
Motion Planning for a Crowd of Robots

Tsai-Yen Li
Computer Science Department
National Chengchi University,

Taipei, Taiwan, R.O.C.

Hsu-Chi Chou
Computer Science Department
National Chengchi University,

Taipei, Taiwan, R.O.C.

Abstract - Moving a crowd of robots or avatars from their
current configurations to some destination area without caus-
ing collisions is a challenging motion-planning problem be-
cause the high degrees of freedom involved. Two approaches
are often used for this type of problems: decoupled and central-
ized. The tradeoff of these two approaches is that the decoupled
approach is considered faster while the centralized approach
has the advantage of being complete. In this paper, we propose
an efficient centralized planner that is much faster than the
traditional randomized planning approaches. This planner
uses a hierarchical sphere tree structure to group robots dy-
namically. By taking advantage of the problem characteristics
on independently moving robots, we are able to design a prac-
tical planner with the centralized approach when the number
of robots is rather large. We use several simulation examples to
demonstrate the efficiency and effectiveness of the planner.

I. INTRODUCTION

The problem of directing a fleet of robots or moving a
crowd of avatars are often raised in the context of robot
contest, computer animation, and simulation for urban plan-
ning. The problem is challenging because the high degrees
of freedom involved when the number of robots becomes
large. The curse of dimensionality makes the problem diffi-
cult to solve [16]. Generally speaking, there are two main
approaches to the planning problem for multiple robots:
decoupled approach and centralized approach. The trade-
offs between these two approaches lie on efficiency and
completeness. The decoupled approach is typically faster
but lacks completeness while the centralized approach can
be made complete but might need a large amount of plan-
ning time and storage space.

When the degrees of freedom in a system are rather in-
dependent in nature, the decoupled approach might be a
good solution since the planning time for each decomposed
problem could be rather short. The algorithm developed for
solving a simple subproblem can also be complete. However,
when the planner for the decomposed subproblem fails,
there are usually no good algorithms that can backtrack and
systematically try alternative decomposition. If we choose
to use a centralized approach to solve the problem, a com-
plete method can be developed to search the composite
configuration space systematically. However, since the size
of the composite configuration space is overwhelming, a
systematic search dooms to be impractical. Therefore, most
planners with the centralized approach use a randomized
algorithm to achieve probabilistic completeness.

Although randomized algorithms have been shown to be
a practical approach to solve motion-planning problems in
high dimensional configuration space, we found that they
may fail to find a feasible path when the decoupled degrees
of freedom are actually interfering with each other such as
in the case of robot crowds. In this paper, we propose a
novel centralized planning approach that moves the robots
in groups formed dynamically with a sphere-tree structure.
We use several examples to demonstrate that the traditional
randomized path planners fall short when the number of
robots becomes large. With the new approach, on the other
hand, we can plan for a larger number of robots in a more
efficient way. We have also implemented a decoupled plan-
ner to demonstrate that the centralized planner could be a
better choice in terms of completeness and efficiency.

The rest of the paper will be organized as follows. We
will review the related work on the planning problem for
multiple robots in the next section. In the third section, we
will describe the basic problem and present an implemented
planner with a decoupled approach. Then, we will propose
our new centralized approach in Section IV. In Section V,
we will use some experimental data to demonstrate the ef-
fectiveness of our approach. Finally, we will conclude the
paper in the last section.

II. RELATED WORK

Surveys of motion planning algorithms can be found in
[11] and [7]. According to [7], path planning can be viewed
as either centralized or distributed. The centralized planning
typically considers all robots and their degrees of freedom
altogether and therefore usually entails a high dimensional
composite search space. In a distributed approach, each in-
dividual robot plans and adjusts its paths in parallel with
other robots until feasible paths for all robots are found.

In [11], the taxonomy about planning for multiple robots
is somewhat different. The approaches are classified into
two categories: centralized and decoupled. The decoupled
planning is different from the distributed planning on that
the robots are planned sequentially in the decoupled ap-
proach. Two variations exist in decoupled planning: (1) pri-
oritized planning that considers one robot at a time under
the constraint of previously planned paths for other robots,
(2) the path coordination method that schedules the execu-
tion of individually planned paths to avoid interference. The
work of [6] is an example of decoupled approach where all
robots are prioritized and planned with respect to only

Appear in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2003

higher-priority robots. A similar approach has also been
proposed in [14] to generate the motions of two manipulator
robots in an on-line manner. In [13], a decoupled approach
has been used to generate motions for avatars in a virtual
environment.

Most methods originally developed for single-robot sys-
tems can be applied in centralized planning. However, due
to the high dimensionality of such a system, a complete
planner is usually intractable. In the past decade, the ran-
domized planning approach [1] has attracted much attention
and been successfully demonstrated in many applications
with difficult problems [5][10]. Early randomized planners
use artificial potential fields built in the workspace to guide
the search in C-space and use random walks to escape local
minima. A typical planner with this approach is the RPP
(Randomized Path Planner) [2]. Most of the randomized
planners developed in the last few years use the PRM
(Probabilistic Roadmap Method) approach [9]. In such an
approach, we build a random roadmap in the C-space in a
preprocessing step and try to answer planning queries at a
later time as quickly as possible. A common feature of the
randomized planners is that they are probabilistic complete,
which means that if there exists a feasible path and there is
no time limits, then the planner will be able to find it even-
tually.

The research on generating motions for crowds of agents
can be found in the literature of Robotics, Artificial Life,
and Computer Animation. A good survey of cooperative
robotics can be found in [3]. In [8], a flocking model was
used for a crowd of robots to follow a leader robot. A similar
approach has been adopted in [12] to simulate a crowd of
avatars led by a leader capable of generating collision-free
motions. Realistic flocking behaviors for virtual creatures
such as birds or fishes have been successfully simulated
with artificial forces [17]. In [3], roadmap consisting of me-
dial axes is used to guide the simulation for a flock of ava-
tars. However, a common weakness of these approaches is
that they cannot guarantee that a feasible motion plan can be
generated for the whole system even if such a plan exists.

III. THE DECOUPILED PLANNING APPROACH

In this section, we will first give a general description of
the path-planning problem for multiple robots. The problem
definition, in fact, might be different for different applica-
tions at various situations. However, we will focus on the
problem suitable for the decoupled approach in this section
and briefly describe a planner implemented with this ap-
proach. Examples generated with this approach will be
given at the end.

A. Considerations for Different Applications

Depending on the applications, one can define the plan-
ning problem for multiple robots slightly differently. For
example, depending on the time when the problem is raised,
a planner may need to plan for all robots at a time or it may

be called sequentially for each robot when their paths are
needed. For the first case, the problem can be solved with
either a decoupled or a centralized approach. However, for
the second case, a decoupled planning is more appropriate
since the path for each robot is generated at different time.

Another application attribute that might affect the choice
of the planning approach is the specification of the goal
configuration. If each robot can be given a definite goal
configuration at run time, we can use either approach to
solve the problem. However, specifying the goal configura-
tion for a large number of robots is a tedious task. If we
must generate the motions for all robots at a time, we are
more likely to specify a rough destination region for the
robots instead of individual goals. If the destination region
is not very large, the decoupled approach may not be a good
choice because the robots that reach the region earlier are
likely to block the entrance and prevent later robots to reach
the region. In the next subsections, we will assume that the
planning requests are issued at run time while the motions
of other robots are being executed, and each robot will be
given a specific goal configuration.

B. Motion-Planning Problem for Multiple Robots

Assume that we are given a geometric description of the
robot and polygonal obstacles in a 2D workspace. We as-
sume that each robot can be represented by an enclosing
circle of radius r. Due to geometric symmetry, we can use
only two parameters (x, y) to describe the configuration qi
for a robot i. Suppose that there exist n robots (n>1) in the
workspace. We denote the individual configuration space
(C-space) for robot i by Ci. Then the composite configura-
tion space for the multi-robot system is defined as C= C1 x
C2 x…x Cn, where a configuration in C is denoted by q.
Each robot has to satisfy the geometric constraint that they
cannot collide with each other or with obstacles. In addition,
each robot must move under a velocity limit constraint.

In this section, we will assume that the planning requests
are issued at different times for different robots while the
motions of other robots are being executed. Each request
defines a planning problem for a robot from its current con-
figuration to a specified goal configuration. Although not
necessary, it is usually desirable not to disturb the current
motion plans of other robots when we try to find a feasible
motion for a robot. Therefore, a decoupled approach is more
appropriate for this case.

C. Decoupled Planning Approach

Assume that we are given a motion-planning problem for
multiple robots as described in the previous subsection. The
path of the ith robot (denoted by τi, i = 1 to n) is known as a
function of time t, including when it is static. In our de-
coupled approach, for the kth robot under consideration we
augment its C-space by the time dimension to form the
so-called Configuration-Time Space (CT-space). A concep-
tual example is depicted in Fig. 1. There are two types of

forbidden regions in the CT-space representing obstacle
regions that the robot should avoid entering. One (denoted
by SCB) is due to the static obstacles while the other (de-
noted by DCB) is due to other moving robots. Note that SCB
is axis-parallel extrusion of 2D obstacles in time while
DCB’s are curve extrusions of the obstacle regions imposed
by other moving robots. When the ith robot finishes its mo-
tion at time tf

i , we assume that it will stay there unless oth-
erwise instructed. Equivalently, we are extending the path
for the ith robot to infinity and this extended path is denoted
by τi*. The objective of the path planner is to find a colli-
sion-free path τk for the kth leader in the CT-space that can
connect the current (qs

k) configuration at the current time (t0)
to the specified goal configuration (qg

k) at some time (tf) in
the future. Because of the velocity constraint the slope at
any point along a legal path in this CT-space must be posi-
tive (because time is not reversible) and less than some
user-specified value (maximal velocity). A Best-First plan-
ning algorithm can be adopted to search for a feasible path
in such a CT-space.

D. Planning Examples

Fig. 2 shows an example of decoupled planning for four
robots moving across each other. The trace of their paths is
shown, and the planning order (priority) is depicted beside
the robots. Note that the first robot chooses a straight-line
path since it has the highest priority. The later a robot is
planned, the more detoured its path usually will be. Another
example of multiple robots moving independently without
colliding with each other is shown in Fig. 3(a). In Fig. 3(b),
we show a snapshot of how the planner has been used to
simulate a human crowd in a virtual environment.

In the example of Fig. 2, the average planning time for
each robot is about 105ms on a regular PC with 650MHz
CPU. When the number of robots increases, one can expect

that the planning time will have a quadratic growth because
a robot has to check collisions with other n-1 robots. Al-
though the growth is not as fast as the exponential growth in
the centralized approach, the advantage that the decoupled
approach can be used in an on-line manner for interactive
applications may not be valid when n increases to some
large value.

IV. THE CENTRALIZED PLANNING APPROACH

A. Revising Problem Definition

When the number of robots increases to some large value,
say 100, it becomes impractical to specify the goal configu-
ration for each individual robot interactively. In this case, it
is more desirable to specify a rough destination region for
the crowd of robots to move to. We assume that the region is
a circle of radius R centered at (xg, yg), specified by the user.
The goal is reached if all robots can enter the region en-
closed by the circle. We assume that the order of entering
and their relative positions are not important. Although a
decoupled approach can be used to solve the problem but
such an approach often fails to find a path simply because
the robots that arrive early may prevent later robots to enter
the region. Therefore, a centralized approach is preferred.
However, one has to face the curse of dimensionality as the
number of robots increases.

Among the randomized path planning algorithms pro-
posed in the literature, the RPP (Randomized Path Planner)
and PRM (Probabilistic Roadmap Method) are the two
mainstream methods. However, both methods share some

 (a) (b)

Fig. 3: An example of decoupled planning for a crowd of avatars
moving independently in a virtual world

 (a) (b) (c)

Fig. 2. An example of decoupled planning with coordinated
crossing motions for four robots

Fig. 1. Searching for a feasible path amongst obstacle regions in
the CT-space.

CT-space

tf
k t0 t

y

qs
k

qg
k

τk

x

DCBi(τi*)

DCBj(τj*)

SCB

t
f
 j tf

i

common characteristics and have their own pathological
cases [1]. For example, the PRM planners typically have
difficulties in connecting two roadmap components through
long narrow passages. The RPP planner could be better in
solving difficult planning problems but it typically takes a
longer time when the heuristic potential fields used in the
planner are misleading.

Although the motion-planning problem for multiple ro-
bots can be solved with either centralized approach, we
think pathological cases often occur in the traditional plan-
ners as the number of robots increases. When the number of
robots is large, it is more likely that the robots are rather
crowded at the initial and goal configurations. In this case,
the probability of finding a legal neighboring configuration
becomes rather low since the robots all move independently.
As long as one robot is in collision, the overall system con-
figuration becomes illegal. Therefore, the size of solution
space is rather small compared to the whole problem space
when we allow every robot to have its full degrees of free-
dom. The set of legal configurations would be limited to
those that move the robots at the periphery outwards first.
However, the probability of choosing such a configuration is
rather low in a random process. Therefore, we need to im-
prove the traditional planner by accounting for this problem
characteristic.

B. Grouping Robots with a Hierarchical Sphere Tree

As described in the previous subsection, when we plan
for multiple independent robots, the pathological case hap-
pens because we are giving the robots too much freedom.
Allowing only a few robots to move at a time may be a good
idea but the planner may not be probabilistic complete any
more. In addition, one still has to determine who to move
first. Therefore, we propose to organize the crowd of robots
into a hierarchical sphere tree structure and move the robots
as a set of robot groups whenever possible. A sphere tree is a
binary tree, whose leaf nodes represent geometric primitives,
such as a circle or a sphere, composing the shape of a robot.
Each internal node represents a sphere whose size is large
enough to enclose its children spheres. This type of sphere

tree structure is commonly used to reduce the number of
calls to expensive collision detection routines [15]. As long
as the bounding volume of a node at a higher level does not
cause collisions, further examination below the node be-
comes unnecessary.

We build a sphere tree for the robots at their initial con-
figuration. The robots are organized in a hierarchical struc-
ture where each leaf node represents a robot, as shown in
Fig. 4. Since each leaf node belongs to a list of ancestor
sphere nodes of various sizes, robots can be grouped and
moved with different levels of grouping. When we move an
internal sphere node, all robots under the node also move for
the same amount. When a sphere node moves, the ancestor
spheres up to the root must update their radius accordingly
in order to enclose their children nodes. This is somewhat
different from the case of pure collision detection applica-
tions where the relative positions between spheres in a
sphere tree do not change because most applications assume
that the robot is a rigid body.

C. RPP with Hierarchical Grouping

The low probability of moving to a legal neighbor makes
the planning problem a pathological case for path planners,
especially for PRM-based planner. Therefore, we have cho-
sen to improve the potential field based planners (RPP) by
incorporating a hierarchical grouping strategy to increase
the chance of finding a legal neighbor. The RPP algorithm
consists of alternative calls to the Down_Motion and
Brownian_Motion procedures. The modifications that we

Fig. 4. A sphere tree and a profile cut separating spheres with and
without collisions

procedure Down_Motion_with_Grouping()
1. SUCCESS : = false
2. Append(qi,τ) {τis the path for down motion }
3. nStep : = 0 { nStep is number of legal moves }
4. CUT : = root { a profile cut list of the sphere tree }
5. while ┐SUCCESS
6. nTrial : = 0 { nb of trials for lower legal neighbors }
7. nTotalTrial : = 0 { nb of trials for local minima }
8. while nTrial < nMaxTrial
9. nTrial : = nTrial + 1
10. nTotalTrial : = nTotalTrial + 1
11. for all spheres o in CUT { o is a sphere }
12. o’ : = SelectLegalNeighbor(o) { random select }
13. if o’ = NULL then Split(o, CUT) { split o}
14. qnew : = Conf(CUT) { find corresponding conf }
15. if Legal(qnew) then { collision-free or not }
16. nTrial : = nTrial + 1
17. if U(qnew) < Umin then { lower potential }
18. Append(qnew,τ)
19. nStep : = nStep + 1
20. break { while }
21. else if Crowded() then RebuildST()
22. if nTrial >= nMaxTrial then SplitLargestSphere(CUT)
23. if nStep mod nPeriod = 0 then RebuildST()
24. if Umin = 0 then SUCCESS : = true
25. if nTotalTrial > nMaxTotalTrial then break {local min.}

Fig. 5: The Down_Motion_with_Grouping algorithm

… … … … …

S11

CUT S21 S22

S31 S32 S33 S34

S48 S47 S46 S45 S44 S43 S42 S41

R1 Rn

have made are mainly on using the grouping strategy to
generate legal neighbors in the Down_Motion procedure.

In Fig. 5, we show the modified procedure, called
Down_Motion_with_Grouping. The idea is to freeze the
relative positions between robots as much as possible by
grouping them with hierarchical spheres as described in the
previous subsection. The grouping attempts start from the
root of the sphere tree and walk down toward the leaf nodes
when the current grouping sphere collides with obstacles.
When testing the possibility of grouping robots at an inter-
nal node, we randomly try a few neighboring configurations
for the sphere (line 12) until a legal (collision-free with ob-
stacles) configuration has been found or all trials fail. When
the attempt fails, we will recursively walk down to the next
level and attempt to move its two children spheres inde-
pendently. When a legal configuration for the whole system
has been found, we will have a list of grouping spheres (de-
picted in grey in Fig. 4) at various levels that forms a profile
cut on the sphere tree. We will record this “CUT” location
and start the next trial from it. In addition to considering the
collisions with obstacles, we also have to check the in-
ter-collision between robots (line 15). If the new system
configuration is legal, then we check if the new configura-
tion has a smaller potential value than the current one. If so,
we will move the robots to the new configuration, and the
search for the next legal configuration with a lower potential
starts over again.

We set a limit on the number of trials for moving the ro-
bot system to a configuration with a lower potential value. If
the number is reached, we further lower the CUT by split-
ting the largest sphere (line 22). This step enables the CUT
to move to the lowest level (leaves) and restores the free-

dom of each robot. However, if we can only lower the CUT,
the advantage of grouping the robots will disappear eventu-
ally when all robots retain their freedom. Therefore, we also
have to consider moving the CUT upward as well. However,
according to [12], attempting to merge nodes in every step
from bottom up might not be more efficient than updating
the list from the root node down after a few steps. In addi-
tion, when two sibling spheres move away from each other,
the radii of their parent spheres may increase to a degree
that rebuilding the sphere tree is desirable. Therefore, we
periodically rebuild the sphere tree (line 23) and update the
CUT from the top down to maintain a more representative
sphere tree for future uses. In addition, when we detect that
the robots are away from the obstacles but the inter-collision
between robots are severe (tested in the Crowded function in
line 21), we also choose to reorganize their relative positions
by rebuilding the sphere tree.

We build a numerical potential field [2] in the C-space of
a robot to guide the search. Since the goal is a destination
region instead of a single configuration, we set the potential
values of all configurations in the region to zero. The overall
potential U(q) for a system configuration q is the sum of the
potentials for each individual robot. When all robots enter
the region, U will become zero. If the system has made a
given number (nMaxTotalTrial) of trials to move to a lower
potential without success, we will assume that a local
minimum has been reached and the procedure will return its
current available path found so far. A random walk will be
used to escape the local minimum as in the traditional RPP.

V. EXPERIMENTS

We have implemented the RPP planner with dynamic hi-

 (a) (b) (c) (d) (e)
Fig. 6: An example showing how the planner dynamically changes robot grouping to reach the goal

 (a) (b) (c) (d) (e)
Fig. 7: An example showing a crowd of 30 robots passing a narrow passage

erarchical grouping in the Java language. We have con-
ducted extensive experiments to demonstrate the efficiency
of the planner. All experimental data reported in this section
were measured on a regular PC with 1.2GHz CPU.

A. Planning Examples

In Fig. 6 and Fig. 7, we show the example paths gener-
ated by the planner for two different workspaces. In both
examples, there exist thirty robots trying to move from their
configurations to a destination region depicted in circle. The
first subfigure(a) in both examples shows the traces of the
paths executed by the robots. Note that in the example of
Fig. 6, the robots move together as large groups until they
encounter obstacles. In this case, the robots are organized
into smaller groups and resume more degrees of freedom.
The sphere tree may be rebuilt at run time so that we can see
the robots are grouped differently in Fig. 6(d). As some ro-
bots reach the destination region, they still have some de-
grees of freedom to move inside the area so that they do not
block the entrance where they entered. Fig. 7 shows an ex-

ample in another workspace where there exists a narrow
passage that forces the robots to move individually as they
pass the passage. This is a pathological case for the planner
since the advantage of moving robots in groups disappears
and we still have to pay the cost of maintaining the sphere
tree. However, since we rebuild the sphere tree periodically,
the planner can resume moving in groups as soon as they
pass the passage. We found that the planner with dynamic
grouping is still more efficient than the traditional RPP in
this example, which implies that the overhead of maintain-
ing the sphere tree is rather low.

B. Performance Comparisons

We have conducted extensive experiments to compare
the performances of the decoupled planner, the traditional
RPP planner and the new planner. The results are shown in
Table 1. We run the three planners (decoupled, centralized
with and without using sphere tree to group robots) for the
workspace shown in Fig. 8. Snapshots along an example
path generated for 80 robots are shown in Fig. 8. The num-
ber of robots ranges from 10 to 300 in the experiment. All
planners are forced to terminate when the planning time
exceeds one hour (marked with ‘---‘ in Table 1). Note that
the new planner outperforms the decoupled and the tradi-
tional planners in all cases and the more the number of ro-
bots, the more improvement that we can observe. Although
the traditional RPP planner is probabilistic complete, it is
terminated after one hour of trial when the number of robots
reaches 200. On the other hand, the new planner can still
find a path when the number of robots reaches 280 (or 560
DOF).

We also have conducted experiments to study the effects
of rebuilding the sphere tree that keeps its size small. In two
ways, we rebuild the sphere tree. One is by detecting the
situation that most collisions occur between robots instead

Table 1. Comparisons of the planning times (in seconds) for
moving different number of robots in three different planners

N Decoupled
Centralized RPP
w/o Sphere Tree

Centralized RPP
w/ Sphere Tree

10 6.67 0.93 0.28
20 15.29 2.85 0.72
30 23.60 6.76 1.21
40 29.52 13.45 1.51
50 43.03 26.49 3.36
60 62.49 47.84 3.71
70 89.10 70.28 4.46
80 122.87 110.39 13.40
90 127.44 175.04 17.73

100 204.683 239.59 27.99
120 275.21 447.09 56.84
140 526.91 810.07 71.15
160 2224.05 1570.83 170.89
180 --- 2359.68 262.44
200 --- --- 309.91
220 --- --- 784.93
240 --- --- 1594.19
260 --- --- 1365.34
280 --- --- 2502.34

 (a) (b) (c) (d) (e)
Fig. 8: An example of centralized planning for a crowd of 80 robots moving to a destination region

Table 2. The planning times (seconds) for using different meth-
ods to rebuild the sphere tree

Methods (A) no
rebuild

(B) when
crowded

(C) peri-
odic

(D) periodic
and crowded

Planning
time (sec.)

93.25 53.84 5.47 4.88

of between robots and obstacles while the other is by peri-
odic updates. The results are shown Table 2. The cases (B)
and (C) correspond to the two methods above. Note that
timely rebuild of the sphere tree can improve the overall
performance and the effect of periodic updates seems to be
more significant than the other case.

C. Discussions

The improvement of the new planner over the traditional
RPP planner is quite significant. Although we are not at-
tempting to deal with the curse of dimensionality, we have
significantly lowered the constant of the exponent to make
the planner practical when the number of robots is large.
The centralized planner outperforms the decoupled planner
in most cases when the number of robots is not large. Be-
sides, the centralized planner has the advantage of being
probabilistic complete that the decoupled planner does not
have. Detail data from our experiments show that the new
planner with dynamic grouping is more efficient mainly
because the number of inter-robot collisions has been sig-
nificantly reduced. This observation reveals that the original
idea of using a hierarchical sphere tree to group robots dy-
namically in order to reduce inter-robot collisions is quite
effective.

VI. CONCLUSIONS

The problem of path planning for multiple robots is get-
ting more attentions in Robotics and Computer Animation.
However, the traditional planners do not seem to be able to
solve the problem as efficiently as in other cases. In this
paper, we reviewed the different approaches proposed in the
literature, and implemented the planners with these ap-
proaches for comparisons. We also have proposed a new
planner based on the RPP planner to improve the planning
performance for a large number of robots. Experiments
show that this new method can significantly reduce in-
ter-robot collisions and therefore is more effective for this
type of multiple-robot planning problem.

VII. ACKNOWLEDGMENTS

This work was partially supported by National Science
Council under contract NSC 91-2213-E-004-005.

VIII. REFERENCES

[1] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and P.
Raghavan, “A Random Sampling Scheme for Path
Planning,” Intl. J. of Robotics Research, 16(6),
pp.759-774, Dec. 1997.

[2] J. Barraquand and J. Latombe, “Robot Motion Plan-
ning: A Distributed Representation Approach,” Intl J.

of Robotics Research, 10:628-649, 1991.
[3] O. B. Bayazit, J.M. Lien, N. M. Amato, “Simulating

Flocking Behaviors in Complex Environments,” Proc.
of the Pacific Conf. on Computer Graphics and Appli-
cations, 2002.

[4] Y.U. Cao, A.S. Fukunaga, A.B. Kahng, and F. Meng,
“Cooperative Mobile Robotics: Antecedents and Di-
rections,” in IEEE/TSJ Intl. Conf. on Intelligent Robots
and Systems, pp.226-234, 1995.

[5] H.S. Chang and T.Y. Li, "Assembly Maintainability
Study with Motion Planning," Proc. of 1995 IEEE Intl.
Conf. on Robotics and Automation, Nagoya, Japan,
May 1995.

[6] M. Erdmann and T. Lozano-Perez, “On Multiple Mov-
ing Objects,” AI Memo No. 883, Artificial Intelligence
Laboratory, MIT, 1986.

[7] K. Fujimura, Motion Planning in Dynamic Environ-
ments, Springer-Verlag, New York, 1991.

[8] V. Gervasi and G. Prencipe, “Flocking by a Set of
Autonomous Robots,” Technical Report: TR-01-24,
Department of Information, University of Di Pisa, Italy,
2001.

[9] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars,
“Probabilistic Roadmaps for Fast Path Planning in
High-Dimensional Configuration Spaces,” IEEE Trans.
on Robotics and Automation, 12:566-580, 1996.

[10] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe,
“Planning Motions with Intentions,” Computer
Graphics (SIGGRAPH’94), pp.395-408, 1994.

[11] J. Latombe, Robot Motion Planning, Kluwer, Boston,
MA, 1991.

[12] T.Y. Li and J.S. Chen, “Incremental 3D Collision De-
tection with Hierarchical Data Structures,” in Proc. of
ACM Symp. on Virtual Reality Software and Technol-
ogy, (VRST’98), pp.139-144, Taipei, Taiwan, 1998.

[13] T.Y. Li Y.J Jeng, and S.I Chang, “Simulating Virtual
Human Crowds with a Leader-Follower Model,” Proc.
of the 2001 Computer Animation Conf., Korea, 2001.

[14] T.Y. Li and J.C. Latombe, “Online Manipulation Plan-
ning for Two Robot Arms in a Dynamic Environment,”
Intl. J. of Robotics Research, 16(2):144-167, 1997.

[15] S. Quinlan, "Efficient Distance Computation between
Non-Convex Objects," Proc. of Intl. Conf. on Robotics
and Automation, pp.3324-3329, San Diego, CA, 1994.

[16] J.H. Reif, “Complexity of the Mover's Problem and
Generalizations,” Proc. of the 20th IEEE Symp. on
Foundations of Computer Science, pp. 421-427, 1979.

[17] C. Reynolds, “Steering Behaviors For Autonomous
Characters,” Proc. of Game Developers Conf., 1999.

