
Motion Planning for Humanoid Walking in a Layered Environment

Tsai-Yen Li
Computer Science Department
National Chengchi University,

Taipei, Taiwan, R.O.C.

Pei-Feng Chen
Computer Science Department
National Chengchi University,

Taipei, Taiwan, R.O.C.

Pei-Zhi Huang
Computer Science Department
National Chengchi University,

Taipei, Taiwan, R.O.C.

Abstract - Motion planning is one of the key capabilities for
autonomous humanoid robots. Previous researches have fo-
cused on weight balancing, collision detection, and gait genera-
tion. Most planners either assume that the environment can be
simplified to a 2D workspace or assume that the path is given.
In this paper, we propose a motion planning system capable of
generating both global and local motions for a humanoid robot
in a layered or two and half dimensional environment. The
planner can generate a gross motion that moves the humanoid
vertically as well as horizontally to avoid obstacles in the envi-
ronments. The gross motion is further realized by a local plan-
ner that determines the most efficient footsteps and locomotion
over uneven terrain. If the local planner fails, the failure is
feedback to the global planner to consider other alternative
paths. The implemented humanoid planning system is an in-
teractive tool that can compute collision-free motions for a hu-
manoid robot in an on-line manner.

I. INTRODUCTION

The potential market of service and entertainment hu-
manoid robots has attracted great research interests in the
recent years. Several models of humanoid robots have been
designed in research projects. Among the active research
topics, enabling a humanoid robot to move autonomously
with motion planning capability is one of the challenging
problems that need to be addressed. An autonomous robot
should be able to accept high-level human commands and
walk in a real-life environment consisting of floors and stairs
without colliding with environmental obstacles. A high-level
command is something like “Move to location A on the sec-
ond floor” while the robot is currently at some location B on
the first floor, for example.

The motion for a humanoid robot to achieve a given goal
is typically very complex because of the degrees of freedom
involved and the contact constraint that needs to be main-
tained. Therefore, it is common to take a two-level planning
approach to solve this problem. The first level only consid-
ers global motion planning, which is the motion planning of
the whole body treated as a simple projected geometry.
Given the gross motion from the first level, the second level
only considers local motion planning that moves the legs of
a humanoid robot to realize the corresponding gross motion
in an efficient way.

In this paper, we propose a motion-planning system capa-
ble of generating efficient walking motions for a humanoid
to reach a goal on a layered environment. We assume that
the system is given an elevation and height description of the
objects in the workspace and accept a goal-oriented com-
mand from a user. The system will generate a feasible global
path and the associated locomotion that bring the humanoid

to reach the goal as efficient as possible. At a first glace, the
problem is similar to the general path-planning problem.
However, since the definition of obstacles for this problem
depends on the leg length of the humanoid and the local
relative height, the problem definition deserves further clari-
fication. A user may have personal preference on the paths if
the goal can be reached via various paths of different heights.
In addition, the motion plan proposed by a global motion
planner may not always be feasible for locomotion arrange-
ment. In this case, the interaction between the two levels of
planning becomes an interesting problem.

The rest of the paper is organized as follows. After re-
viewing related work in motion planning and humanoid in
the next section, we will describe in details the problem we
consider in this paper. Then, we will then present our global
and local motion planners in Section IV and V, respectively.
In Section VI, we will present several examples from the
simulation in our experiments. Finally, we will conclude our
work with future directions in the last section.

II. RELATED WORK

The gross motion-planning problem was originally
brought up in the context of robotics to generate colli-
sion-free path for mobile robots or manipulators. A survey of
approaches to the problem can be found in [9]. Generally
speaking, early research focuses on developing theoretical
foundation and complete solutions for the problem [11]. Due
to the curse of dimensionality, several researches in the last
decade proposed practical solutions that can be applied to
wider arrange of applications despite they usually lack com-
pleteness[1][2].

Many efficient planners have been proposed to solve the
problem for objects with low degrees of freedom (DOF’s)
(typically less than or equal to four). Most of these planners
are complete planners because they can always give a cor-
rect answer (success or failure) to the given problem. Among
these planners, the potential-field based approach is the most
popular one and is also the one used in our gross motion
planner. An artificial potential field is typically used in the
workspace as a heuristic to search the configuration space
for a feasible path.[2]

The research of generating humanoid motions can be
found in robotics and computer animation [3][10][14]. Al-
though various aspects of motion generation have been stud-
ied, we will only concern the lower-body motion and the
resulting body displacement. Early researches focus on
generating a dynamically stable motion for a given path on a
flat or uneven ground [4][5][7]. Although the locomotion for

Appear in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2003

regular walking can be computed kinematically, many ap-
proaches choose to use or modify motion-captured data due
to the complexity of a human figure. Techniques such as
motion warping [16] or dynamic filtering [15][17] are often
used to ensure that the captured motions can be transformed
into a dynamically feasible one. However, these techniques
are not as flexible as kinematics-based methods in handling
obstacles in an uneven terrain.

Not until recent years, the problem of gross motion plan-
ning for humanoid robots becomes one of the active research
topics in robotics and computer animation [6][8][13]. In [6],
a gross motion planner utilizing graphics hardware has been
proposed to generate humanoid body motion on a flat
ground in real time. Captured locomotion is used to move
the humanoid along the generated global path. In [8], a biped
robot can plan its footsteps amongst obstacles but cannot
step onto them. In [13], a multi-layer grid is used to repre-
sent the configuration space for a humanoid with different
locomotion such as walking and crawling. The humanoid
may change its posture along a global path. In short, most
gross motion planners for humanoid robots assume a flat
ground and adopt canned motions for simplicity. However,
the assumption is often over-restricted since a humanoid
robot is more likely to work in a layered environment filled
with objects of various shapes and heights as in the real life.

III. PROBLEM DESCRIPTION

According to motion granularity, the motion-planning
problem usually can be classified into global (gross) motion
planning and local (fine) motion planning. For the problem
of walking on a layered environment for a humanoid, both
types of planning needs to be considered in order to ensure
that the desired task can be accomplished. Although the
gross and fine motion planners can be designed separately
and solved sequentially, we think they should be connected
in a loop with feedbacks as shown in Fig. 1. The global path
from the global motion planner is fed into the local motion
planner to create corresponding footsteps and locomotion.
However, the local motion planner may fail to generate lo-
comotion for the given path. In this case, the planner should
feedback the failure with reasons to the global planner to
compute another global path. Taking this decoupled view
can greatly reduce the complexity of such a planning prob-
lem. In the following subsections, we will describe the
problems of global planning and local planning separately in

more details.

A. Global Planning Problem

The global planner assumes that we are given a geometric
description of the objects in the workspace as well as the
geometric and kinematic description of a humanoid. The
workspace contains multiple layers, and each layer is com-
prised of objects of various heights. Unlike the basic
path-planning problem where the definition of obstacles is
rather straightforward, the obstacles in our global planning
problem are not explicitly given. Instead, an object is an
obstacle to a humanoid only if there is no way for the hu-
manoid to step onto or pass under the object due to the hu-
manoid’s height. In addition, a humanoid must stand on a
large enough area in order to maintain a stable stance. If the
ground of the workspace is described as a smooth surface,
the slope of the surface cannot be too large to cause foot
slippery. In summary, the planning problem is rather com-
plex in real life, and we need to make reasonably assump-
tions to simplify the problem.

First, we assume a discrete workspace. The input to our
planner could be a continuous function for the elevation of
the ground and a polygonal description of the objects. How-
ever, we assume that we can convert these descriptions into
several layers of elevation grids of some resolution. Each
cell in a grid contains an elevation value for the whole cell in
that layer. An example of workspace with the layered envi-
ronment is shown in Fig. 2. The elevation for each cell in a
layered grid (128x128) is represented by a gray-scale value
in Fig. 2(c) and 2(d). We denote the height of a cell i at layer

l by l
ic , and the offset of layer l from some reference

ground by ld . Second, we assume that the resolution of the
elevation grid is coarse enough for a humanoid’s foot to step

Fig. 1. Planning loop for a typical query of humanoid motion

 (a) (b)

 (c) (d)

Fig. 2. (a) Top view of the workspace, (b) side view of the work-
space, (c) and (d) are the height maps of first and second layers

global
motion
planner

local
motion
planner

global
path

success
complete
motion

environment
and humanoid

setting

qinit
 qgoal

failure

onto a cell. We also assume that the maximal height that a
humanoid can step onto is denoted by h, which is a property
of the given humanoid. Third, the height of the humanoid is
H, and we assume that the humanoid does not bend its body
to pass an obstacle for now. Fourth, we assume that a hu-
manoid will not stay in the object boarder region for more
than some designated units of time, m. This situation hap-
pens when the geometry of a humanoid intersects the
boarder. This assumption is to make sure that the humanoid
does not stay in the border region except for trespassing
purpose. Fifth, we assume that the geometry of the human-
oid can be simplified to an enclosing circle of radius r such
that the orientation dimension can be ignored at planning
time. We assume that a humanoid will always face forward
and we can recover its orientation in a postprocessing step.

In summary, the objective of the global motion planner is
to find a collision-free path for the body trunk of the human-
oid to move from the initial configuration to the goal con-
figuration in a two-and-half-dimensional space. The output
of the planner is a global path that will be sent to the local
planner for further processing.

B. Local Planning Problem

The local planner aims to find a feasible locomotion for
the lower body of a humanoid with a given global path. We
assume that the output path from the global planner is a 3D
stepwise curve. This curve is a polyline comprised of a set of
vertical or horizontal connected line segments. In other
words, we temporarily ignore the orientation change of the
path and stretch the path into a one-dimensional stair-like
profile. According to the kinematic parameters of the hu-
manoid, the local planner will generate a feasible and effi-
cient plan for footstep placement and the corresponding lo-
comotion for lower-body joints. A feasible motion plan must
satisfy geometric and kinematic constraints. For example,
the humanoid should be collision-free and all joints are
within their joint limits. However, we do not use any explicit
dynamics model for simplicity reasons, and we assume that
this simplification does not cause dynamics feasibility prob-
lems in normal walking motions. By efficient plans, we
mean that the path should be the most efficient in terms of
energy consumption. An efficient motion usually also means
a natural motion that a human normally takes.

The local planning problem described above is challeng-
ing because the number of possible arrangements (each ar-
rangement consists of a set of footsteps) grows exponentially
in the length of the global path (or number of footsteps) even
if we restrict the possible footstep sizes to a limited number.
However, according to our daily walking experience, we
typically plan foot placement only for the next two or three
steps instead of for the whole path. Therefore, it is reason-
able to take an incremental approach where we call the local
planner in every step to plan only for a few steps (two or
three, typically) ahead. Another advantage of this approach
is that we can allow the configuration of obstacles to change
at run time without calling for global replanning immedi-

ately as long as the change does not prevent the local plan-
ner from generating feasible locomotion. Thus, we will re-
define our local planning problem as finding a feasible lo-
comotion for the next n steps with a given path profile. The
planner should return failure and indicate the failure location
along the path if it cannot find a feasible locomotion plan for
the next n steps.

IV. GLOBAL MOTION PLANNING

We will now present our approach to solving the global
motion-planning problem. In addition to being collision-free,
all configurations along the path must be reachable accord-
ing to the kinematic constraints, such as joint limits, of the
humanoid robot. The path must also satisfy the stability con-
straint requiring that any continuous portion of the path can-
not stay in the border region for longer than some period of
time. In the following subsubsections, we will first compute
a reachability map and then a collision map to represent the
properties of the grids in the configuration space.

A. Reachability Map and Collision Map

Suppose that we are given the heights and offsets for a
set of objects in the workspace. Offset is the base elevation
where the object is placed. Different offsets mean different
layers. For each layer, we compute a height map containing
the elevation value of each cell above the layer in the work-
space grid. As indicated in the previous section, a cell is
considered an obstacle cell if and only if there are no ways
to reach the cell from its neighbors under the height con-
straint. A cell could be unreachable because its height dif-
ference with its neighbors is too large for a humanoid to step
onto or the clearance between this layer and the layer above
is too small for a humanoid to fit in.

Given an initial configuration of the humanoid, we can
compute a map, called reachability map, where obstacle
regions are comprised of the unreachable cells. A reachabil-
ity map consists of several slices with one slice for each
layer. For example, Fig. 3(a) and 3(b) show the reachability
map for the two layers of the example scene in Fig. 2. The
black regions are the unreachable regions marked as obsta-
cles. These slices could be “connected” if there exists an
object whose height is large enough to bring the humanoid
to step onto some neighboring cells of the above or below
layer. We compute this map by a wave propagation algo-
rithm similar to the one used to construct NF1 potential
fields [9]. Suppose that the current cell under propagation is
i. The algorithm advances to a neighboring cell i′ at layer l
or a neighboring layer l′ only if the height difference be-

tween them is less than h (hcc l
i

l
i <− ′ or

hcdcd l
i

ll
i

l <+−+ ′
′

′)()() and the humanoid height H can fit

into the clearance above cell i′ at layer l or l′

(Hcdd l
i

ll >−− ′
+)(or Hcdd l

i
ll >−− ′

′
′+′)(, where l+

denotes the layer above l). We can convert this map, built in

the workspace, into its corresponding C-space by growing
the obstacle regions with the humanoid’s radius r. The re-
sulting C-space map can then be used to build a potential
field to guide the search in the planning process.

As mentioned in the previous subsection, we need to
identify the regions where unstable situation might occur if a
humanoid stay there for too long. A map describing the re-
gions is called collision map. A cell in the collision map is
defined as unstable if and only if the region covered by the
enclosing circle of a humanoid contains cells with height
difference less than h. The region comprised of unstable
cells is called the unstable region. A cell is defined as for-
bidden if there exists height difference larger than h. The
remaining cells in the collision map are the free cells. One
can compute such a map by first identifying the cells with
different heights in their neighborhood horizontally and ver-
tically. We can then grow these cells by the radius r to form
the final collision map. These two maps are used in the
planning algorithm presented in the next subsection.

B. Path Planning Algorithm

The planning algorithm for computing the humanoid
motion is shown Fig. 4. The STABLE_BFP algorithm is
similar to the classical Best-First Planning (BFP) algorithm
[9] for low-DOF problems. In an iteration of the search loop,
we use the FIRST operation to select the most promising
configuration q from the list of candidates (OPEN) for fur-
ther exploration. We visit each neighbor q’ of q and check
their validity (via the LEGAL operation) for further consid-
eration. A configuration is legal if it is collision-free (in the
freespace of reachability map), marked unvisited, and tem-
porarily stable. It is temporarily stable if and only if the hu-
manoid has not entered the unstable region for a period
longer than a given threshold determined by the user. This

duration is kept as an instability counter for each cell in the
unstable region when we propagate nodes in it. Note that the
validity of a configuration in the unstable region depends on
the instability counter of the parent configuration. If there
are more than one possible parent configurations, we cannot
exclude any of them. Therefore, in the STABLE_BFP algo-
rithm, we do not mark a configuration visited if it is in the
unstable region. A configuration in this region can be visited
multiple times as long as its instability counter does not ex-
ceed the maximal value.

In the STABLE_BFP algorithm, we use FIRST operation
to select the most promising configuration for further explo-
ration. In the BFP planners, an artificial potential field is
usually the only index for goodness. Planners with this ap-
proach can usually yield short paths. In our case, the height
difference could be an important index as well since one
may prefer climbing up or stepping down stairs to taking a
longer path. Therefore, in the FIRST operation, we use a
linear combination of both criteria (potential for horizontal
measures and height difference from qi for vertical measures)
with weights specified by the user.

C. Postprocessing

If our planner succeeds in finding a feasible path for a
humanoid, we need to perform two tasks in the postprocess-
ing step. First, we convert the found path into a smooth one
via a smoothing routine. The smoothing algorithm is very
similar to the ones for typical path planners. One usually
replaces a subpath in the original path continuously with a
straight-line path segment. A major difference for smoothing
a path in our new planner is on the metric for measuring
distance. This metric is defined with the same criteria as in
the FIRST procedure such that the user preference can be
preserved. Finally, we have to recover the orientation pa-
rameter of the humanoid for each step in the path. If the path
contains a sharp turn that is hard for a humanoid to follow,

 (a) (b)

 (c) (d)

Fig. 3: The reachability map (a)(b) and collision map (c)(d) for
layer one and two of the environment in Fig. 2.

STABLE_BFP()
1 install qi in T;
2 INSERT(qi, OPEN); mark qi visited;
3 SUCCESS ← false;
4 while ┐EMPTY(OPEN) and ┐SUCCESS do
5 q←FIRST(OPEN);
6 for every neighbor q’ of q in the grid do
7 if LEGAL(q’) then
8 if q’ is unstable then
9 q’.cnt=q.cnt+1;
10 else
11 mark q’ visited;
12 install q’ in T with a pointer to q;
13 INSERT(q’, OPEN);
14 if q’ = qg then SUCCESS ← true;
15 if SUCCESS then
16 return the backtracked feasible path
17 else return failure;

Fig. 4: The STABLE_BFP algorithm

we can add additional steps into the path to slow down the
orientation change.

V. LOCAL MOTION PLANNING

From the problem definition described in the previous
section, we assume that the local planner is asked to plan an
efficient motion only for the next few steps (two or three, in
our settings) instead of for the whole global path. We will
first describe how we compute a collision-free walk locomo-
tion for a given footstep length and a path profile. Then we
will describe how to plan the foot placement for future steps.

A. Kinematics-Based Locomotion Generation

In this subsection, we will describe how we generate a
collision-free locomotion for humanoid walking with a
given foot location for the next step. We use an in-
verse-kinematics approach to compute the locomotion. Ac-
cording to [3], walking motion for a human figure can be
divided into two phases: single support and double support.
In the double support phase, both legs touch the ground and
mass center of the body shift gradually from the back leg to
the front leg. In the single support phase, a stretched leg
supports the body while the other leg swings forward. Key-
frames are defined at the conjunction of the two phases or in
the interior of the double support phase.

We use the following principles to compute the joint an-
gles between two keyframes. In either phase, the stretched
leg on the ground determines the pelvis location. In the case
of double support, the joint angle of the other leg is deter-
mined by inverse kinematics between the foot and pelvis. In
the single support phase, the foot trajectory for the swinging
leg in the Cartesian space is determined first and the joint
angles are then computed according to inverse kinematics.

Now, the remaining problem is how to compute a colli-
sion-free trajectory for the swinging foot. We use a Bezier
curve with two fixed endpoints on the ground to represent
the trajectory. The other two control points of a Bezier curve
become the parameters that we can adjust to avoid collision
with obstacles. We use a numerical approach that move the
control points iteratively until a legal curve is found. How-
ever, the four-dimensional space spanned by the two control
points is too large to search in an on-line manner. Therefore,
we use the following rule to find the collision-free curve as
quickly as possible and avoid an exhaustive search.

The locations of the control points start at some location
slightly above the midpoint between two endpoints. When a
collision between the curve and the environment is detected,
the control points are moved upward and outward to lift the
curve as shown in Fig. 5. The curve is divided into two parts
(left and right) from the summit point. Each part computes
the intersected points of the curve and moves the corre-
sponding control point for some distance along the direction
from the midpoint of two endpoints toward the intersection
points. If one part does not cause intersection while the other
does, its control point also moves upward for the same

amount as the other control point moves. The search process
stops when a legal curve is found or the locations of the
control points have left a given legal region. In the second
case, the planner returns failure.

B. Footstep Planning

We now consider the problem of finding foot placement.
Assume that the local planner is called in every step of exe-
cution, and we will search for the most energy efficient lo-
comotion for the next n steps, where n is set to, say, 3. We
first discretize the range of all possible footstep sizes into m
unit lengths for each step. Then we try to find a set of desir-
able footstep locations, called footstep configuration, de-
noted by qf=(s1, s2, s3), where s1, s2, and s3 are step lengths.
The energy efficiency for qf, denoted by Eff(qf), is defined by
(s1+s2+s3)/E, where E is the total energy consumption that
will be defined later.

Depending on the available time for planning, one may
choose to search for the global maximal or a local maximal
configuration. In our on-line application, since the planner is
called in every step of execution at run time, time efficiency
is crucial. Therefore, we use a Best-First Search algorithm to
find a collision-free locomotion plan for the next n steps
with the maximal energy efficiency only locally. The algo-
rithm starts from some neutral position initially and explores
its neighbors for better configurations. We maintain a list of
available configurations and choose the most promising
configuration in each step for further exploration until a lo-
cal maximal is reached. The program returns failure if no
such a footstep configuration exists. In an iteration of the
execution loop, we plan for the next few steps by taking the
goal/current footstep configuration as the starting point for
the next iteration. In most occasions, the previous footstep
configuration usually provides a good initial guess that can
quickly bring the search to a local maximum.

The energy E consumed in one step depends on several
factors. For example, it depends on the walking speed, ver-
tical and horizontal movements, and joint movements. Al-
though the energy consumption for a given humanoid robot
can be computed with a dynamic model, our real-time plan-
ning requirement discourages such an approach. Instead, we
take a simpler approach of computing this energy from sta-
tistic data obtained from real human walking experiments.
We assume that the energy consumption is composed of
three parts: horizontal movement, vertical movement, and

Fig. 5: Adjusting the Bezier curve for the swinging leg to avoid
collisions

P1=(x1, y1)

P2= (x2, y2)

Pm=(P1+ P2)/2

Pc1
Pc2

Pc1’
Pc2’

Pc0

joint movement. That is, E=α*En+β*Eh+γ*Er, where En, Eh,
and Er are the energy for horizontal movement, vertical
movement, and joint movement, respectively. We assume a
normal walking speed so that we have a common ground for
comparison. According to [12], the energy for normal walk-
ing on a flat ground can be computed with the following

formulas: n
s

n
EE w

n
)*10232(4+== , where s is the step

size and n is the number of steps per minute. Experiments
show that s/n=0.007 for adult male. Therefore, En can be
simplified to be a function of s only. According to [12], the
energy consumption for stepping upward is proportional to
the stepping height. Third, for the same footstep size, a hu-
manoid could raise legs for different amounts and therefore
consume different amounts of energy. We take a weighted
sum of changes on the joint angles to compute the extra en-
ergy consumption, Er. The weights are mainly determined by
the masses of the raised parts. With these formulas, we can
compute the energy efficiency for different footstep lengths,
as shown in Fig. 6. Since the statistic data is taken from ex-
periments with real humans, the most efficient step length is
around 60cm, which agrees with our daily experiences.

VI. EXPERIMENTS

We have implemented the global and local motion plan-
ners in Java and connected the planners to a VRML browser
to display the final simulation results. All the planning times
reported below are taken from experiments run on a regular
650MHz PC. The resolutions for the grid workspace and
configuration space are all 128x128 in the global planner.
The resolution for the locomotion is on the discretization of
footstep length, which is divided into 13 units in the range of
30cm to 90cm. In the following subsections, we will use
several examples to demonstrate the effectiveness of the
planners.

A. An Example for Global Motion Planning

Fig. 7 shows an example of global motion generated for
the scene of Fig. 2. Fig. 7(a) and 7(b) show the unsmoothed
and smoothed global paths that take the humanoid from a
stage to the other side of the platform.. Note that there are
two ways to get to the goal location, and the planner gener-
ates the shorter path to reach the goal. The planning time for

such an example is 220ms for preprocessing computation
(such as building the reachability map, collision map, and
potential field) and 20ms for path searching and smoothing.

B. An Example for Local Motion Planning

In Fig. 8, we show an example of local motion plan that
takes the lower body of a humanoid to climb up a stair with
a given ground profile. In the example of Fig. 8(a), the hu-
manoid fails to make further moves after stepping down the
stair because it only plans one step ahead. In Fig. 8(b), we
plan two steps ahead and therefore avoid the problem by
taking a larger step length. In Fig. 9, we compare the plan-
ning results with and without considering energy efficiency.
For example, according to the energy model described in
Section V, the motion in Fig. 9(b) is more efficient than the
motion in Fig. 9(a) because it does not need to step onto the
obstacle.

C. Integrated Example

We use the integrated example in Fig. 10 to demonstrate
the interaction between the global and the local planners.
The global motion generated initially upon a user request

 (a) (b)
Fig. 8. Locomotion planning: (a) fails with one-step planning and

(b) succeeds with two-step planning

 (a) (b)
Fig. 7. An example of (a) unsmoothed and (b) smoothed global path

in a layered scene

Efficiency (m / kg / J)

0

0.2

0.4

0.6

0.8

1

1.2

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9

step length (m)

Fig. 6. Energy efficiency for different step lengths on a flat ground

 (a) (b)

Fig. 9. Efficient locomotion generation: (a) stepping on is less
energy efficient than (b) stride over

Step length (m)

Efficiency (m/kg/J)

may not succeed at execution time when it is sent to the lo-
cal motion planner for further processing. For example, an
object could be placed on the way of the global path at exe-
cution time as shown in Fig. 10(a) and 10(b). Although the
new green square object in Fig. 10(a) is on the path, the local
planner generates a locomotion plan that steps over the ob-
ject, as shown in Fig. 11(b) (compared to the original plan in
Fig. 11(a)). If the placed object is too tall (Fig. 10(b)), the
local planner may fail at execution time. In this case, the
local planner returns the failure point to the global planner in
order to generate an alternative feasible path via the second
floor, as shown in Fig. 10(c) and 10(d). The re-planning
takes about 761ms including rebuilding all the maps.

VII. CONCLUSIONS AND FUTURE WORK

Building autonomous humanoid robots has been the goal
of many applications in robotics and computer animation.
Spatial reasoning is a key capability to enable a robot to ac-
cept high-level commands and move autonomously. In this
paper, we have proposed a planning system composed of
global and local motion planners that can generate feasible
and efficient motion plans for a humanoid in a layered envi-
ronment. Several simulation examples have been presented
to demonstrate the capabilities of the planner.

In the current system, we assume that a humanoid robot
can only perform normal walking motions. However, a real
human usually can avoid obstacles with various kinds of
locomotion and body motions. For example, a human can
crawl or stoop to avoid upper-layer obstacles. We will con-
sider this kind of situations as an extension of our work in
the future.

VIII. ACKNOWLEDGMENT

This work was partially supported by National Science
Council under contract NSC 91-2213-E-004-005.

IX. REFERENCES

[1] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and P.
Raghavan, “A Random Sampling Scheme for Path Planning,”
Intl. J. of Robotics Research, 16(6), Dec. 1997.

[2] J. Barraquand and J. Latombe, “Robot Motion Planning: A
Distributed Representation Approach,” Intl J. of Robotics
Research, 10:628-649, 1991.

[3] A. Bruderlin and T. W. Calvert, “Goal-Directed, Dynamic
Animation of Human Walking,” Proc. of ACM SIGGRAPH,
1989.

[4] Q. Huang, K. Kaneko, et al., “Balance Control of a Biped
Robot Combining Off-line Pattern with Real-time Modifica-
tion,” Proc. of IEEE Intl. Conf. on Robotics and Automation,
pp.3346-3352, April, 2000.

[5] H. Ko and N.I. Badler, “Animating Human Locomotion with
Inverse Dynamics,” IEEE Transaction on Computer Graph-
ics, 16(2), pp.50-59. 1996.

[6] J. Kuffner, “Goal-Directed Navigation for Animated Charac-
ters Using Real-time Path Planning and Control” Proc. of
CAPTECH’98 Workshop on Modeling and Motion capture
Techniques for Virtual Environments, Springer-Verlag, 1998.

[7] J. Kuffner, et. al., “Motion Planning for Humanoid Robots
under Obstacle and Dynamic Balance Constraints,” Proc. of
IEEE Intl. Conf. on Robotics and Automation, May 2001.

[8] J. Kuffner, et. al., “Footstep Planning Among Obstacles for
Biped Robots,” Proc. of 2001 IEEE Intl. Conf. on Intelligent
Robots and Systems (IROS 2001), 2001.

[9] J. Latombe, Robot Motion Planning, Kluwer, MA, 1991.
[10] N. Pollard, et. al., “Adapting Human Motion for the Control

of a Humanoid Robot,” Proc. of 2002 IEEE Intl. Conf. on
Robotics and Automation, pp2265-2270, May 2002.

[11] J.H. Reif, “Complexity of the Mover's Problem and Gener-
alizations,” Proc. of the 20th IEEE Symp. on Foundations of
Computer Science, pp. 421-427, 1979.

[12] J. Rose and J.G. Gamble, Human Walking, Williams and Wil-
kins, 1994.

[13] Z. Shiller, K. Yamane, Y. Nakamura, “Planning Motion Pat-
terns of Human Figures Using a Multi-Layered Grid and the
Dynamics Filter” Proc. of IEEE Intl. Conf. on Robotics and
Automation, pp.1-8, May 2001.

[14] H. C. Sun and N. M. Dimitris, “Automating gait generation,”
Proc. of ACM SIGGRAPH, 2001.

[15] S. Tak, O. Song, and H.-S. Ko, “Motion Balance Filtering,”
Proc. of the Eurographics Conf., 2000.

[16] A. Witkin and Z. Popovic, “Motion Warping,” Computer
Graphics Proc., SIGGRAPH95, pp.105-108, 1995.

[17] K. Yamane and Y. Nakamura, “Dynamics Filter – Concept
and Implementation of On-Line Motion Generator for Human
Figures,” Proc. of IEEE Intl. Conf. on Robotics and Automa-
tion, pp.688-695, April 2000.

(a)

(b)

Fig. 11. Locomotion adapting to a dynamically placed object

(a) (b)

(c) (d)

Fig. 10. Placing (a) a short object and (b) a tall object on the path
at execution time. (c)(d) An alternative path is generated.

replan

