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Abstract 

Despite the rapid development of 3D technologies, 
controlling a viewpoint in a 3D environment remains a 
non-trivial or even difficult task for a novice user. Pre-
vious researches have shown that motion planning 
techniques can be use to assist user navigation in the 
so-called WALK mode for VRML browsers. In this pa-
per we propose to use a motion-planning approach for 
assisting viewpoint control in the EXAMINE mode for 
3D browsers. This approach uses a Reconfigurable 
Random Forest (RRF) structure to learn the 3D envi-
ronment progressively as the viewpoint moves along. 
Unlike previous work that simplifies the workspace by 
projecting the environmental obstacles into 2D poly-
gons, we have to deal with 3D motions and 3D obsta-
cles. Efficiency of the planner becomes crucial in de-
signing such an intelligent user interface with an ac-
ceptable frame rate. We have implemented and incor-
porated the planner into a Java3D-based VRML 
browser and tested it with several example scenarios 
with satisfactory results.  

 
1. Introduction 

3D applications are becoming prevalent on per-
sonal computers with the rapid development of graph-
ics hardware. In addition to the traditional applications 
such as Computer-Aided Design (CAD) and Com-
puter-Aided Manufacturing (CAM), more appealing 
applications in entertainment such as games and virtual 
shopping are emerging. Although the frame rate for 3D 
displays is increasing, it remains a great challenge for a 
novice user to control a viewpoint in a 3D scene with a 
2D device such as a mouse[1].  

Controlling 3D viewpoint is difficult because the 
constraints that a 3D browser might have imposed on 
the interface to increase reality. An interface without 
any constraints might appear easy to control but the 
viewpoint might get into the inside of an object. This 
situation might confuse the user because the display 
could turn into a blank screen suddenly because of no 
back light inside an object. To overcome this problem, 
a typical browser will support the function of collision 
detection that can be turned on to avoid penetrating an 
object. However, due to the limited range of view frus-
tum, it is very often that a user gets stuck at a corner of 
the scene without seeing the object obstructing the 

viewpoint. It usually takes several maneuvers before 
the user can escape this kind of situation. 

3D viewpoint controlling problems appear in 
many 3D applications. A typical 3D application, such 
as VRML[15] browser, provides several modes of 
viewpoint control. These modes include WALK, EX-
AMINE, FLY, etc. The WALK mode assumes that the 
viewpoint moves on a horizontal plane of fixed height 
while the FLY mode does not confine where the plane 
should be. The EXAMINE mode allows a user to focus 
its sight on an object and rotate the viewpoint around it 
as illustrated in Figure 1. Most previous researches on 
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Figure 1. (a) Current viewpoint, target object, and 
trace of the line of sight occluded by an obstacle (b) 
an undesirable obstruction by an obstacle. 
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3D intelligent user interface focus on the first two 
modes because they are most frequently used. Never-
theless, the EXAMINE mode plays a complementary 
role that is also important when the user would like to 
examine an object in details. For example, the work in 
[3] uses the FLY mode for navigation control, but 
whenever the virtual laparoscope finds the cancer cells, 
the doctor needs to switch to the EXAMINE mode to 
examine the cells. 3D virtual mart is another applica-
tion where customers might need to examine products 
they have found when their avatars navigate to an in-
teresting site. 

Several previous researches have addressed the 
viewpoint control problem. Most of them focus on 
WALK and FLY modes. For example, in our previous 
work, we have used the approaches of motion planning 
[8][9] and artificial force fields[10] to assist a user in 
controlling the viewpoint in the WALK mode. The ex-
periments in the work show that one can improve the 
navigation efficiency by as much as seventy-three per-
cents for a given scene. However, we have not seen 
similar work on the EXAMINE mode yet. In the 
WALK mode, because the viewpoint is constrained on 
a horizontal plane, one can usually assume that the ob-
jects in the environment can be simplified by projecting 
them into 2D polygons in the workspace. This step 
greatly simplifies the computational complexity of the 
problem, especially for the planning approaches. How-
ever, for the EXAMINE mode, this assumption is no 
longer valid. Therefore, maintaining great efficiency 
becomes a crucial factor for practicality of such an ap-
proach.  

In this paper, we propose a novel approach to ad-
dress the viewpoint control problem in the EXAMINE 
mode. The approach adopts a motion planner to gener-
ate collision-free motions for the viewpoint automati-
cally when it is going to be obstructed by an obstacle. 
The motion planner takes an incremental approach to 
build the roadmap required for planning a collision-free 
path. It updates the roadmap progressively as the 
viewpoint moves along.  

For the rest of the paper, we will first review pre-
vious research related to our work in the next section. 
In Section 3, we will give a more detail description of 
the viewpoint control problem we are going to address. 
In Section 4, we will propose a progressive version of 
the RRF algorithm to solve our problem. Then we will 
present our implementation of the intelligent interface 
and some experimental results. Finally, we will con-
clude the paper with some future work. 

2. Related Work 

The work related to our research can be found in 
the field of intelligent user interface design and artifi-
cial intelligence. We will review 3D user interface de-

sign first and then narrow down to the issues of delega-
tion-based and direct-manipulation-based intelligent 
user interface design. 
 
2.1. 3D computer-human interface design 

Many researches have been undertaken to invent 
efficient ways to communicate with a computer and to 
evaluate the effectiveness of these interfaces. Among 
these interfaces, being capable of interacting with vir-
tual 3D environments has been considered as an im-
portant trend for future computer-human interfaces. 
The VR-types of interfaces such as Head Mounted 
Display HMD), 3D tracking devices, data gloves, force 
feedback joysticks, haptic devices, etc, are all good 
examples of such interfaces. New metaphors such as 
eyeball in hand, and flying vehicle in hand have also 
been proposed and tested[1]. It is reported that most 
users like the idea of eyeball-in-hand metaphor in the 
context of virtual space exploration. However, the great 
challenge comes when we are asked to manipulate a 3D 
virtual scene only with a regular 2D mouse on a desk-
top computer. Some work has been carried out to de-
sign intuitive interfaces for controlling 3D rotations 
with 2D devices[4][13]. 
 
2.2. Delegation-based intelligent user interface  

Although many intelligent user interfaces have 
been proposed in the literature, most of them are not for 
3D manipulation[12]. Exceptions include using mo-
tion-planning techniques to provide task-level controls. 
For example, Drucker and Zeltzer[2] argue that a 
task-level viewpoint control is crucial for exploring 
virtual scenes such as virtual museums since the users 
should be allowed to concentrate on scene viewing in-
stead of be distracted by low-level navigation controls. 
Kuffner [5] also utilizes fast path-planning techniques 
to assist real-time animations. However, most of these 
approaches use geometric reasoning techniques as a 
tool to delegate control. They use a third-person view 
to specify the desired tasks, which is very different 
from the first-person view commonly used in the direct 
manipulation metaphor.  

2.3. Direct-manipulation-based intelligent user 
interface  

In our previous work, we have proposed to incor-
porate motion-planning techniques into the control 
loops of user interface design so that assisting motions 
can be generated automatically. In [9], we used an in-
cremental motion planner, called RRT, to extend the 
method to consider navigation in large virtual environ-
ments. However, this work only applies to the WALK 
mode for architectural walkthrough applications. Xiao 
and Hubbold[16] utilize force fields to guide navigation 
in 3D environment, and Hong et al.[3] apply a potential 
field for interactive navigation in the application of 
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medical operation. In [10], we also proposed an adap-
tive force field that can be used to help the user reduce 
the chance of colliding with obstacles. Experimental 
results show that the motion planning method and the 
force field method are complementary and can be used 
together to further improve navigation efficiency.  

3. Problem Description 

3.1. Obstructions in the EXAMINE mode 

We assume that in the EXAMINE mode, the focus 
of the view (used as a rotation center) is determined by 
the browser as the user clicks on the display. Then the 
motion of the viewpoint will be constrained on the 
spherical surface of some radius r. The configuration of 
the viewpoint can then be defined by two parameters (φ, 
ψ) in the spherical coordinate system as shown in Fig-
ure 2. The line segment connecting the viewpoint and 
focus object is called line of sight. Although the view-
point could have rotation around the line of sight, the 
principles of Cinemagraphy suggest a camera to remain 
leveled at all time. Therefore, we will assume the mo-
tion of the viewpoint will be controlled with these two 
parameters via mouse input. We will also assume that 
the browser will provide an interface for the user to 
zoom in or zoom out while remaining in the EXAM-
INE mode.  

We also assume that we are given a geometric de-
scription and configurations of the objects in the virtual 
environment. These objects could be one of the focus 
objects as well as obstructing obstacles in the EXAM-
INE mode. We say that a viewpoint is in an undesirable 
or illegal configuration if the viewpoint or its line of 
sight collides with any other objects in the environment. 
When the collision detection function is turned on, a 
browser should detect this kind of collision and prevent 
the viewpoint from penetrating into or obstructed by 
other objects. 

3.2. The goal configuration prediction problem 

As a user control the viewpoint’s motion via 
mouse input, the new configuration of the viewpoint is 
updated according to the horizontal and vertical com-
ponents of the input vector. These two components are 
used as moving velocities for updating the two pa-
rameters (φ, ψ) mentioned in the previous subsection. If 
the light of sight collides with any other objects at the 
new configuration, the viewpoint will get stuck at the 
configuration unless we advise it to move away.  

In our previous work[8][9], we have proposed to 
use a motion planner to generate a collision-free path 
that will guide the user through these difficult areas. In 
order to form a valid path-planning problem, we have 
to define a legal goal configuration first. In our previ-
ous work, we have classified the possible goal con-
figurations into three categories: A, B, and C, as shown 
in Figure 3. In the A category, no modification is 
needed for forming a legal goal configuration while the 
viewpoint can be directly modified along the line of 
sight in category B. In the third category, no direct 
modification is possible and therefore a legal goal con-
figuration can be generated only if we change the line 
of sight along object boundary.  

4. Progressive RRF_CONNECT Planner 

4.1. The planning problem 

In an EXAMINE operation, when the light of 
sight collides with an obstacle in the environment, we 
will call a path planner to generate a path connecting 
the current configuration to the predicted goal configu-
ration defined as in the previous subsection. Since the 
planner is incorporated into the control loop of the user 
interface, the efficiency of the planner is crucial. Many 
efficient path-planning algorithms have been proposed 
in the literature. However, we have not seen efficient 
3D planners that can be used in real-time applications. 
Fortunately, the problem we have at hand has several 
characteristics that we take advantage of. First, as a 
user enters the EXAMINE mode, he/she will remain in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Control parameters in the EXAMINE mode 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Possible situations for goal configurations 
and their modifications 
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the mode for some time before it performs a zooming 
operation or enters other modes. Therefore, the con-
figuration space of our problem can be restricted to a 
spherical surface for some time. Second, when a user 
zooms in or out, the restricted configuration subspace 
could be similar since the obstacles in these subspaces 
should change smoothly. In the following subsections, 
we will propose to use an algorithm called Recon-
figurable Random Forest (RRF) planner to generate the 
viewpoint path. However, before introducing the algo-
rithm, we have to first introduce its most basic data 
structure called Rapidly-Exploring Random Tree 
(RRT). 

4.2. The RRT Structure  

In [9], we have used RRT as the data structure for 
incremental path planning in large environments. The 
RRT structure was proposed by Lavalle[7] to solve 
difficult motion planning problems such as the kinody-
namics problems. The RRT structure is one form of 
roadmap built in freespace (collision-free portion of a 
configuration space). Its main difference from tradi-
tional probabilistic roadmaps is on that RRT grows 
outward from a tree although configurations are 
sampled randomly in the freespace. As depicted in 
Figure 4, the growing process starts by selecting a 
random configuration, qrand, as the growing direction. 
The nearest configuration, qnear, in the current RRT to 
qrand is determined, and a new configuration, qnew, that 
is ε-distance away from qnear, is computed and added 
into the RRT. This process is called EXTEND.  

In [6], an efficient single-query planning algo-
rithm, called RRT-Connect, uses RRT as the main data 
structure to connect the given initial and goal configu-
rations (qi and qg). Two RRT’s, rooted at qi and qg, re-
spectively, are used to connect to each other. At each 
step of the growing process, a random configuration 
qrand is sampled in the freespace. One RRT uses the 
EXTEND procedure to add to itself a new configura-
tion, qnew, while the other RRT uses another procedure 
called CONNECT to grow (EXTEND) toward qnew as 
much as possible. If CONNECT can bring the RRT to 
reach qnew, then the two RRT’s have been successfully 

connected and a feasible path is returned. Otherwise, 
the two RRT’s swap to allow them to grow in the other 
direction. 

4.3. The RRF_CONNECT algorithm 

Many efficient roadmap-based algorithms have 
been proposed in the literature. This type of planner 
usually consists of two phases: learning phase and 
query phase. In the learning phase, the planner usually 
needs to build a representative roadmap for the 
freespace through random sampling. This phase usually 
takes much more time than the query phase. In our case, 
the viewpoint control problem is not formed until the 
user has picked the focus object, and the configuration 
space is not determined until then. However, one can-
not build a complete roadmap at run time while main-
taining an interactive frame rate for the graphical user 
interface. Therefore, we need a planner that can learn 
the freespace and build a roadmap progressively as the 
viewpoint move along. In [11], we have proposed such 
an algorithm called RRF_CONNECT. 

Figure 5 shows the RRF_CONNECT planning 
algorithm. The algorithm assumes a global data struc-
ture called forest to store the list of currently main-
tained trees. A main subprocedure used in 
RRF_CONNECT is called MERGE_RRTs. This pro-
cedure tries to connect each tree in the forest, except 
for the currently considered tree TA, to the designated 
new configuration, qnew, via the CONNECT procedure. 
The tree is merged with TA if the connection is suc-
cessful. In the RRF_CONNECT algorithm, after the 
trees rooted at qi and qg are initialized, we first call the 
MERGE_RRTs procedure to see if we can connect the 
two configurations to the forest without adding addi-

 
 
 
 
 
 
 

Figure 4: Two RRT’s use EXTEND and CONNECT to 
merge into one tree 

 

MERGE_RRTs(TA, qnew)
1 for each T in forest 
2  if (T ≠ TA) 
3   if (CONNECT(T , qnew) = Reached) 
4    REVERSE_PARENT(T , qnew); 
5    forest.remove(T); 
6 return; 
RRF_CONNECT(qi , qg , K) 
1 Ti.init(qi); Tg.init(qg); 
2 forest.add(Ti); forest.add(Tg); 
3 MERGE_RRTs(Tg , qg); 
4 MERGE_RRTs(Ti , qi); 
5 if (Ti.tree_id = Tg.tree_id) 
6  return PATH(qi, qg); 
7 for k =1 to K do 
8  qrand ← RANDOM_CONF( ); 
9  if (EXTEND (Ti , qrand) ≠ Trapped) 
10   MERGE_RRTs (Ti , Ti.qnew); 
11   if (Ti.tree_id = Tg.tree_id) 
12    return PATH(qi, qg); 
13  SWAP(Ti , Tg); 
14 return Failure; 

Figure 5: The RRF_ CONNECT algorithm 
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tional configurations. If this is not successful, a ran-
domly sampled configuration, qrand, will be selected to 
extend Ti, and MERGE_RRT will then be called again. 
This process will repeat until the Ti and Tg are merged 
(success) or a predefined maximal number of sample 
configurations are reached (failure). 

4.4. Multi-layer roadmap for zooming op-
eration 

Many browsers support manipulation modes other 
than the EXAMINE mode. With the RRF-CONNECT 
algorithm proposed in the previous subsection, we are 
able to build the roadmap in the freespace as the view-
point moves on a spherical surface. However, as one 
zooms in or out to get a better view of the focus object, 
the configuration space as well as the roadmap built for 
it needs to be reconstructed. Since our 
RRF-CONNECT planner is a progressive planner that 
can be used as a single-query planner, one can always 
start building the roadmap from scratch. However, we 
think the RRF roadmaps for nearby layers are more 
likely to be similar since most of the time the obstacles 
possess continuity in shape.  

Thus, we propose to build a new layer of RRF 
roadmap by duplicating the roadmap from a neighbor-
ing layer if exists. The idea of this procedure is shown 
as pseudocode in Figure 6. Whenever a new layer is 
going to be constructed, we check its neighboring lay-
ers to see if we can copy the existing layer over. If not, 
we simply build the RRF from scratch. If there exist 
nearby RRF’s, we perform a validation process on the 
duplicated RRF. In the validation routine, we have to 
remove invalid nodes in the RRF, which could result in 
splitting a tree in RRF into several subtrees.  

5. Implementation and Experiments 

5.1. Implementation 

We have implemented our ideas on a java-based 
VRML browser, which is an open source program that 
could be downloaded from [14]. The libraries we use 
include Java SDK and Java3D SDK. Most of our modi-

fication is on the input handling routines for the EX-
AMINE mode. We intercept the mouse input and pre-
dict where the user would like to move the viewpoint to. 
Whenever the goal configuration of the viewpoint is 
obstructed by obstacles, we will call the path planner to 
generate a detour collision-free path. We have fully 
implemented the path planner described in Section 4. 
The RRF layers for different radii are discretized ac-
cording to some resolution specified by the user.  

5.2. Line of sight collision detection 

Collision detection is usually the most 
time-consuming routine for motion planners. It is also 
one of the most critical routines in our system because 
we demand real-time performance for our interactive 
application. In our case, we have chosen to perform 
some preprocessing to reduce the collision detection 
time at run time.  

In the EXAMINE mode a configuration is con-
sidered illegal if the line of sight connecting the view-
point to the focus object collide with other objects in 
the environment. Therefore, the most basic colli-
sion-detection routine is the check the interference be-
tween a line segment (line of sight) and object models. 
In order to reduce the processing time, we use a 
scan-conversion routine to discretize the object models 
into a 3D bitmap grid representing the workspace. A ‘1’ 
cell represents an occupied cell while a ‘0’ cell repre-
sents freespace. Consequently, we can reduce the colli-
sion-detection problem into check a line segment and a 
bitmap. This type of computation is much cheaper be-
cause collision detection becomes a sequence of table 
lookups for the points lying on the line segment.  

In order to speed up the computation further, we 
compute a distance map, denoted by DM, to be used in 
the collision detection routine. DM is a 3D grid storing 
the shortest L1 distance from obstacles for each free 
cell in the workspace. Whenever we would like to per-
form a collision check between a bitmap and a line 
segment, we discretize the line segment into a sequence 
of points. Although we can check the whole sequence 

DUPLICATE_RRF(r) 
1 F= GET_RRF(r) 
2 if (F is null) 
3  Fnear = NEAREST_RRF(r) 
4  COPY_ROADMAP(Fnear, F); 
5 if (F is null)  
6  F.init() 
7 else  
8  VALIDATE_ROADMAP(F); 
9 return F 
 

Figure 6. The DUPLICATE_RRF algorithm 
 

Figure 7. An example scene for testing 
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of points along the line segment, we hope that we only 
check a few points selectively to save time. The idea is 
that if the distance value for a cell in DM is d, then 
there is no need to check collisions for the next d 
points. 

5.3. Experiments 

This experiment is taken on the personal computer 
with PentiumⅢ800 CPU, NVIDIA GeForce2 MX dis-
play card, and 256Mb RAM. The scene for our experi-
ments is similar to the one in Figure 7 about furniture 
objects. Figure 8 shows portion of a layer of RRF in an 
unfold spherical configuration space. 

We run the experiments through two scenes. 
Scene 1 is the easier one because we make the obsta-
cles are all located between the viewpoint and focus 
object. On the other hand, obstacles in scene 2 are lo-
cated on the spherical surface in the EXAMINE mode. 
Since the obstructive objects on the spherical surface 
are harder to be seen in the view frustum, scene 2 is 
considered to be more difficult to work with.  

We are not aware of any benchmark scenarios for 
comparing the efficiency of such intelligent user inter-
face, and each user’s control behavior could be very 
different. Nevertheless, the effectiveness of the assist-
ing user interface has been observed by the subjects in 
our experiments. Since we have demonstrated the effi-
ciency improvement of this kind of intelligent user in-
terface, we will focus our experiments on the analysis 
of how the planner is used.  

Table 1 shows the statistic data from experiment-
ing the EXAMINE mode with the RRF-CONNECT 
planner. All experiments are run for about three min-
utes and 1500 steps. N1 shows the number of frames 
that can be updated per second, which mainly indicates 
the responsiveness of the interface as well as the diffi-
culty of the scenes. In both cases, the frame rates are all 
acceptable for interactive use. N2 indicate that the av-

erage time spent for each planning can be incorporated 
into the control loop without causing significant slug-
gishness. N3, the path length, shows that most of the 
planning problems are not very difficult, and a short 
path suffice to help the user. N4 shows that the number 
of calls to the planner is only a small portion of the 
total number of steps. Most of the calls will succeed 
(N5) and some of the planned paths are canceled (N6). 
(We allow a user to cancel the planned path if he/she 
deviates input from the original one by some amount.)  

We have also done some experiments to measure 
the efficiency of the proposed multi-layer RRF ap-
proach in Section 4 and the collision detection method 
proposed in the previous subsection. We compare the 
average planning times for building RRF from scratch 
(91ms) and by duplicating neighboring layers (78ms). 
We found that the efficiency greatly depends on how 
long the user remains on a layer. In other words, the 
longer one can stay one a layer, the shorter the average 
planning time since much time has been invested on 
copying. As zooming is usually an independent opera-
tion, the system can use the time of switching modes to 
copy the roadmap. Therefore, the planning time at run 
time is actually much shorter. We also compare the time 
spent in collision detections by counting the table 
lookups on the 3D bitmap. The one without the helps of 
distance map will lookup about 4.4 times of the points 
examined with the speedup method. Since the collision 
detection routine is the most expensive routine in plan-
ning, this speedup contributes much to the interactivity 
of our approach. 

6. Conclusion and Future work 

We have successfully extended the intelligent 3D 
user interface control to the EXAMINE mode. The 
great challenge is from the efficiency of the planner in 
3D environments. We have taken a progressive ap-

 

Figure 8. A portion of the incrementally built RRF in an 
unfold spherical configuration space 

Table 1. Statistic data of the RRF-CONNECT 
planner for different scenes. 

 Scene 1 Scene 2 
N1 17.17Hz 6.96Hz 
N2 71.27 ms 54 ms 
N3 5.74 steps 6 steps 
N4 86 times 24 times 
N5 63% 66% 
N6 20.4% 25% 

N1: update rate (Hz) for the interface control loop 
N2: average planning time in ms. 
N3: average length for a generated path. 
N4: number of planning evoked. 
N5: percentage (%) of planning evoked succeeds. 
N6: percentage (%) of planning being canceled. 
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proach to distribute the planning cost along all the pos-
sible calls to the planner. This progressive approach is 
based the RRF-CONNECT algorithm and the 
multi-layer roadmap duplication approach. However, 
the longer the user uses the interface, the larger the 
RRF roadmap would be. Therefore, managing the 
roadmaps while maintaining a good coverage rate as 
proposed in [11] would be the most apparent future 
work. Moreover, predicting user’s intention in the 
EXAMINE mode is another issue that can be further 
studies since the prediction method might require dif-
ferent treatments for different navigation modes.  
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