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Abstract - Motion planning is one of the key capabilities for 
autonomous humanoid robots. Previous researches have fo-
cused on weight balancing, collision detection, and gait genera-
tion. Most planners either assume that the environment can be 
simplified to a 2D workspace or assume that the path is given. 
In this paper, we propose a motion planning system capable of 
generating both global and local motions for a humanoid robot 
in a layered or two and half dimensional environment. The 
planner can generate a gross motion that moves the humanoid 
vertically as well as horizontally to avoid obstacles in the envi-
ronments. The gross motion is further realized by a local plan-
ner that determines the most efficient footsteps and locomotion 
over uneven terrain. If the local planner fails, the failure is 
feedback to the global planner to consider other alternative 
paths. The implemented humanoid planning system is an in-
teractive tool that can compute collision-free motions for a hu-
manoid robot in an on-line manner. 

I. INTRODUCTION 

The potential market of service and entertainment hu-
manoid robots has attracted great research interests in the 
recent years. Several models of humanoid robots have been 
designed in research projects. Among the active research 
topics, enabling a humanoid robot to move autonomously 
with motion planning capability is one of the challenging 
problems that need to be addressed. An autonomous robot 
should be able to accept high-level human commands and 
walk in a real-life environment consisting of floors and stairs 
without colliding with environmental obstacles. A high-level 
command is something like “Move to location A on the sec-
ond floor” while the robot is currently at some location B on 
the first floor, for example.  

The motion for a humanoid robot to achieve a given goal 
is typically very complex because of the degrees of freedom 
involved and the contact constraint that needs to be main-
tained. Therefore, it is common to take a two-level planning 
approach to solve this problem. The first level only consid-
ers global motion planning, which is the motion planning of 
the whole body treated as a simple projected geometry. 
Given the gross motion from the first level, the second level 
only considers local motion planning that moves the legs of 
a humanoid robot to realize the corresponding gross motion 
in an efficient way.  

In this paper, we propose a motion-planning system capa-
ble of generating efficient walking motions for a humanoid 
to reach a goal on a layered environment. We assume that 
the system is given an elevation and height description of the 
objects in the workspace and accept a goal-oriented com-
mand from a user. The system will generate a feasible global 
path and the associated locomotion that bring the humanoid 

to reach the goal as efficient as possible. At a first glace, the 
problem is similar to the general path-planning problem. 
However, since the definition of obstacles for this problem 
depends on the leg length of the humanoid and the local 
relative height, the problem definition deserves further clari-
fication. A user may have personal preference on the paths if 
the goal can be reached via various paths of different heights. 
In addition, the motion plan proposed by a global motion 
planner may not always be feasible for locomotion arrange-
ment. In this case, the interaction between the two levels of 
planning becomes an interesting problem. 

The rest of the paper is organized as follows. After re-
viewing related work in motion planning and humanoid in 
the next section, we will describe in details the problem we 
consider in this paper. Then, we will then present our global 
and local motion planners in Section IV and V, respectively. 
In Section VI, we will present several examples from the 
simulation in our experiments. Finally, we will conclude our 
work with future directions in the last section. 

II. RELATED WORK 

The gross motion-planning problem was originally 
brought up in the context of robotics to generate colli-
sion-free path for mobile robots or manipulators. A survey of 
approaches to the problem can be found in [9]. Generally 
speaking, early research focuses on developing theoretical 
foundation and complete solutions for the problem [11]. Due 
to the curse of dimensionality, several researches in the last 
decade proposed practical solutions that can be applied to 
wider arrange of applications despite they usually lack com-
pleteness[1][2]. 

Many efficient planners have been proposed to solve the 
problem for objects with low degrees of freedom (DOF’s) 
(typically less than or equal to four). Most of these planners 
are complete planners because they can always give a cor-
rect answer (success or failure) to the given problem. Among 
these planners, the potential-field based approach is the most 
popular one and is also the one used in our gross motion 
planner. An artificial potential field is typically used in the 
workspace as a heuristic to search the configuration space 
for a feasible path.[2]  

The research of generating humanoid motions can be 
found in robotics and computer animation [3][10][14]. Al-
though various aspects of motion generation have been stud-
ied, we will only concern the lower-body motion and the 
resulting body displacement. Early researches focus on 
generating a dynamically stable motion for a given path on a 
flat or uneven ground [4][5][7]. Although the locomotion for 
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regular walking can be computed kinematically, many ap-
proaches choose to use or modify motion-captured data due 
to the complexity of a human figure. Techniques such as 
motion warping [16] or dynamic filtering [15][17] are often 
used to ensure that the captured motions can be transformed 
into a dynamically feasible one. However, these techniques 
are not as flexible as kinematics-based methods in handling 
obstacles in an uneven terrain.  

Not until recent years, the problem of gross motion plan-
ning for humanoid robots becomes one of the active research 
topics in robotics and computer animation [6][8][13]. In [6], 
a gross motion planner utilizing graphics hardware has been 
proposed to generate humanoid body motion on a flat 
ground in real time. Captured locomotion is used to move 
the humanoid along the generated global path. In [8], a biped 
robot can plan its footsteps amongst obstacles but cannot 
step onto them. In [13], a multi-layer grid is used to repre-
sent the configuration space for a humanoid with different 
locomotion such as walking and crawling. The humanoid 
may change its posture along a global path. In short, most 
gross motion planners for humanoid robots assume a flat 
ground and adopt canned motions for simplicity. However, 
the assumption is often over-restricted since a humanoid 
robot is more likely to work in a layered environment filled 
with objects of various shapes and heights as in the real life.  

III. PROBLEM DESCRIPTION 

According to motion granularity, the motion-planning 
problem usually can be classified into global (gross) motion 
planning and local (fine) motion planning. For the problem 
of walking on a layered environment for a humanoid, both 
types of planning needs to be considered in order to ensure 
that the desired task can be accomplished. Although the 
gross and fine motion planners can be designed separately 
and solved sequentially, we think they should be connected 
in a loop with feedbacks as shown in Fig. 1. The global path 
from the global motion planner is fed into the local motion 
planner to create corresponding footsteps and locomotion. 
However, the local motion planner may fail to generate lo-
comotion for the given path. In this case, the planner should 
feedback the failure with reasons to the global planner to 
compute another global path. Taking this decoupled view 
can greatly reduce the complexity of such a planning prob-
lem. In the following subsections, we will describe the 
problems of global planning and local planning separately in 

more details.  

A. Global Planning Problem 

The global planner assumes that we are given a geometric 
description of the objects in the workspace as well as the 
geometric and kinematic description of a humanoid. The 
workspace contains multiple layers, and each layer is com-
prised of objects of various heights. Unlike the basic 
path-planning problem where the definition of obstacles is 
rather straightforward, the obstacles in our global planning 
problem are not explicitly given. Instead, an object is an 
obstacle to a humanoid only if there is no way for the hu-
manoid to step onto or pass under the object due to the hu-
manoid’s height. In addition, a humanoid must stand on a 
large enough area in order to maintain a stable stance. If the 
ground of the workspace is described as a smooth surface, 
the slope of the surface cannot be too large to cause foot 
slippery. In summary, the planning problem is rather com-
plex in real life, and we need to make reasonably assump-
tions to simplify the problem. 

First, we assume a discrete workspace. The input to our 
planner could be a continuous function for the elevation of 
the ground and a polygonal description of the objects. How-
ever, we assume that we can convert these descriptions into 
several layers of elevation grids of some resolution. Each 
cell in a grid contains an elevation value for the whole cell in 
that layer. An example of workspace with the layered envi-
ronment is shown in Fig. 2. The elevation for each cell in a 
layered grid (128x128) is represented by a gray-scale value 
in Fig. 2(c) and 2(d). We denote the height of a cell i at layer 

l by l
ic , and the offset of layer l from some reference 

ground by ld . Second, we assume that the resolution of the 
elevation grid is coarse enough for a humanoid’s foot to step 

 
 
 
 
 
 
 
 
 

Fig. 1. Planning loop for a typical query of humanoid motion 

 
 (a) (b) 

  
 (c) (d) 

Fig. 2. (a) Top view of the workspace, (b) side view of the work-
space, (c) and (d) are the height maps of first and second layers 
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onto a cell. We also assume that the maximal height that a 
humanoid can step onto is denoted by h, which is a property 
of the given humanoid. Third, the height of the humanoid is 
H, and we assume that the humanoid does not bend its body 
to pass an obstacle for now. Fourth, we assume that a hu-
manoid will not stay in the object boarder region for more 
than some designated units of time, m. This situation hap-
pens when the geometry of a humanoid intersects the 
boarder. This assumption is to make sure that the humanoid 
does not stay in the border region except for trespassing 
purpose. Fifth, we assume that the geometry of the human-
oid can be simplified to an enclosing circle of radius r such 
that the orientation dimension can be ignored at planning 
time. We assume that a humanoid will always face forward 
and we can recover its orientation in a postprocessing step. 

In summary, the objective of the global motion planner is 
to find a collision-free path for the body trunk of the human-
oid to move from the initial configuration to the goal con-
figuration in a two-and-half-dimensional space. The output 
of the planner is a global path that will be sent to the local 
planner for further processing. 

B. Local Planning Problem 

The local planner aims to find a feasible locomotion for 
the lower body of a humanoid with a given global path. We 
assume that the output path from the global planner is a 3D 
stepwise curve. This curve is a polyline comprised of a set of 
vertical or horizontal connected line segments. In other 
words, we temporarily ignore the orientation change of the 
path and stretch the path into a one-dimensional stair-like 
profile. According to the kinematic parameters of the hu-
manoid, the local planner will generate a feasible and effi-
cient plan for footstep placement and the corresponding lo-
comotion for lower-body joints. A feasible motion plan must 
satisfy geometric and kinematic constraints. For example, 
the humanoid should be collision-free and all joints are 
within their joint limits. However, we do not use any explicit 
dynamics model for simplicity reasons, and we assume that 
this simplification does not cause dynamics feasibility prob-
lems in normal walking motions. By efficient plans, we 
mean that the path should be the most efficient in terms of 
energy consumption. An efficient motion usually also means 
a natural motion that a human normally takes.  

The local planning problem described above is challeng-
ing because the number of possible arrangements (each ar-
rangement consists of a set of footsteps) grows exponentially 
in the length of the global path (or number of footsteps) even 
if we restrict the possible footstep sizes to a limited number. 
However, according to our daily walking experience, we 
typically plan foot placement only for the next two or three 
steps instead of for the whole path. Therefore, it is reason-
able to take an incremental approach where we call the local 
planner in every step to plan only for a few steps (two or 
three, typically) ahead. Another advantage of this approach 
is that we can allow the configuration of obstacles to change 
at run time without calling for global replanning immedi-

ately as long as the change does not prevent the local plan-
ner from generating feasible locomotion. Thus, we will re-
define our local planning problem as finding a feasible lo-
comotion for the next n steps with a given path profile. The 
planner should return failure and indicate the failure location 
along the path if it cannot find a feasible locomotion plan for 
the next n steps.  

IV. GLOBAL MOTION PLANNING 

We will now present our approach to solving the global 
motion-planning problem. In addition to being collision-free, 
all configurations along the path must be reachable accord-
ing to the kinematic constraints, such as joint limits, of the 
humanoid robot. The path must also satisfy the stability con-
straint requiring that any continuous portion of the path can-
not stay in the border region for longer than some period of 
time. In the following subsubsections, we will first compute 
a reachability map and then a collision map to represent the 
properties of the grids in the configuration space.  

A. Reachability Map and Collision Map 

Suppose that we are given the heights and offsets for a 
set of objects in the workspace. Offset is the base elevation 
where the object is placed. Different offsets mean different 
layers. For each layer, we compute a height map containing 
the elevation value of each cell above the layer in the work-
space grid. As indicated in the previous section, a cell is 
considered an obstacle cell if and only if there are no ways 
to reach the cell from its neighbors under the height con-
straint. A cell could be unreachable because its height dif-
ference with its neighbors is too large for a humanoid to step 
onto or the clearance between this layer and the layer above 
is too small for a humanoid to fit in.  

Given an initial configuration of the humanoid, we can 
compute a map, called reachability map, where obstacle 
regions are comprised of the unreachable cells. A reachabil-
ity map consists of several slices with one slice for each 
layer. For example, Fig. 3(a) and 3(b) show the reachability 
map for the two layers of the example scene in Fig. 2. The 
black regions are the unreachable regions marked as obsta-
cles. These slices could be “connected” if there exists an 
object whose height is large enough to bring the humanoid 
to step onto some neighboring cells of the above or below 
layer. We compute this map by a wave propagation algo-
rithm similar to the one used to construct NF1 potential 
fields [9]. Suppose that the current cell under propagation is 
i. The algorithm advances to a neighboring cell i′  at layer l 
or a neighboring layer l′  only if the height difference be-

tween them is less than h ( hcc l
i

l
i <− ′  or 

hcdcd l
i

ll
i

l <+−+ ′
′

′ )()( ) and the humanoid height H can fit 

into the clearance above cell i′  at layer l or l′  

( Hcdd l
i

ll >−− ′
+ )(  or Hcdd l

i
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′
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denotes the layer above l). We can convert this map, built in 



the workspace, into its corresponding C-space by growing 
the obstacle regions with the humanoid’s radius r. The re-
sulting C-space map can then be used to build a potential 
field to guide the search in the planning process.  

As mentioned in the previous subsection, we need to 
identify the regions where unstable situation might occur if a 
humanoid stay there for too long. A map describing the re-
gions is called collision map. A cell in the collision map is 
defined as unstable if and only if the region covered by the 
enclosing circle of a humanoid contains cells with height 
difference less than h. The region comprised of unstable 
cells is called the unstable region. A cell is defined as for-
bidden if there exists height difference larger than h. The 
remaining cells in the collision map are the free cells. One 
can compute such a map by first identifying the cells with 
different heights in their neighborhood horizontally and ver-
tically. We can then grow these cells by the radius r to form 
the final collision map. These two maps are used in the 
planning algorithm presented in the next subsection. 

B. Path Planning Algorithm 

The planning algorithm for computing the humanoid 
motion is shown Fig. 4. The STABLE_BFP algorithm is 
similar to the classical Best-First Planning (BFP) algorithm 
[9] for low-DOF problems. In an iteration of the search loop, 
we use the FIRST operation to select the most promising 
configuration q from the list of candidates (OPEN) for fur-
ther exploration. We visit each neighbor q’ of q and check 
their validity (via the LEGAL operation) for further consid-
eration. A configuration is legal if it is collision-free (in the 
freespace of reachability map), marked unvisited, and tem-
porarily stable. It is temporarily stable if and only if the hu-
manoid has not entered the unstable region for a period 
longer than a given threshold determined by the user. This 

duration is kept as an instability counter for each cell in the 
unstable region when we propagate nodes in it. Note that the 
validity of a configuration in the unstable region depends on 
the instability counter of the parent configuration. If there 
are more than one possible parent configurations, we cannot 
exclude any of them. Therefore, in the STABLE_BFP algo-
rithm, we do not mark a configuration visited if it is in the 
unstable region. A configuration in this region can be visited 
multiple times as long as its instability counter does not ex-
ceed the maximal value.  

In the STABLE_BFP algorithm, we use FIRST operation 
to select the most promising configuration for further explo-
ration. In the BFP planners, an artificial potential field is 
usually the only index for goodness. Planners with this ap-
proach can usually yield short paths. In our case, the height 
difference could be an important index as well since one 
may prefer climbing up or stepping down stairs to taking a 
longer path. Therefore, in the FIRST operation, we use a 
linear combination of both criteria (potential for horizontal 
measures and height difference from qi for vertical measures) 
with weights specified by the user.  

C. Postprocessing 

If our planner succeeds in finding a feasible path for a 
humanoid, we need to perform two tasks in the postprocess-
ing step. First, we convert the found path into a smooth one 
via a smoothing routine. The smoothing algorithm is very 
similar to the ones for typical path planners. One usually 
replaces a subpath in the original path continuously with a 
straight-line path segment. A major difference for smoothing 
a path in our new planner is on the metric for measuring 
distance. This metric is defined with the same criteria as in 
the FIRST procedure such that the user preference can be 
preserved. Finally, we have to recover the orientation pa-
rameter of the humanoid for each step in the path. If the path 
contains a sharp turn that is hard for a humanoid to follow, 

  
 (a) (b) 
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Fig. 3: The reachability map (a)(b) and collision map (c)(d) for 
layer one and two of the environment in Fig. 2. 

STABLE_BFP() 
1 install qi in T; 
2 INSERT(qi, OPEN); mark qi visited; 
3 SUCCESS ← false; 
4 while ┐EMPTY(OPEN) and ┐SUCCESS do 
5  q←FIRST(OPEN); 
6  for every neighbor q’ of q in the grid do 
7   if LEGAL(q’) then 
8    if q’ is unstable then 
9     q’.cnt=q.cnt+1; 
10    else 
11     mark q’ visited; 
12    install q’ in T with a pointer to q; 
13    INSERT(q’, OPEN);  
14    if q’ = qg then SUCCESS ← true; 
15 if SUCCESS then 
16  return the backtracked feasible path 
17 else return failure; 

Fig. 4: The STABLE_BFP algorithm 



we can add additional steps into the path to slow down the 
orientation change. 

V. LOCAL MOTION PLANNING 

From the problem definition described in the previous 
section, we assume that the local planner is asked to plan an 
efficient motion only for the next few steps (two or three, in 
our settings) instead of for the whole global path. We will 
first describe how we compute a collision-free walk locomo-
tion for a given footstep length and a path profile. Then we 
will describe how to plan the foot placement for future steps.  

A. Kinematics-Based Locomotion Generation 

In this subsection, we will describe how we generate a 
collision-free locomotion for humanoid walking with a 
given foot location for the next step. We use an in-
verse-kinematics approach to compute the locomotion. Ac-
cording to [3], walking motion for a human figure can be 
divided into two phases: single support and double support. 
In the double support phase, both legs touch the ground and 
mass center of the body shift gradually from the back leg to 
the front leg. In the single support phase, a stretched leg 
supports the body while the other leg swings forward. Key-
frames are defined at the conjunction of the two phases or in 
the interior of the double support phase.  

We use the following principles to compute the joint an-
gles between two keyframes. In either phase, the stretched 
leg on the ground determines the pelvis location. In the case 
of double support, the joint angle of the other leg is deter-
mined by inverse kinematics between the foot and pelvis. In 
the single support phase, the foot trajectory for the swinging 
leg in the Cartesian space is determined first and the joint 
angles are then computed according to inverse kinematics. 

Now, the remaining problem is how to compute a colli-
sion-free trajectory for the swinging foot. We use a Bezier 
curve with two fixed endpoints on the ground to represent 
the trajectory. The other two control points of a Bezier curve 
become the parameters that we can adjust to avoid collision 
with obstacles. We use a numerical approach that move the 
control points iteratively until a legal curve is found. How-
ever, the four-dimensional space spanned by the two control 
points is too large to search in an on-line manner. Therefore, 
we use the following rule to find the collision-free curve as 
quickly as possible and avoid an exhaustive search.  

The locations of the control points start at some location 
slightly above the midpoint between two endpoints. When a 
collision between the curve and the environment is detected, 
the control points are moved upward and outward to lift the 
curve as shown in Fig. 5. The curve is divided into two parts 
(left and right) from the summit point. Each part computes 
the intersected points of the curve and moves the corre-
sponding control point for some distance along the direction 
from the midpoint of two endpoints toward the intersection 
points. If one part does not cause intersection while the other 
does, its control point also moves upward for the same 

amount as the other control point moves. The search process 
stops when a legal curve is found or the locations of the 
control points have left a given legal region. In the second 
case, the planner returns failure.  

B. Footstep Planning 

We now consider the problem of finding foot placement. 
Assume that the local planner is called in every step of exe-
cution, and we will search for the most energy efficient lo-
comotion for the next n steps, where n is set to, say, 3. We 
first discretize the range of all possible footstep sizes into m 
unit lengths for each step. Then we try to find a set of desir-
able footstep locations, called footstep configuration, de-
noted by qf=(s1, s2, s3), where s1, s2, and s3 are step lengths. 
The energy efficiency for qf, denoted by Eff(qf), is defined by 
(s1+s2+s3)/E, where E is the total energy consumption that 
will be defined later.  

Depending on the available time for planning, one may 
choose to search for the global maximal or a local maximal 
configuration. In our on-line application, since the planner is 
called in every step of execution at run time, time efficiency 
is crucial. Therefore, we use a Best-First Search algorithm to 
find a collision-free locomotion plan for the next n steps 
with the maximal energy efficiency only locally. The algo-
rithm starts from some neutral position initially and explores 
its neighbors for better configurations. We maintain a list of 
available configurations and choose the most promising 
configuration in each step for further exploration until a lo-
cal maximal is reached. The program returns failure if no 
such a footstep configuration exists. In an iteration of the 
execution loop, we plan for the next few steps by taking the 
goal/current footstep configuration as the starting point for 
the next iteration. In most occasions, the previous footstep 
configuration usually provides a good initial guess that can 
quickly bring the search to a local maximum. 

The energy E consumed in one step depends on several 
factors. For example, it depends on the walking speed, ver-
tical and horizontal movements, and joint movements. Al-
though the energy consumption for a given humanoid robot 
can be computed with a dynamic model, our real-time plan-
ning requirement discourages such an approach. Instead, we 
take a simpler approach of computing this energy from sta-
tistic data obtained from real human walking experiments. 
We assume that the energy consumption is composed of 
three parts: horizontal movement, vertical movement, and 

 
 
 
 
 
 
 
 

Fig. 5: Adjusting the Bezier curve for the swinging leg to avoid 
collisions 
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joint movement. That is, E=α*En+β*Eh+γ*Er, where En, Eh, 
and Er are the energy for horizontal movement, vertical 
movement, and joint movement, respectively. We assume a 
normal walking speed so that we have a common ground for 
comparison. According to [12], the energy for normal walk-
ing on a flat ground can be computed with the following 

formulas: n
s

n
EE w

n
)*10232( 4+== , where s is the step 

size and n is the number of steps per minute. Experiments 
show that s/n=0.007 for adult male. Therefore, En can be 
simplified to be a function of s only. According to [12], the 
energy consumption for stepping upward is proportional to 
the stepping height. Third, for the same footstep size, a hu-
manoid could raise legs for different amounts and therefore 
consume different amounts of energy. We take a weighted 
sum of changes on the joint angles to compute the extra en-
ergy consumption, Er. The weights are mainly determined by 
the masses of the raised parts. With these formulas, we can 
compute the energy efficiency for different footstep lengths, 
as shown in Fig. 6. Since the statistic data is taken from ex-
periments with real humans, the most efficient step length is 
around 60cm, which agrees with our daily experiences.  

VI. EXPERIMENTS 

We have implemented the global and local motion plan-
ners in Java and connected the planners to a VRML browser 
to display the final simulation results. All the planning times 
reported below are taken from experiments run on a regular 
650MHz PC. The resolutions for the grid workspace and 
configuration space are all 128x128 in the global planner. 
The resolution for the locomotion is on the discretization of 
footstep length, which is divided into 13 units in the range of 
30cm to 90cm. In the following subsections, we will use 
several examples to demonstrate the effectiveness of the 
planners.  

A. An Example for Global Motion Planning 

Fig. 7 shows an example of global motion generated for 
the scene of Fig. 2. Fig. 7(a) and 7(b) show the unsmoothed 
and smoothed global paths that take the humanoid from a 
stage to the other side of the platform.. Note that there are 
two ways to get to the goal location, and the planner gener-
ates the shorter path to reach the goal. The planning time for 

such an example is 220ms for preprocessing computation 
(such as building the reachability map, collision map, and 
potential field) and 20ms for path searching and smoothing.  

B. An Example for Local Motion Planning 

In Fig. 8, we show an example of local motion plan that 
takes the lower body of a humanoid to climb up a stair with 
a given ground profile. In the example of Fig. 8(a), the hu-
manoid fails to make further moves after stepping down the 
stair because it only plans one step ahead. In Fig. 8(b), we 
plan two steps ahead and therefore avoid the problem by 
taking a larger step length. In Fig. 9, we compare the plan-
ning results with and without considering energy efficiency. 
For example, according to the energy model described in 
Section V, the motion in Fig. 9(b) is more efficient than the 
motion in Fig. 9(a) because it does not need to step onto the 
obstacle.  

C. Integrated Example 

We use the integrated example in Fig. 10 to demonstrate 
the interaction between the global and the local planners. 
The global motion generated initially upon a user request 

  
 (a) (b) 
Fig. 8. Locomotion planning: (a) fails with one-step planning and 

(b) succeeds with two-step planning 

  
 (a) (b) 
Fig. 7. An example of (a) unsmoothed and (b) smoothed global path 

in a layered scene 
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Fig. 6. Energy efficiency for different step lengths on a flat ground 
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Fig. 9. Efficient locomotion generation: (a) stepping on is less 
energy efficient than (b) stride over 
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may not succeed at execution time when it is sent to the lo-
cal motion planner for further processing. For example, an 
object could be placed on the way of the global path at exe-
cution time as shown in Fig. 10(a) and 10(b). Although the 
new green square object in Fig. 10(a) is on the path, the local 
planner generates a locomotion plan that steps over the ob-
ject, as shown in Fig. 11(b) (compared to the original plan in 
Fig. 11(a)). If the placed object is too tall (Fig. 10(b)), the 
local planner may fail at execution time. In this case, the 
local planner returns the failure point to the global planner in 
order to generate an alternative feasible path via the second 
floor, as shown in Fig. 10(c) and 10(d). The re-planning 
takes about 761ms including rebuilding all the maps.  

VII. CONCLUSIONS AND FUTURE WORK 

Building autonomous humanoid robots has been the goal 
of many applications in robotics and computer animation. 
Spatial reasoning is a key capability to enable a robot to ac-
cept high-level commands and move autonomously. In this 
paper, we have proposed a planning system composed of 
global and local motion planners that can generate feasible 
and efficient motion plans for a humanoid in a layered envi-
ronment. Several simulation examples have been presented 
to demonstrate the capabilities of the planner.  

In the current system, we assume that a humanoid robot 
can only perform normal walking motions. However, a real 
human usually can avoid obstacles with various kinds of 
locomotion and body motions. For example, a human can 
crawl or stoop to avoid upper-layer obstacles. We will con-
sider this kind of situations as an extension of our work in 
the future. 
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Fig. 11. Locomotion adapting to a dynamically placed object 
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Fig. 10. Placing (a) a short object and (b) a tall object on the path 
at execution time. (c)(d) An alternative path is generated. 
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