
 1

An Assisted User Interface for 3D EXAMINE Mode

Yu-Te Lin (林祐德) and Tsai-Yen Li (李蔡彥)
Computer Science Department, National Chengchi University

64, Sec.2, Chih-Nan Road, Taipei, Taiwan 11605, ROC
{s8712, li}@cs.nccu.edu.tw

Abstract

Despite the rapid development of 3D technologies,
controlling a viewpoint in a 3D environment remains a
non-trivial or even difficult task for a novice user. Pre-
vious researches have shown that motion planning
techniques can be use to assist user navigation in the
so-called WALK mode for VRML browsers. In this pa-
per we propose to use a motion-planning approach for
assisting viewpoint control in the EXAMINE mode for
3D browsers. This approach uses a Reconfigurable
Random Forest (RRF) structure to learn the 3D envi-
ronment progressively as the viewpoint moves along.
Unlike previous work that simplifies the workspace by
projecting the environmental obstacles into 2D poly-
gons, we have to deal with 3D motions and 3D obsta-
cles. Efficiency of the planner becomes crucial in de-
signing such an intelligent user interface with an ac-
ceptable frame rate. We have implemented and incor-
porated the planner into a Java3D-based VRML
browser and tested it with several example scenarios
with satisfactory results.

1. Introduction

3D applications are becoming prevalent on per-
sonal computers with the rapid development of graph-
ics hardware. In addition to the traditional applications
such as Computer-Aided Design (CAD) and Com-
puter-Aided Manufacturing (CAM), more appealing
applications in entertainment such as games and virtual
shopping are emerging. Although the frame rate for 3D
displays is increasing, it remains a great challenge for a
novice user to control a viewpoint in a 3D scene with a
2D device such as a mouse[1].

Controlling 3D viewpoint is difficult because the
constraints that a 3D browser might have imposed on
the interface to increase reality. An interface without
any constraints might appear easy to control but the
viewpoint might get into the inside of an object. This
situation might confuse the user because the display
could turn into a blank screen suddenly because of no
back light inside an object. To overcome this problem,
a typical browser will support the function of collision
detection that can be turned on to avoid penetrating an
object. However, due to the limited range of view frus-
tum, it is very often that a user gets stuck at a corner of
the scene without seeing the object obstructing the

viewpoint. It usually takes several maneuvers before
the user can escape this kind of situation.

3D viewpoint controlling problems appear in
many 3D applications. A typical 3D application, such
as VRML[15] browser, provides several modes of
viewpoint control. These modes include WALK, EX-
AMINE, FLY, etc. The WALK mode assumes that the
viewpoint moves on a horizontal plane of fixed height
while the FLY mode does not confine where the plane
should be. The EXAMINE mode allows a user to focus
its sight on an object and rotate the viewpoint around it
as illustrated in Figure 1. Most previous researches on

(a)

(b)

Figure 1. (a) Current viewpoint, target object, and
trace of the line of sight occluded by an obstacle (b)
an undesirable obstruction by an obstacle.

viewpoint’s
path

current
viewpoint

Appear in Proceedings of 2002 15th IPPR Conference on Computer Vision,
Graphics, and Image Processing, Taiwan, 2002

 2

3D intelligent user interface focus on the first two
modes because they are most frequently used. Never-
theless, the EXAMINE mode plays a complementary
role that is also important when the user would like to
examine an object in details. For example, the work in
[3] uses the FLY mode for navigation control, but
whenever the virtual laparoscope finds the cancer cells,
the doctor needs to switch to the EXAMINE mode to
examine the cells. 3D virtual mart is another applica-
tion where customers might need to examine products
they have found when their avatars navigate to an in-
teresting site.

Several previous researches have addressed the
viewpoint control problem. Most of them focus on
WALK and FLY modes. For example, in our previous
work, we have used the approaches of motion planning
[8][9] and artificial force fields[10] to assist a user in
controlling the viewpoint in the WALK mode. The ex-
periments in the work show that one can improve the
navigation efficiency by as much as seventy-three per-
cents for a given scene. However, we have not seen
similar work on the EXAMINE mode yet. In the
WALK mode, because the viewpoint is constrained on
a horizontal plane, one can usually assume that the ob-
jects in the environment can be simplified by projecting
them into 2D polygons in the workspace. This step
greatly simplifies the computational complexity of the
problem, especially for the planning approaches. How-
ever, for the EXAMINE mode, this assumption is no
longer valid. Therefore, maintaining great efficiency
becomes a crucial factor for practicality of such an ap-
proach.

In this paper, we propose a novel approach to ad-
dress the viewpoint control problem in the EXAMINE
mode. The approach adopts a motion planner to gener-
ate collision-free motions for the viewpoint automati-
cally when it is going to be obstructed by an obstacle.
The motion planner takes an incremental approach to
build the roadmap required for planning a collision-free
path. It updates the roadmap progressively as the
viewpoint moves along.

For the rest of the paper, we will first review pre-
vious research related to our work in the next section.
In Section 3, we will give a more detail description of
the viewpoint control problem we are going to address.
In Section 4, we will propose a progressive version of
the RRF algorithm to solve our problem. Then we will
present our implementation of the intelligent interface
and some experimental results. Finally, we will con-
clude the paper with some future work.

2. Related Work

The work related to our research can be found in
the field of intelligent user interface design and artifi-
cial intelligence. We will review 3D user interface de-

sign first and then narrow down to the issues of delega-
tion-based and direct-manipulation-based intelligent
user interface design.

2.1. 3D computer-human interface design

Many researches have been undertaken to invent
efficient ways to communicate with a computer and to
evaluate the effectiveness of these interfaces. Among
these interfaces, being capable of interacting with vir-
tual 3D environments has been considered as an im-
portant trend for future computer-human interfaces.
The VR-types of interfaces such as Head Mounted
Display HMD), 3D tracking devices, data gloves, force
feedback joysticks, haptic devices, etc, are all good
examples of such interfaces. New metaphors such as
eyeball in hand, and flying vehicle in hand have also
been proposed and tested[1]. It is reported that most
users like the idea of eyeball-in-hand metaphor in the
context of virtual space exploration. However, the great
challenge comes when we are asked to manipulate a 3D
virtual scene only with a regular 2D mouse on a desk-
top computer. Some work has been carried out to de-
sign intuitive interfaces for controlling 3D rotations
with 2D devices[4][13].

2.2. Delegation-based intelligent user interface

Although many intelligent user interfaces have
been proposed in the literature, most of them are not for
3D manipulation[12]. Exceptions include using mo-
tion-planning techniques to provide task-level controls.
For example, Drucker and Zeltzer[2] argue that a
task-level viewpoint control is crucial for exploring
virtual scenes such as virtual museums since the users
should be allowed to concentrate on scene viewing in-
stead of be distracted by low-level navigation controls.
Kuffner [5] also utilizes fast path-planning techniques
to assist real-time animations. However, most of these
approaches use geometric reasoning techniques as a
tool to delegate control. They use a third-person view
to specify the desired tasks, which is very different
from the first-person view commonly used in the direct
manipulation metaphor.

2.3. Direct-manipulation-based intelligent user
interface

In our previous work, we have proposed to incor-
porate motion-planning techniques into the control
loops of user interface design so that assisting motions
can be generated automatically. In [9], we used an in-
cremental motion planner, called RRT, to extend the
method to consider navigation in large virtual environ-
ments. However, this work only applies to the WALK
mode for architectural walkthrough applications. Xiao
and Hubbold[16] utilize force fields to guide navigation
in 3D environment, and Hong et al.[3] apply a potential
field for interactive navigation in the application of

 3

medical operation. In [10], we also proposed an adap-
tive force field that can be used to help the user reduce
the chance of colliding with obstacles. Experimental
results show that the motion planning method and the
force field method are complementary and can be used
together to further improve navigation efficiency.

3. Problem Description

3.1. Obstructions in the EXAMINE mode

We assume that in the EXAMINE mode, the focus
of the view (used as a rotation center) is determined by
the browser as the user clicks on the display. Then the
motion of the viewpoint will be constrained on the
spherical surface of some radius r. The configuration of
the viewpoint can then be defined by two parameters (φ,
ψ) in the spherical coordinate system as shown in Fig-
ure 2. The line segment connecting the viewpoint and
focus object is called line of sight. Although the view-
point could have rotation around the line of sight, the
principles of Cinemagraphy suggest a camera to remain
leveled at all time. Therefore, we will assume the mo-
tion of the viewpoint will be controlled with these two
parameters via mouse input. We will also assume that
the browser will provide an interface for the user to
zoom in or zoom out while remaining in the EXAM-
INE mode.

We also assume that we are given a geometric de-
scription and configurations of the objects in the virtual
environment. These objects could be one of the focus
objects as well as obstructing obstacles in the EXAM-
INE mode. We say that a viewpoint is in an undesirable
or illegal configuration if the viewpoint or its line of
sight collides with any other objects in the environment.
When the collision detection function is turned on, a
browser should detect this kind of collision and prevent
the viewpoint from penetrating into or obstructed by
other objects.

3.2. The goal configuration prediction problem

As a user control the viewpoint’s motion via
mouse input, the new configuration of the viewpoint is
updated according to the horizontal and vertical com-
ponents of the input vector. These two components are
used as moving velocities for updating the two pa-
rameters (φ, ψ) mentioned in the previous subsection. If
the light of sight collides with any other objects at the
new configuration, the viewpoint will get stuck at the
configuration unless we advise it to move away.

In our previous work[8][9], we have proposed to
use a motion planner to generate a collision-free path
that will guide the user through these difficult areas. In
order to form a valid path-planning problem, we have
to define a legal goal configuration first. In our previ-
ous work, we have classified the possible goal con-
figurations into three categories: A, B, and C, as shown
in Figure 3. In the A category, no modification is
needed for forming a legal goal configuration while the
viewpoint can be directly modified along the line of
sight in category B. In the third category, no direct
modification is possible and therefore a legal goal con-
figuration can be generated only if we change the line
of sight along object boundary.

4. Progressive RRF_CONNECT Planner

4.1. The planning problem

In an EXAMINE operation, when the light of
sight collides with an obstacle in the environment, we
will call a path planner to generate a path connecting
the current configuration to the predicted goal configu-
ration defined as in the previous subsection. Since the
planner is incorporated into the control loop of the user
interface, the efficiency of the planner is crucial. Many
efficient path-planning algorithms have been proposed
in the literature. However, we have not seen efficient
3D planners that can be used in real-time applications.
Fortunately, the problem we have at hand has several
characteristics that we take advantage of. First, as a
user enters the EXAMINE mode, he/she will remain in

Figure 2. Control parameters in the EXAMINE mode

Figure 3. Possible situations for goal configurations
and their modifications

A1

current
viewpoint

B1

C
obstacles

B2’

B1’
C’

A2

x

y

z
viewpoint

focus
object

φ
ψ

r

 4

the mode for some time before it performs a zooming
operation or enters other modes. Therefore, the con-
figuration space of our problem can be restricted to a
spherical surface for some time. Second, when a user
zooms in or out, the restricted configuration subspace
could be similar since the obstacles in these subspaces
should change smoothly. In the following subsections,
we will propose to use an algorithm called Recon-
figurable Random Forest (RRF) planner to generate the
viewpoint path. However, before introducing the algo-
rithm, we have to first introduce its most basic data
structure called Rapidly-Exploring Random Tree
(RRT).

4.2. The RRT Structure

In [9], we have used RRT as the data structure for
incremental path planning in large environments. The
RRT structure was proposed by Lavalle[7] to solve
difficult motion planning problems such as the kinody-
namics problems. The RRT structure is one form of
roadmap built in freespace (collision-free portion of a
configuration space). Its main difference from tradi-
tional probabilistic roadmaps is on that RRT grows
outward from a tree although configurations are
sampled randomly in the freespace. As depicted in
Figure 4, the growing process starts by selecting a
random configuration, qrand, as the growing direction.
The nearest configuration, qnear, in the current RRT to
qrand is determined, and a new configuration, qnew, that
is ε-distance away from qnear, is computed and added
into the RRT. This process is called EXTEND.

In [6], an efficient single-query planning algo-
rithm, called RRT-Connect, uses RRT as the main data
structure to connect the given initial and goal configu-
rations (qi and qg). Two RRT’s, rooted at qi and qg, re-
spectively, are used to connect to each other. At each
step of the growing process, a random configuration
qrand is sampled in the freespace. One RRT uses the
EXTEND procedure to add to itself a new configura-
tion, qnew, while the other RRT uses another procedure
called CONNECT to grow (EXTEND) toward qnew as
much as possible. If CONNECT can bring the RRT to
reach qnew, then the two RRT’s have been successfully

connected and a feasible path is returned. Otherwise,
the two RRT’s swap to allow them to grow in the other
direction.

4.3. The RRF_CONNECT algorithm

Many efficient roadmap-based algorithms have
been proposed in the literature. This type of planner
usually consists of two phases: learning phase and
query phase. In the learning phase, the planner usually
needs to build a representative roadmap for the
freespace through random sampling. This phase usually
takes much more time than the query phase. In our case,
the viewpoint control problem is not formed until the
user has picked the focus object, and the configuration
space is not determined until then. However, one can-
not build a complete roadmap at run time while main-
taining an interactive frame rate for the graphical user
interface. Therefore, we need a planner that can learn
the freespace and build a roadmap progressively as the
viewpoint move along. In [11], we have proposed such
an algorithm called RRF_CONNECT.

Figure 5 shows the RRF_CONNECT planning
algorithm. The algorithm assumes a global data struc-
ture called forest to store the list of currently main-
tained trees. A main subprocedure used in
RRF_CONNECT is called MERGE_RRTs. This pro-
cedure tries to connect each tree in the forest, except
for the currently considered tree TA, to the designated
new configuration, qnew, via the CONNECT procedure.
The tree is merged with TA if the connection is suc-
cessful. In the RRF_CONNECT algorithm, after the
trees rooted at qi and qg are initialized, we first call the
MERGE_RRTs procedure to see if we can connect the
two configurations to the forest without adding addi-

Figure 4: Two RRT’s use EXTEND and CONNECT to
merge into one tree

MERGE_RRTs(TA, qnew)
1 for each T in forest
2 if (T ≠ TA)
3 if (CONNECT(T , qnew) = Reached)
4 REVERSE_PARENT(T , qnew);
5 forest.remove(T);
6 return;
RRF_CONNECT(qi , qg , K)
1 Ti.init(qi); Tg.init(qg);
2 forest.add(Ti); forest.add(Tg);
3 MERGE_RRTs(Tg , qg);
4 MERGE_RRTs(Ti , qi);
5 if (Ti.tree_id = Tg.tree_id)
6 return PATH(qi, qg);
7 for k =1 to K do
8 qrand ← RANDOM_CONF();
9 if (EXTEND (Ti , qrand) ≠ Trapped)
10 MERGE_RRTs (Ti , Ti.qnew);
11 if (Ti.tree_id = Tg.tree_id)
12 return PATH(qi, qg);
13 SWAP(Ti , Tg);
14 return Failure;

Figure 5: The RRF_ CONNECT algorithm

qrand

qnear
qi

Tb

EXTENDCONNECT
ε

qq

Ta

 5

tional configurations. If this is not successful, a ran-
domly sampled configuration, qrand, will be selected to
extend Ti, and MERGE_RRT will then be called again.
This process will repeat until the Ti and Tg are merged
(success) or a predefined maximal number of sample
configurations are reached (failure).

4.4. Multi-layer roadmap for zooming op-
eration

Many browsers support manipulation modes other
than the EXAMINE mode. With the RRF-CONNECT
algorithm proposed in the previous subsection, we are
able to build the roadmap in the freespace as the view-
point moves on a spherical surface. However, as one
zooms in or out to get a better view of the focus object,
the configuration space as well as the roadmap built for
it needs to be reconstructed. Since our
RRF-CONNECT planner is a progressive planner that
can be used as a single-query planner, one can always
start building the roadmap from scratch. However, we
think the RRF roadmaps for nearby layers are more
likely to be similar since most of the time the obstacles
possess continuity in shape.

Thus, we propose to build a new layer of RRF
roadmap by duplicating the roadmap from a neighbor-
ing layer if exists. The idea of this procedure is shown
as pseudocode in Figure 6. Whenever a new layer is
going to be constructed, we check its neighboring lay-
ers to see if we can copy the existing layer over. If not,
we simply build the RRF from scratch. If there exist
nearby RRF’s, we perform a validation process on the
duplicated RRF. In the validation routine, we have to
remove invalid nodes in the RRF, which could result in
splitting a tree in RRF into several subtrees.

5. Implementation and Experiments

5.1. Implementation

We have implemented our ideas on a java-based
VRML browser, which is an open source program that
could be downloaded from [14]. The libraries we use
include Java SDK and Java3D SDK. Most of our modi-

fication is on the input handling routines for the EX-
AMINE mode. We intercept the mouse input and pre-
dict where the user would like to move the viewpoint to.
Whenever the goal configuration of the viewpoint is
obstructed by obstacles, we will call the path planner to
generate a detour collision-free path. We have fully
implemented the path planner described in Section 4.
The RRF layers for different radii are discretized ac-
cording to some resolution specified by the user.

5.2. Line of sight collision detection

Collision detection is usually the most
time-consuming routine for motion planners. It is also
one of the most critical routines in our system because
we demand real-time performance for our interactive
application. In our case, we have chosen to perform
some preprocessing to reduce the collision detection
time at run time.

In the EXAMINE mode a configuration is con-
sidered illegal if the line of sight connecting the view-
point to the focus object collide with other objects in
the environment. Therefore, the most basic colli-
sion-detection routine is the check the interference be-
tween a line segment (line of sight) and object models.
In order to reduce the processing time, we use a
scan-conversion routine to discretize the object models
into a 3D bitmap grid representing the workspace. A ‘1’
cell represents an occupied cell while a ‘0’ cell repre-
sents freespace. Consequently, we can reduce the colli-
sion-detection problem into check a line segment and a
bitmap. This type of computation is much cheaper be-
cause collision detection becomes a sequence of table
lookups for the points lying on the line segment.

In order to speed up the computation further, we
compute a distance map, denoted by DM, to be used in
the collision detection routine. DM is a 3D grid storing
the shortest L1 distance from obstacles for each free
cell in the workspace. Whenever we would like to per-
form a collision check between a bitmap and a line
segment, we discretize the line segment into a sequence
of points. Although we can check the whole sequence

DUPLICATE_RRF(r)
1 F= GET_RRF(r)
2 if (F is null)
3 Fnear = NEAREST_RRF(r)
4 COPY_ROADMAP(Fnear, F);
5 if (F is null)
6 F.init()
7 else
8 VALIDATE_ROADMAP(F);
9 return F

Figure 6. The DUPLICATE_RRF algorithm

Figure 7. An example scene for testing

 6

of points along the line segment, we hope that we only
check a few points selectively to save time. The idea is
that if the distance value for a cell in DM is d, then
there is no need to check collisions for the next d
points.

5.3. Experiments

This experiment is taken on the personal computer
with PentiumⅢ800 CPU, NVIDIA GeForce2 MX dis-
play card, and 256Mb RAM. The scene for our experi-
ments is similar to the one in Figure 7 about furniture
objects. Figure 8 shows portion of a layer of RRF in an
unfold spherical configuration space.

We run the experiments through two scenes.
Scene 1 is the easier one because we make the obsta-
cles are all located between the viewpoint and focus
object. On the other hand, obstacles in scene 2 are lo-
cated on the spherical surface in the EXAMINE mode.
Since the obstructive objects on the spherical surface
are harder to be seen in the view frustum, scene 2 is
considered to be more difficult to work with.

We are not aware of any benchmark scenarios for
comparing the efficiency of such intelligent user inter-
face, and each user’s control behavior could be very
different. Nevertheless, the effectiveness of the assist-
ing user interface has been observed by the subjects in
our experiments. Since we have demonstrated the effi-
ciency improvement of this kind of intelligent user in-
terface, we will focus our experiments on the analysis
of how the planner is used.

Table 1 shows the statistic data from experiment-
ing the EXAMINE mode with the RRF-CONNECT
planner. All experiments are run for about three min-
utes and 1500 steps. N1 shows the number of frames
that can be updated per second, which mainly indicates
the responsiveness of the interface as well as the diffi-
culty of the scenes. In both cases, the frame rates are all
acceptable for interactive use. N2 indicate that the av-

erage time spent for each planning can be incorporated
into the control loop without causing significant slug-
gishness. N3, the path length, shows that most of the
planning problems are not very difficult, and a short
path suffice to help the user. N4 shows that the number
of calls to the planner is only a small portion of the
total number of steps. Most of the calls will succeed
(N5) and some of the planned paths are canceled (N6).
(We allow a user to cancel the planned path if he/she
deviates input from the original one by some amount.)

We have also done some experiments to measure
the efficiency of the proposed multi-layer RRF ap-
proach in Section 4 and the collision detection method
proposed in the previous subsection. We compare the
average planning times for building RRF from scratch
(91ms) and by duplicating neighboring layers (78ms).
We found that the efficiency greatly depends on how
long the user remains on a layer. In other words, the
longer one can stay one a layer, the shorter the average
planning time since much time has been invested on
copying. As zooming is usually an independent opera-
tion, the system can use the time of switching modes to
copy the roadmap. Therefore, the planning time at run
time is actually much shorter. We also compare the time
spent in collision detections by counting the table
lookups on the 3D bitmap. The one without the helps of
distance map will lookup about 4.4 times of the points
examined with the speedup method. Since the collision
detection routine is the most expensive routine in plan-
ning, this speedup contributes much to the interactivity
of our approach.

6. Conclusion and Future work

We have successfully extended the intelligent 3D
user interface control to the EXAMINE mode. The
great challenge is from the efficiency of the planner in
3D environments. We have taken a progressive ap-

Figure 8. A portion of the incrementally built RRF in an
unfold spherical configuration space

Table 1. Statistic data of the RRF-CONNECT
planner for different scenes.

 Scene 1 Scene 2
N1 17.17Hz 6.96Hz
N2 71.27 ms 54 ms
N3 5.74 steps 6 steps
N4 86 times 24 times
N5 63% 66%
N6 20.4% 25%

N1: update rate (Hz) for the interface control loop
N2: average planning time in ms.
N3: average length for a generated path.
N4: number of planning evoked.
N5: percentage (%) of planning evoked succeeds.
N6: percentage (%) of planning being canceled.

 7

proach to distribute the planning cost along all the pos-
sible calls to the planner. This progressive approach is
based the RRF-CONNECT algorithm and the
multi-layer roadmap duplication approach. However,
the longer the user uses the interface, the larger the
RRF roadmap would be. Therefore, managing the
roadmaps while maintaining a good coverage rate as
proposed in [11] would be the most apparent future
work. Moreover, predicting user’s intention in the
EXAMINE mode is another issue that can be further
studies since the prediction method might require dif-
ferent treatments for different navigation modes.

References

[1] Chen, Mountford, and Sellen, “A Study in Inter-

active 3D Rotation Using 2D Control Devices,
“ in Proceedings of Computer Graphics (SIG-
GRAPH88), 22(4):121-128, 1988.

[2] S. M. Drucker and D. Zeltzer, “Intelligent Cam-
era Control in a Virtual Environment,” Graphics
Interface’94, pp. 190-199, 1994.

[3] L. Hong, S. Muraki, A. Kaufman, D. Bartz and T.
He, “Virtual voyage: interactive navigation in the
human colon,” in Proceedings of Computer
Graphics (SIGGRAPH97), pp.27-34, 1997.

[4] M. R. Jung, D. Paik, D. Kim, “A Camera Control
Interface Based on the Visualization of Subspaces
of the 6D Motion Space of the Camera,” in Pro-
ceedings of IEEE Pacific Graphics’98, 1998.

[5] J.J. Kuffner. "Goal-Directed Navigation for Ani-
mated Characters Using Real-Time Path Planning
and Control," Proc. of CAPTECH '98: Workshop
on Modelling and Motion Capture Techniques for
Virtual Environments, Geneva, Switzerland, Nov.
26-28, 1998.

[6] J. J. Kuffner and S. M. LaValle, “RRT-Connect:
An efficient appraoach to signal-query path plan-
ning,” In Proceeding IEEE International Con-
ference on Robotics and Automation, San Fran-

cisco, CA, April 2000.
[7] S. M. LaValle. Rapidly-exploring random trees: A

new tool for path planning. Computer Science
Dept., Iowa State University.

[8] T. Y. Li, and H. K. Ting., “An Intelligent User
Interface with Motion Planning for 3D Naviga-
tion,” Proceeding of the IEEE Virtual Reality
2000 Conference, March 2000.

[9] T. Y. Li, and C. C. Chang, “Path Planning with
Incremental Roadmap Update for Large Envi-
ronments,” Proceeding of 2001 the IEEE Inter-
national Conference on Robotics and Automation,
May 2001.

[10] T. Y. Li, and H. C. Chou, “Improving Navigation
Efficiency with Artificial Force Field,” Proceed-
ing of 2001 IPPR Conference on Computer Vi-
sion, Graphics, and Image Processing, Taiwan,
2001.

[11] T.Y. Li and Y.C. Shie, “An Incremental Learning
Approach to Motion Planning with Roadmap
Management,” Proceedings of International
Conference on Robotics and Automation, Wash-
ington, 2002.

[12] M. Maybury and W. Wahster (eds), Readings in
Intelligent User Interfaces, Morgan Kaufmann:
Menlo Park, CA.

[13] Neilson and Olsen, “Direct Manipulation Tech-
niques for 3D Objects Using 2D Locator De-
vices,” in Proceeding Of the 1986 Workshop on
Interactive 3D Graphics, pp175-182, 1986.

[14] The Java3D and VRML task groups,
http://www.web3d.org/TaskGroups/source/xj3d.h
tml

[15] VRML97 International Standard, URL:
http://www.web3d.org/technicalinfo/specification
s/specifications.htm

[16] D. Xiao, R. Hubbold, “Navigation Guided by
Artificial Force Fields, “ in Proceedings of the
ACM CHI’98 Conference, pp179-186, 1998.

