. If A2 lies along the way of
A1's path, a motion of A2 to clear the way is generated.
This motion is computed in C2, into which A1's path
maps as a forbidden region. The �nal con�guration of
A2's is any con�guration outside this region. The path
of A2, scheduled at maximal velocity, starts �rst. The
motion of A1, also at maximal velocity, starts as soon
as it can no longer collide with A2. To determine the
starting time of A1's motion, the planner maps A2's tra-
jectory to a forbidden region in CT1; it then represent
A1's trajectory as a curve segment in CT1 with its initial
point at the time when A2 is scheduled to terminate its
motion; �nally it translates this curve toward smaller
values of time. The position of the curve just before
it intersects the forbidden region due to A2 gives A1's
starting time.

If X 's path leaves A1's workspace, the planner com-
mands A1 to put down X at an intermediate position
where it can be regrasped by A2.

Bitmap computation: The role of a bitmap represent-
ing a C- or CT-space is twofold. It provides a discretiza-
tion of a continuous space prior to searching that space
and allows for quasi-instantaneous collision checks.

Part's C-space: The C-space bitmap for a part X rep-
resents the forbidden region created by the obstacles.
We model both X and the obstacles as unions of con-
vex polygons, fXig and fOjg, respectively. Every pair
(Xi; Oj) yields a subset of the forbidden region in X 's
C-space. Any cross-section of this subset at a constant
orientation of X is itself a convex polygon that is com-
puted in time linear in the number of vertices of Xi and

Oj [15]. A polygon-�ll transforms this polygon into a 2D
bitmap. The 3D C-space bitmap of X is constructed by
stacking �xed-orientation 2D slices.

Arm's C-space: The planner precomputes link-link
bitmaps by treating one link of an arm as a �ctitious
robot free to translate and rotate in the plane and a link
of the other arm as an obstacle. In each arm, we choose
the reference point of the second link at the center of
rotation of the second joint. Thus, if we �x the �rst
joint angle �11 of A1, the reference point of the second
link is also �xed. Given the con�guration of A2, we scan
all possible values of �11 in C1's bitmap. Each value de-
termines a cell in the link-link bitmap representing the
interaction between the �rst link of A1 and the second
link of A2. If a collision occurs, the whole column in
C1's bitmap is �lled with \1"s. Otherwise, the position
of the reference point de�ned by the current value of �11
determines a column in the link-link bitmaps represent-
ing the interaction between A1's second link and each of
the two links of A2. After shifting these two columns ap-
propriately (to align their origins with the origin of the
column of C1's bitmap at the current �11) and removing
the cells beyond the second-joint mechanical stops, we
compute their boolean union and copy the result into
the column of C1's bitmap at the current value of �11.

6 Extensions

Changes in goals: The goal of a part can be changed
at any time. If a part X arrived before its goal changed,
but the deliver motion has not been computed yet, the
new goal will be used by the planner when it solves for
the deliver subtask. If, instead, the deliver motion has
already been planned, it is executed without modi�ca-
tion; whenX reaches its previous goal, the planner plans
a new motion to transfer it to its new goal.

New types of parts: New types of parts can be dy-
namically introduced. For the user, adding a new part
means describing its geometry, de�ning its goal, and
specifying the grasp position of a gripper. For the plan-
ner, it only requires computing new bitmaps. As long
as the number of obstacles and parts of di�erent types
is not too large, this computation can be carried out
on-line without signi�cantly weakening the total system
performance.

Changes in obstacles: The locations of the obstacles
can be changed. Such changes must occur when no de-
liver motion is being executed. They require the planner
to update the C-space bitmaps of the incoming parts.
Obstacles can also be added or removed. Whenever an
obstacle is added, new bitmaps describing the interac-
tion of this obstacle with the various types of parts that
may be fed are computed.

Anticipating catches: Rather than idling, if an arm
is not moving, the planner generates a motion for that
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arm to bring it to a prede�ned con�guration where its
gripper is close to the belt. Thus, when a new part
arrives on the belt, the arm will be in a better position
to catch it quickly.

7 Experimentation

Implementation: The planner has been implemented
in C on a DEC Alpha workstation (Model Flamingo).
It has been connected to both a graphic simulator and
a real robotic system. The sequence of snapshots shown
in Fig. 2-3 was produced by our planner connected to
the simulator. The robot system in the simulator has
the same general characteristics as the real system. The
lengths of the �rst and second links of each arm are
both 24in. The �rst joint spans a 135dg interval and
the second a 285dg one. The maximal velocities of the
joints are 15.2dg/sec. The belt moves at 4in/sec. The
interval of time during which a part can be grasped is
approximately 15sec.

An arm C-space bitmap has size 36 � 76, which corre-
sponds to increments along each axis of about 3.75dg.
The size of the bitmap representing a part C-space is on
the order of 128 � 128 � 96; the increments along the
two position axes are approximately 0.57in long.

We performed various tests with our software and ob-
tained the following average times for a representative
sample of components:

� Computing a part-obstacle bitmap takes 41ms.

� Computing a C-space bitmap for a part takes 8.3ms.

� Updating a part C-space bitmap when an object is
added onto the table takes 5.6ms.

� Constructing an arm C-space bitmap using the pre-
computed link-link bitmaps takes 0.4ms.

� Searching a part C-space bitmap (best-�rst search) is
done at a rate of 65,000 nodes/sec.

� Searching an arm CT-space (best-�rst search) is done
at a rate on 870,000 nodes/sec.

Evaluation: Ideally, the planner's e�ciency should be
evaluated relative to an instantaneous planner always
making the best decision (we call such a planer an or-

acle). However, building such an oracle is not realistic,
since it requires implementing an optimal o�-line ma-
nipulation planner. Instead, we built a quasi-optimal
oracle as follows: We let each arm move at maximal
velocity along a simple path connecting two con�gura-
tions, one where the gripper is above the belt, the other
where it is above the table away from the belt. These
motions are performed alternately, forward and back-
ward, so that when one arm is above the belt the other
arm is above the table. The trajectories are de�ned so
that no collision occurs in the middle. Then we de�ne a
feeding sequence of parts so that when an arm is above

Unc. (sec) 0.0 0.5 0.5 0.75 0.75 1.0 1.0

Slowing No No Yes No Yes No Yes

Parts/Min 13.2 13.2 11.8 13.2 11.3 13.2 10.8

�o 0% 20% 0% 25% 0% 28% 0%

�p 13% 19% 6% 17% 2% 14% 0%

Table 1: Planner vs. quasi-optimal oracle

the belt, a part is right there to be grasped and the goal
of this part is exactly at the other end of the arm's tra-
jectory. Finally, we distribute the obstacles so that no
part collides with an obstacle when it is moved by an
arm. By construction, the missing ratio of this oracle
for the sequence of parts de�ned above is 0%.

We ran the planner with the same obstacle distribution
and the same sequence of parts. Each run was 8min
long, during which on the order of 100 parts were being
fed. Table 1 compares results obtained with the oracle
and the planner. In column 1, we feed the parts with
no uncertainty. The number of parts fed per minute is
13.2. The missing ratio �o of the oracle is 0%, while the
missing ratio �p of the planner is 13%. In columns 2
and 3, we let parts arrive within a �0:5sec uncertainty
interval. If the feeding rate is unchanged (column 2), �o
increases sharply to 20% (this is obtained by temporar-
ily stopping the arms' motions whenever an arm reaches
the belt prior to the arrival of the part); on the other
hand, �p increases slightly to 19%. Let us slow down the
feeding rate just enough so that �o becomes 0% (column
3); this requires stopping the arm motions given by the
oracle, for a maximum of 1sec prior to any grasping op-
erations. The belt now feeds 11.8 parts/min. �p is also
reduced to 6%. The subsequent columns show similar
results when feeding uncertainty is �0:75sec and �1sec.
When the feeding rate is slowed down just enough to
make the �o equal to 0%, �p drops to 2% and 0%, re-
spectively.

Connection to robotic system: We have integrated
our planner with a dual-arm robotic system developed in
the Aerospace Robotics Laboratory at Stanford [16]. We
successfully experimented with this integrated system
on examples similar to the one shown in Fig. 2-3.

Because the planner assumes that arm joints can change
velocity instantaneously, the trajectories it computes
cannot be executed accurately. Hence, the controller
recomputes their time parameterization (without chang-
ing their geometry) using a realistic dynamic model of
the arms. To guarantee that a recomputed trajectory
remains collision-free, the planner is slightly more con-
servative than presented above. For example, consider a
grasp trajectory of A1 to be performed while A2 is mov-
ing. The planner maps A2's trajectory to a forbidden re-
gion in CT1 and extends this region by its shadow along
the negative time dimension. Thus the planned trajec-
tory of A1 can be arbitrarily translated toward the right

7



(greater values of time) without causing any collision. It
is then su�cient for the controller, when it recomputes
A1's trajectory, to make sure that A1 is never ahead
of time relative to A2. We deal with residual control
errors by slightly growing the arm links before comput-
ing the link-link bitmaps. Similarly, localization errors
by the vision system lead us to grow the objects before
computing the part-obstacle and part-part bitmaps.

With the above modi�cations, motions are guaranteed
to be collision-free, but an arm may not arrive in time to
grab a part on the belt. This problem is handled by set-
ting the maximal joint velocities in the planner smaller
than the actual values. On our implementation, the ve-
locity bounds given to the planner are constants that
have been estimated through preliminary experiments.

Finally, we must consider grasping operations on the
belt. When a gripper arrives within some distance of
the part it is expected to grasp, the controller stops ex-
ecuting the planned trajectory. It then tracks the part
using the last position given by the vision sensor and
the measured velocity of the conveyor belt. When it is
above the part, moving at the same velocity, the con-
troller commands the grasp operation. While in this
autonomous mode, the controller checks for collision be-
tween the arms. If one is going to happen, it stops both
arms and reports the failure to the planner.

8 Conclusion

This paper describes an on-line manipulation planner
for a dual-arm robot system whose task is to grab parts
arriving on a conveyor belt and deliver them at speci�ed
goals. Parts arrive at any time, in random order. The
planner uses information provided by a vision system
to break the overall planning problem into a stream of
rather simple subproblems and orchestrate fast planning
primitives solving these subproblems. Experiments con-
ducted with this planner show that it compares very well
to quasi-optimal oracles. Since the planner also allows
dynamic changes in obstacles, goals, and tasks, this re-
sult suggests that on-line planning may rapidly become
more attractive than o�-line planning. In fact, we be-
lieve that our on-line planner enables low-cost, 
exible,
and e�cient part feeding. Other experiments not re-
ported here (see [14]) show that an increase in compu-
tational speed does not yield a signi�cant improvement
in the planner's e�ciency. As computers become faster,
this result indicates that future research should be aimed
at devoting more computation time generating motion
plans that are quicker to execute.
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