
 1

An Incremental Learning Approach to Motion Planning
with Roadmap Management

Tsai-Yen Li
Computer Science Department
National Chengchi University,

Taipei, Taiwan, R.O.C.
li@nccu.edu.tw

Yang-Chuan Shie
Computer Science Department
National Chengchi University,

Taipei, Taiwan, R.O.C.
g8909@cs.nccu.edu.tw

Abstract

Traditional approaches to the motion-planning problem
can be classified into single-query and multiple-query
problems with the tradeoffs on run-time computation cost
and adaptability to environment changes. In this paper, we
propose a novel approach to the problem that can learn
incrementally on every planning query and effectively
manage the learned roadmap as the process goes on. This
planner is based on previous work on probabilistic road-
maps and uses a data structure called Reconfigurable
Random Forest (RRF), which extends the Rap-
idly-exploring Random Tree (RRT) structure proposed in
the literature. The planner can account for environmental
changes while keeping the size of the roadmap small. The
planner removes invalid nodes in the roadmap as the ob-
stacle configurations change. It also uses a tree-pruning
algorithm to trim RRF into a more concise representation.
Our experiments show that the planner is flexible and
efficient.

1. Introduction
The motion-planning problem has been well studied in the
last three decades. The basic problem, called the find-path
problem or the piano-mover’s problem, is about finding a
collision-free path for a robot moving in a workspace
cluttered with obstacles[17]. The developed techniques for
solving this problem has been shown to be well applicable
to many domains other than robotics such as computer
animation[9], assembly maintainability[7], intelligent
navigation interfaces[14], and drug designs. According to
[2], most path planners consist of two phases: preprocess-
ing and query phases. In the preprocessing phase, the
planning problem is converted into abstract data structures
such as graphs that will be searched later for a feasible
path in the query phase. The percentage of running times
for the two phases might vary greatly for different plan-
ners. For example, in the Randomized Path Planner
(RPP)[3], most time is spent in the query phase while in
the Probabilistic Roadmap Method (PRM) planner[8],
most time is spent in building a roadmap in the preproc-
essing phase.

Depending on how a planner is used, one can classify the
planning problems into two categories: single-query and
multiple-query problems. In the single-query problem, one
does not assume anything about previous queries, and the
planner always starts to answer every query from scratch.
On the other hand, in multiple-query problems, one usu-
ally assumes that the environment does not change often
and multiple queries will be issued for the same environ-
ment. In this case, the planner can afford to spend more
time on preprocessing such that the queries afterward can
be answered more quickly. Choosing an appropriate plan-
ner for a given problem remains a state of art requiring
human judgment.
In this paper we propose a unified path-planning approach
that can be used in an either single-query or multi-
ple-query problem. The planner is well suited for a sin-
gle-query problem, and it learns the given environment
incrementally as the planner is called multiple times. The
planner is as efficient as other single-query planners and
the performance gets improved when the learning process
goes on. A data structure, called Rapid-exploring Random
Tree (RRT), has been shown to be an effective roadmap
representation[11][12]. Our planner extends this structure
to a more flexible one, called Reconfigurable Random
Forest (RRF). This data structure allows us to modify the
roadmap by removing invalid nodes as the obstacle con-
figurations change at run time. In addition, the planner is
designed to periodically trim unnecessary nodes in RRF in
order to keep the roadmap slim.
The rest of the paper is organized as follows. We will first
review related work in the next section. We will then re-
view the RRT structure, the RRT-Connect algorithm, and
present our unified approach with the RRF data structure
in Section 3. In the fourth section, we will extend the
planner to maintain a concise roadmap in a changeable
environments. Experimental settings, results, and analysis
will be given in Section 5. Finally, we will conclude our
work in the last section.

2. Related Work
One can obtain an introduction to the general mo-
tion-planning problem or a survey of approaches in [13].

 Appear in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2002

 2

Generally speaking, early research focuses on developing
theoretical foundation and complete solutions for the
problem[17]. However, under the curse of dimensionality,
this type of solution deems to be impractical for problems
involving high dimensional spaces. In the last decade,
several researches start to look for practical solutions that
can be applied to wider arrange of applications despite
they usually lack completeness[3][8].
The randomized planners are the popular approaches
along this direction. The early RPP planner is a typical
single-query planner utilizing artificial potential fields as
search heuristics. In contrast, the PRM planner is a typical
multiple-query planner that uses a great portion of time to
construct a representative roadmap for later queries. For
this type of method, the way that the sampled configura-
tions are selected greatly affects the planning results.
Variations of sampling strategies have been proposed for a
generic or a specific problem[1][5]. The work in [15] uses
visibility information to produce a smaller roadmap. In
recent years, one form of randomized roadmap called RRT
has been shown to be effective in solving several difficult
problems by being able to explore the freespace
evenly[11][12]. A single-query path planner, called
RRT-Connect, using this data structure to perform
bi-directional search has also been developed[10].
Several planners in the literature took a learning ap-
proach[4][6][8][15]. In one of the early papers proposing
the idea of probabilistic roadmap, roadmap was used as a
way to learn the freespace[15]. They observed sharp
learning curves when the roadmap got denser. However,
the number of sampled configurations for an acceptable
success rate remains an empirical setting. In [6], a planer
called ERPP uses the local minima learned in RPP-based
planner to build a roadmap for a static environment. The
work in [4] uses a genetic algorithm to evolve critical
configurations, called landmarks, for freespace connec-
tivity.

3. Building incremental roadmap
The basic path-planning problem is to find a collision-free
path for a robot amongst obstacles in a given environment.
The set of all possible configurations q for the robot de-
fine the so-called Configuration Space (C-space for short),
denoted by C. Let Cfree denote the open subset of colli-
sion-free configurations in C. The path-planning task is to
find a continuous curve in Cfree connecting an initial con-
figuration, qi, and a goal configuration, qg.

3.1. The RRT-Connect planning algorithm
The Rapidly-exploring Random Tree (RRT) was intro-
duced in [11] as an efficient data structure to explore Cfree.
Its main difference from traditional probabilistic roadmaps
is on that RRT grows outward from a tree although con-
figurations are sampled randomly in the freespace. As
depicted in Figure 1, the growing process starts by select-

ing a random configuration, qrand, as the growing direction.
The nearest configuration, qnear, in the current RRT to qrand
is determined, and a new configuration, qnew, that is
ε-distance away from qnear, is computed and added into
the RRT. This process is called EXTEND. In [10], an effi-
cient single-query planning algorithm, called
RRT-Connect, uses RRT as the main data structure to
connect the given initial and goal configurations (qi and
qg). Two RRT’s, rooted at qi and qg, respectively, are used
to connect to each other. At each step of the growing
process, a random configuration qrand is sampled in the
freespace. One RRT uses the EXTEND procedure to add
to itself a new configuration, qnew, while the other RRT
uses another procedure called CONNECT to grow (EX-
TEND) toward qnew as much as possible. If CONNECT
can bring the RRT to reach qnew, then the two RRT’s have
been successfully connected and a feasible path is re-
turned. Otherwise, the two RRT’s swap to allow them to
grow in the other direction.

3.2. The incremental learning algorithm:
RRF_CONNECT

Since the RRT-Connect planner is a single-query planner,
it always starts from scratch for applications requiring
multiple queries,. However, we think the freespace ex-
plored in previous planning queries could be very useful
in the ones that follow. Therefore, we extend the
RRT-Connect algorithm to take advantage of the previous
learned knowledge about the freespace to save time in
future queries. Since previously learned RRT’s are kept
for future uses, the data structure becomes a forest con-
sisting of multiple RRTs. We called this forest, Recon-
figurable Random Forest (RRF). It is reconfigurable be-
cause the trees in the forest can be merged, split, or pruned
in the planning process.
Figure 2 shows the RRF_CONNECT planning algorithm.
The algorithm assumes a global data structure called for-
est to store the list of currently maintained trees. A main
subprocedure used in RRF_CONNECT is called
MERGE_RRTs. This procedure tries to connect each tree
in the forest, except for the currently considered tree TA, to
the designated new configuration, qnew, via the CONNECT
procedure. The tree is merged with TA if the connection is

Figure 1: Two RRT’s use EXTEND and CONNECT
to merge into one tree

qrand qnew

qnear
qi

Tb

EXTENDCONNECT
ε

qq

Ta

 3

successful. In the RRF_CONNECT algorithm, after the
trees rooted at qi and qg are initialized, we first call the
MERGE_RRTs procedure to see if we can connect the two
configurations to the forest without adding additional con-
figurations. If this is not successful, a randomly sampled
configuration, qrand, will be selected to extend Ti, and
MERGE_RRT will then be called again. This process will
repeat until the Ti and Tg are merged (success) or a prede-
fined maximal number of sample configurations is
reached (failure).

4. Roadmap management
As the learning process goes on, the RRF structure might
need to be updated for a few reasons. First, if the obstacle
configurations are changeable at run time, then there
should be a way to invalidate certain portion of the forest.
Second, there should be a way to trim unnecessary nodes
as the forest grows. Keeping a tidy roadmap not only save
space but also the time required to search for a path.

4.1. Extension to consider environment changes
The assumption of static environment restricts the appli-
cation domain of roadmap-based methods. In general,
when the environment changes, the roadmap needs to be
reconstructed. However, there exist applications where
obstacles in the environments need to be moved but not
constantly or frequently. For these scenarios, a major por-
tion of the roadmap might still remain valid and useful for
future queries. All we have to do is remove invalid nodes
after the obstacle changes and reconstruct the RRF struc-
ture.
We use the following process to reconstruct RRF after the

obstacle configuration changes. First, we compute the
candidate nodes whose configurations fall inside the
bounding box of the obstacle’s new configuration. Second,
we perform collision checks on these nodes to find the list
of invalid ones to be removed. Third, for each invalid
node, we check if their children are also in the invalid list.
If not, then the subtree rooted at each of these child nodes
will be trimmed off and becomes a new tree in RRF.
In the above update process, the first step may contain
example-specific procedure to compute the bounding box
of obstacles in C-space. The second step is the most
time-consuming one since it involves collision detections
to find invalid nodes. However, for time-critical applica-
tions, we think this step could be totally skipped without
sacrificing the correctness of the planning result. First,
these nodes are selected under a necessary condition. The
list contains a conservative list of candidate nodes. Second,
if the obstacle is currently moving, its bounding box could
contain nodes that will become invalid sooner or later.
Third, since the RRT structure tends to grow the tree to-
ward unexplored area, the extra space cleaned up due to
the imprecise update can be filled up quickly in the future
learning process. Examples of this update process will be
given in the next section.

4.2. Forest pruning
As the learning process goes on, the number of nodes
added into RRF increases significantly. Although the more
nodes in a roadmap, the better they can capture the overall
structure of freespace. However, as the number of nodes
increases to some degree, the performance of the planner
might be worsen due to the large roadmap size. As a result,
it is desirable to prune RRF to make it a more concise
representation. In Figure 3, we show an example of prun-
ing an RRF from a dense roadmap (2675 nodes, Figure
3(a)) to a tidier one (70 nodes, Figure 3(b)).
The PRUNE_TREE algorithm that is used to prune the
trees in an RRF is listed in Figure 4. A tree is considered
too dense vertically or horizontally if there exists a node
too close to its grandparent node or to its sibling nodes,
respectively. In this algorithm, we traverse the given tree
in post-order, where a node is examined after its subtrees

 (a) (b)
Figure 3. An example of tree pruning from (a) to (b)

MERGE_RRTs(TA, qnew)
1 for each T in forest
2 if (T ≠ TA)
3 if (CONNECT(T , qnew) = Reached)
4 REVERSE_PARENT(T , qnew);
5 forest.remove(T);
6 return;
RRF_CONNECT(qi , qg , K)
1 Ti.init(qi); Tg.init(qg);
2 forest.add(Ti); forest.add(Tg);
3 MERGE_RRTs(Tg , qg);
4 MERGE_RRTs(Ti , qi);
5 if (Ti.tree_id = Tg.tree_id)
6 return PATH(qi, qg);
7 for k =1 to K do
8 qrand ← RANDOM_CONF();
9 if (EXTEND (Ti , qrand) ≠ Trapped)
10 MERGE_RRTs (Ti , Ti.qnew);
11 if (Ti.tree_id = Tg.tree_id)
12 return PATH(qi, qg);
13 SWAP(Ti , Tg);
14 return Failure;

Figure 2: The RRF_ CONNECT algorithm

 4

qp qc
qgp

are traversed. When a tree is traversed, we remove nodes
that are considered redundant to the structure of the tree.
When examining a node (qp), we first check if the distance
between each of its child nodes (qc) and its parent node
(qgp), in some user-specified metric, is less than some limit,
MinVMergeD, and there exists a collision-free
straight-line path between them. If the above conditions
are met, we perform a vertical merge (V_MERGE) opera-
tion that makes the qc node connect to the qgp node di-
rectly instead of to the qp node, as shown in Figure 5(a).
Since the qp node must have children to satisfy the above
conditions, it must be an interior node in a tree. However,
if the qp node becomes a leaf node after its children are all
relinked to its parent, then it is deleted from the tree. Sec-
ond, we check if the distance between any ordered pair of
child nodes (qc1 and qc2) is less than some limit,
MinHMergeD, and all of qc1‘s child nodes, if any, can be
moved to qc2 with collision-free links. If so, we perform a
horizontal merge (H_MERGE) operation to move the
links, and qc1 is deleted from the tree, as shown in Figure
5(b).

5. Experiments
The aforementioned planner has been fully implemented
in Java. The planning times reported in this paper were
collected from experiments running on a regular PC with
a K6-3 400 MHz processor. The size of the C-space (x, y,
θ) for all examples shown in this paper is 128x128x100.
The roadmaps depicted in this section are actually 2D
projections of 3D C-space into the 2D workspace.

5.1. Experiments for static environments
Among several tested examples, a basic path-planning

example with an arrow-shaped robot in static environ-
ments is shown in Figure 6. The number of sampled nodes
and the planning time are 699 and 0.2 sec. The example
assumes a clean start with no pre-built roadmap. In our
experiments, we continued to issue a great number of
random planning queries for the same static environment
to see how the later one can take advantage of the road-
map learned earlier. Two snapshots of the incremental
roadmap construction process are shown in Figure 7. The
roots of the trees in RRF are depicted with solid dots. The
RRF in Figure 7(a) contains seven trees. As the number of
planning queries increase, the number of nodes in RRF
increases to 2359 and the number of trees reduces to two
only, as shown in Figure 7(c). The planning times for the
example will be reported in a later subsection.

5.2. Example for environments with obstacle con-
figuration changes

We have implemented the algorithm in Section 4.1 to al-
low configuration changes of environmental obstacles. An
example illustrating the idea of reconfigurable forest is
shown in Figure 8. The example starts with no pre-built
roadmap (Figure 8(a)) and after 1000 planning queries,
the RRF ends up with a dense roadmap consisting of a
single RRT (Figure 8(b)). Then, we moved the obstacles
on the lower-right corner to the center of the workspace.
The roadmap is updated with the principles described in
Section 4.1, and the update process takes only about 50
ms. About 300 invalid nodes are detected and removed
from the RRF, resulting in 22 new trees as shown in Fig-

 (a) (b)
Figure 6. A basic example: (a) found paths and (b)

the generated roadmaps.

(a) (b)

Figure 7. Snapshots of a growing RRF

PRUNE_TREE(qp)
1 if qp is NOT ROOT
2 for each child qc of qp
3 if DIST(qp.parent , qc) < MinVMergeD
4 V_MERGE(qp.parent, qp, qc);
5 for each child qc of qp
6 PRUNE_TREE(qc);
7 if qp.nb_children >= 2
8 for each pair (qc1, qc2) in (qp.child, qp.child)
9 if DIST(qc1, qc2) < MinHMergeD
10 H_MERGE(qc1, qc2);

Figure 4: The PRUNE_TREE algorithm prunes
a given tree to a more concise representation

 (a) (b)
Figure 5: (a) Vertical and (b) horizontal merges

 5

ure 8(c). The roots of these trees, surrounding the moved
obstacle, indicate where the forest is split. After another
500 random planning queries, the empty area that was
originally occupied by the obstacle is quickly and evenly
filled with new nodes, as shown in Figure 8(d). In this
aspect, the RRT structure, compared to other roadmap
representations, demonstrates its strength in exploring
unvisited area and therefore is more appropriate for man-
aging roadmaps in such a dynamic scenario.

5.3. Experiments on forest pruning
We use the example shown in Figure 9 to illustrate the
effects of the forest pruning process. The RRF roadmap
shown in Figure 9(a) contains 5974 nodes in total. Ac-
cording to the PRUNE_TREE algorithm in Section 4.2,
two types of merges might be applied to RRF to reduce its
size. To observe the effect of each type of operation, we
only perform the vertical-merge operation that attempts to
reduce the hierarchy of RRF by removing interior nodes.
After 741ms of computation, we can reduce the number of
nodes to 3412 as shown in Figure 9(b). This operation has
flattened the RRF, but it also results in trees that are too
broad horizontally. By applying the horizontal-merge op-
eration, which takes 291ms, we obtain an RRF consisting
of 518 nodes only as shown in Figure 9(c). If we apply the
vertical and horizontal merges simultaneously as in the
PRUNE_TREE algorithm, the computation time is only
about 330ms. Like most algorithms for smoothing paths
generated by a path planner, the PRUNE_TREE proce-
dure does not guarantee to result in an optimal solution at
once. Instead, the procedure can be applied to an RRF
iteratively possibly until the size cannot be further reduced.

In Figure 9(d), we show such an example consisting of
200 nodes only.
Two parameters in the PRUNE_TREE procedure can be
set empirically to determine the resulting RRF: Min-
VMergeD and MinHMergeD. In the figures mentioned
above, the MinVMergeD and MinHMergeD are four and
two times of the ε-distance used in the EXTEND proce-
dure, respectively. A smaller value for these minimal dis-
tances yields a finer but larger roadmap. In Figure 9(e),
we show an example of a finer RRF consisting of 609
nodes with the minimal distances set to ε. Furthermore,
the PRUNE_TREE procedure can be applied periodically
to RRF during the learning process. Our experiments
show that the number of nodes in RRF can often be fur-
ther reduced as the process goes on. For example, a tidier
representation of 122 nodes for the RRF can be obtained,
as shown in Figure 9(f), after a few iterations of planning
query and tree-pruning operations.

5.4. Discussion
A major advantage of the proposed learning approach is

(a) (b)

 (c) (d)
Figure 8. An example of RRF in a changeable en-

vironment

 (a) (b)

 (c) (d)

 (e) (f)

Figure 9. Experimental results on forest pruning
with different parameter settings

 6

that the C-space can be learned incrementally as the proc-
ess goes on. Our experiments show that, as one can expect,
the planner learns more about the C-space when the query
problem is difficult. However, the occasions are rather
sparse. For example, as shown in Figure 10(a), the planner
learns about most of the C-space in the very beginning
and a few times in the middle of 1500 queries. In this ex-
periment, the PRUNE_TREE procedure was called every
500 queries to reduce the number of nodes in RRF, and we
were able to reduce it by a factor of 10, as shown in Fig-
ure 10(b).
In previous subsection, we have shown the effect of the
parameters, such as MinVMergeD and MinHMergeD, in
the PRUNE_TREE algorithm qualitatively. However, we
need to do further experiments in order to determine their
effects on planning times after RRF is pruned. Intuitively
speaking, less nodes means harder to merge trees but
faster to search the roadmap. Similarly, it is difficult to
determine an optimal frequency for pruning an RRF. It
takes time to prune a tree but a smaller and better roadmap
representation could save time in the long run.

6. Conclusions
In this paper, we have described an incremental learning
approach to the general path-planning problem. This ap-
proach extends the RRT-Connect algorithm proposed in
the literature to maintain the RRF roadmap learned in pre-
vious queries. The new planner can manage the roadmap
effectively and efficiently as the environment changes and
the learning process goes on. In addition, the planner can
be run in an unsupervised manner since it can always

maintain a concise and representative roadmap. We be-
lieve that such a path planner can be applied to a wider
range of applications in robotics and other related fields.

7. References
[1] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D.

Vallejo, “OBPRM: An Obstacle-Based PRM for 3D
Workspaces,” Robotics: The Algorithmic Perspective,
pp.630-637, 1998.

[2] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and P.
Raghavan, “A Random Sampling Scheme for Path Plan-
ning,” Intl. J. of Robotics Research, 16(6), pp.759-774,
Dec. 1997.

[3] J. Barraquand and J. Latombe, “Robot Motion Planning: A
Distributed Representation Approach,” Intl J. of Robotics
Research, 10:628-649, 1991.

[4] P. Bessiere, J. M. Ahuactzin, E.G. Talbi, E. Mazer, “The
‘Adriane’s Clew’ Algorithm: Global Planning with Local
Methods,” Proc. of IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, IEEE Press, pp.1373-1380, 1993.

[5] R. Bohlin and L. Kavraki, “Path Planning Using Lazy
PRM,” Proc. of IEEE Intl. Conf. on Robotics and Automa-
tion, pp.521-527, 2000.

[6] S. Caselli, and M. Reggiani, “ERPP: An Experience-based
Randomized Path Planner,” Proc. of IEEE Intl. Conf. on
Robotics and Automation, pp.1002-1008, 2000.

[7] H. Chang, and T.Y. Li, “Assembly Maintainability Study
with Motion Planning,” IEEE Intl. Conf. on Robotics and
Automation, pp. 1012-1019, May, 1995.

[8] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars,
“Probabilistic Roadmaps for Fast Path Planning in
High-Dimensional Configuration Spaces,” IEEE Trans. on
Robotics and Automation, 12:566-580, 1996.

[9] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe, “Plan-
ning Motions with Intentions,” Computer Graphics (SIG-
GRAPH’94), pp.395-408, 1994.

[10] J. Kuffner, and S. LaValle, “RRT-Connect: An Efficient
Approach to Single-Query Path Planning,” Proc. of 2000
IEEE Intl. Conf. on Robotics and Automation, May 2000.

[11] S. M. LaValle, “Rapidly-Exploring Random Trees: A New
Tool for Path Planning,” Iowa State University, 1998.

[12] S. M. LaValle and J. J. Kuffner. “Randomized kinody-
namic planning,” Proc. of 1999 IEEE Intl. Conf. on Ro-
botics and Automation, 1999.

[13] J. Latombe, Robot Motion Planning, Kluwer, Boston, MA,
1991.

[14] T.-Y. Li, and H.-K Ting ., “An Intelligent User Interface
with Motion Planning for 3D Navigation,” Proc. of the
IEEE Virtual Reality 2000 Conf., March 2000.

[15] C. Nissoux, T. Simeon, and J.P. Laumond, “Visibility
Based Probabilistic Roadmaps,” Proc. of the IEEE Intl.
Conf. on Intelligent Robots and Systems, 1999.

[16] M.H. Overmars, P. Svestka, “A Probabilistic Learning
Approach to Motion Planning,” Technical Report
UU-CS-1994-03, Dept. of Computer Science, Utrecht
Univ., Netherlands, Jan. 1994.

[17] J.H. Reif, “Complexity of the Mover's Problem and Gen-
eralizations,” Proc. of the 20th IEEE Symp. on Founda-
tions of Computer Science, pp. 421-427, 1979.

0

100

200

300

400

500

1 101 201 301 401 501 601 701 801 901 1001110112011301 1401

of queries

Pl
an

ni
ng

 ti
m

es
 (m

s)

(a)

0
500

1000
1500
2000
2500
3000

1 101 201 301 401 501 601 701 801 901 10011101120113011401
of queries

of

 n
od

es

(b)

Figure 10. Planning times and accumulated num-
ber of nodes as number of queries increases

