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Abstract

Evolution of 3D graphics acceleration hardware
has enabled novel user interface designs for many
new applications running on a regular desktop per-
sonal computer. However, navigating in an architec-
tural environment remains difficult for a novice user
because of the limited view and low-level control that
the current interface provides. In this paper, we pro-
pose to use an artificial force field to help a user
walkthrough an architectural environment efficiently
and naturally. For a given environment, a repulsive
force field is computed off-line in accordance with the
obstacles in the environment. An artificial force gen-
erated from this field is applied to the user viewpoint
in order to reduce the chance of getting stuck by the
obstacles. This force is dynamically modified at run
time according to user behaviors such that the gener-
ated motions are compliant with user intention. Ex-
periments show that artificial force field is an effective
method for improving navigation efficiency. In addi-
tion, we have also integrated the force field method
with a path planner proposed in our previous work.
We have found that the force field method is comple-
mentary to the path-planning method, and the merits
of both methods can be combined to further improve
navigation efficiency.

Keywords: Intelligent User Interface, Architectural
Walkthrough, Virtual Reality, Artificial Force Field,
Navigation Control.

1. Introduction

Architectural walkthrough is a form of user inter-
face design that adopts Virtual Reality (VR) technolo-
gies (especially 3D graphics) to help a user navigate
through realistic architectural virtual environment.
This form of interface has become popular due to the
rapid development of Virtual Reality Modeling Lan-
guage (VRML) (or Web3D)[17] and 3D graphics ac-
celeration hardware. This development also has en-
abled many new applications that were traditionally
only possible on expensive workstations. For example,
in addition to exploring a real architecture building,
many popular games such as DOOM or QAKE also
adopt similar first-person view of control. In other
words, experiencing 3D graphics on a desktop com-

puter is now prevalent. However, since a virtual envi-
ronment typically uses 3D display, it remains a chal-
lenge for a novice user equipped with a 2D mouse to
perform efficient navigation.

A typical 3D browser supports several user control
modes, such as WALK, FLY, EXAMINE, etc. The
WALK mode corresponds to the architecture walk-
through interface, which is the focus of this paper.
Most browsers also allow a user to have the option of
turning on the collision detection function. With this
function turned on, the system will prevent a user’s
viewpoint from penetrating obstacles in the environ-
ment and therefore increase the degrees of realism.
However, a novice user in such an interface often runs
into a situation of getting stuck at a corner of an un-
familiar scene. A user usually needs to perform sev-
eral maneuvers before making any progress. It is a
frustrating experience for a novice user especially
when the display frame rate is not high enough for
precise control.

In addition to the problem of low frame rates, we
think the level of control that a user needs to provide
is too low compared to the experience in our daily life.
For example, we usually only raise our intention
through high-level goal specification when we walk in
the real life and the body locomotion will be auto-
matically generated to satisfy the intention. There ex-
ist systems that can perform auto-navigation service
for its user. However, a user enjoying the experience
of architectural walkthrough usually does not want to
give up the control Therefore, it remains a challenging
task to design an interface that considers both naviga-
tion experience and ease of control. In our previous
work, we have proposed a method to incorporate
path-planning techniques into the control loop of user
navigation. The system voluntarily computes a colli-
sion-free path to assist navigation when the user runs
into a difficult situation.

In this paper, we propose another novel approach
of using an artificial force field in the control loop of
3D interactions to reduce the chance that a viewpoint
collides with environmental obstacles. A repulsive
force field is constructed in a preprocessing step for
the freespace of a given virtual environment to resist a
user from getting too close to the obstacles. While
influencing user control with this force field to avoid
collisions, we also have to take into account user in-
tentions. According to user’s motion behavior (veloc-



ity and orientation), we dynamically adjust the force
field to reflect user intention such that a user does not
feel awkward under the influence of such a force field.

We organize the remaining of the paper as follows.
We will review some related researches in intelligent
user interface design in the next section. We will then
present the idea of force field and how we dynami-
cally modify it to reflect user intention in Section 3.
We will then show the details of our implementation
in Section 4, and the experimental settings and results,
in Section 5. Finally, we will conclude our work in the
last section.

2. Related Work

The work pertaining to our research is traditionally
classified as the category of computer-human interac-
tion, especially in the field of intelligent user interface
design. One can also find work in Artificial Intelli-
gence and Robotics that aims to adding such intelli-
gence to man-machine interface. We will review 3D
user interface design first and then narrow down to
issue of intelligent 3D user interface.

2.1. 3D computer-human interface design

Many researches have been undertaken to invent
efficient ways to communicate with a computer and to
evaluate the effectiveness of these interfaces. Among
these interfaces, being capable of interacting with vir-
tual 3D environments has been considered as a design
trend for future computer-human interfaces. The
VR-types of interfaces such as Head Mounted Display
(HMD), 3D tracking devices, data gloves, force feed-
back joysticks, haptic devices, etc, are all good exam-
ples of such interfaces. New metaphors such as eye-
ball in hand, and flying vehicle in hand have also been
proposed and tested.[1] It is reported that most users
like the idea of eyeball-in-hand metaphor in the con-
text of virtual space exploration. However, the great
challenge comes when we are asked to manipulate a
3D virtual scene only with a regular 2D mouse on a
desktop computer. Some work has been carried out to
design intuitive interfaces for controlling 3D rotations
with 2D devices.[4][14]

Most of these interface designs use the direct ma-
nipulation metaphor that is shown to be more com-
prehensible, predictable, and controllable than the
delegation types of intelligent user interfaces in sev-
eral application domains. However, it is still under
debates which metaphor is more effective in gen-
eral.[15] We think there will not be a clear-cut answer
to this question. Instead, effectiveness would greatly
depend on the types of applications, users, and tasks at
hand. For example, some people may prefer to sit
back and take a guided tour when visiting a new en-
vironment while other adventurous people may prefer
to have a full navigation control.

2.2. Intelligent user interface

Although many intelligent user interfaces have
been proposed in the literature, most of them are not
for 3D manipulation.[12][13] Exceptions include us-
ing motion-planning techniques to provide task-level
controls. For example, Drucker and Zeltzer [2] argue
that a task-level viewpoint control is crucial for ex-
ploring virtual scenes such as virtual museums since
the users should be allowed to concentrate on scene
viewing instead of be distracted by low-level naviga-
tion controls. Li, et al.[9] also proposed an
auto-navigation system capable of generating custom-
ized guided tours based on high-level user inputs.
Kuffner [6][7] also utilizes fast path-planning tech-
niques to assist real-time animations. Other work also
suggests using vector fields [3] to guide animation.
However, most of these approaches use geometric
reasoning techniques as a tool for control delegation.
They use a third-person view to specify the desired
tasks, which is very different from the first-person
view commonly used in the direct manipulation
metaphor.

Force field methods, such as potential field meth-
ods, were originally proposed to solve path-planning
problems for robotic applications.[5] Attractive forces
were used in addition to repulsive forces from envi-
ronmental obstacles. The idea of using a force field to
improve user navigation has been independently de-
veloped in [16]. However, they assume that a 3D
pointing device, such as a 3D mouse, is available to
the user while we assume that a user is only equipped
with a regular 2D mouse. In addition, the ways that
we compute the force field, detect collisions, and
overcome motion oscillations are different. Further-
more, we evaluate and compare the effects of the
force field method, the path-planning method, and the
combination of both methods.

In [10], we have proposed an intelligent user inter-
face that incorporates path-planning techniques into
the control loop to help a user move around an obsta-
cle. A fast path planner based on randomized roadmap
is called to compute a collision-free path whenever the
viewpoint would collide with environmental obstacles.
Our experimental results show that the navigation
efficiency for a given scene can be improved by as
much as 73 percent. In [11], we further extend this
method to consider large virtual environments.

3. The Force-Field Approach

We assume that under the walkthrough mode the
virtual environment can be represented as a 2D layout
map such as the one shown in Figure 1. The environ-
ment is a bounded workspace comprised of polygonal
obstacles. The portion of workspace outside the ob-
stacles is called freespace. The basic idea of the
force-field approach is that obstacles in the workspace
generate repulsive forces to the viewpoint in the
freespace such that it becomes more difficult to move
the viewpoint close to the obstacles. For example, in
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Figure 1: obstacles in a bounded workspace

Figure 1, the displacement of the viewpoint configura-
tion dp is offset by a force vector fto produce the next
viewpoint configuration, p’. With this approach we
hope that the chance of getting stuck by the environ-
mental obstacles can be reduced, and therefore the
overall navigation efficiency can be improved. In this
section, we will first describe the desirable features of
a force field for our application and then define a ba-
sic force field according to physical laws. We will
then refine the force field to overcome some undesir-
able effects as a result of composing the forces from
multiple obstacles. Finally, we will describe how we
modify the force field dynamically at run-time ac-
cording to user navigation behaviors such as naviga-
tion speed, moving direction, and navigation history.

3.1. Computing a basic force field

The force field proposed in this paper is an artifi-
cial force field designed specifically to assist user
navigation. Nevertheless, the computation of this
force field is motivated by physical laws. The New-
ton’s law of gravitation suggests that two objects are
attracted by a force whose magnitude is proportional
to the square inverse of the distance between the two
objects. In addition, the force is proportional to their
masses. The ideal force field in application is very
similar to this law expect that the force is repulsive
instead of attractive. In addition, the repulsive force is
from the boundary of obstacles instead of from the
interior of the obstacles. Therefore, the mass or vol-
ume of an obstacle is not taken into account when we
compute the force field. This field is a static vector
field in the freespace, and therefore, we can compute
the force in a preprocessing step for each point in the
freespace up to a resolution. This force is the basis for
influencing the viewpoint motion at run time. Usually
it needs to be scaled by a constant and adjusted dy-
namically according to user behaviors. For example,
when the viewpoint is not moving, no forces would be
applied.

Assume that there exists a point p=(x,y) in the
freespace and the closest boundary point of an obsta-
cle from this point is e=(x",)"). Let v=p—é.
Then, we define the repulsive force for p as:
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Figure 2: repulsive forces generated from obsta-
cle boundaries

Figure 3: resultant forces from several obstacle
boundary points
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where v/|y| is the unit vector pointing outward from

obstacle boundary.

The computation of this force is straightforward
except for determining the closest obstacle boundary
points such as the examples shown in Figure 2(a). We
assume that the workspace is represented as a bitmap,
where filled cells represent obstacle regions. For such
a bitmap this information can be easily determined by
a wave-propagation algorithm that incrementally
propagates wavefronts from obstacle boundaries.[8]
The complexity is linear to the size of freespace.

3.2. Improving the force field

Although the closest boundary point is supposed to
generate the largest repulsive force, using the force
from a single point only create undesirable problems.
For example, the forces applied to the two neighbor-
ing points in Figure 2(b) have opposite directions.
Consequently, large discontinuities in the force field
may result in motion oscillations at axial regions of
freespace. To fix this problem and create a smooth
force field, we have to consider more than the closest
point.

Instead of considering the closest point only, we
consider all the points in a window centered at a given
point p=(x,y) in the freespace. Assume that there

are k points of obstacle boundary in the window of
size sXs and their coordinates are e, =(x,30)
—_ 4 4
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then the force Fp actingon p is defined as:
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For example, for the point p in Figure 3, there are
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Figure 4: force magnitudes (a) and directions (b)
in an artificial force field

three boundary points in w (7x7) applying repulsive
forces (v, vo, and v3) to p. The resultant force is com-
puted as vi+v,,+v;. An example force field computed
with this method is shown in Figure 4(a) and 4(b). In
Figure 4(a), the magnitude of the force field is de-
picted as a gray-scale image (the darker, the stronger
the force) while in Figure 4(b), the directions of the
force vectors are depicted as arrows. The oscillation
phenomenon is avoided since for the forces from the
opposite sites of a point along the axial direction can-
celled each other out. Consequently, the force field
becomes a smooth vector field pushing the viewpoint
outward from obstacle boundaries. This force field is a
static field that can be computed in a preprocessing
step. The size of the influence window, w, can be de-
fined as large as the size of the workspace. However,
in our implementation a reasonable size (such as
21x21) is usually good enough for capturing the major
repulsive forces.

3.3. Dynamically adjusting the force field

The main advantage of the direct manipulation
metaphor is that it allows the user to have the feeling
of having the full control of the viewpoint motion.
Therefore, it is crucial to consider the naturalness of
the viewpoint motion after applying such an artificial
force field. Any modifications to the viewpoint mo-
tion should not violate the user’s intention. For exam-
ple, when the user does not drag the mouse, the view-
point should not move. When the user changes the
magnitude of input command, say speeding up, the
resulting viewpoint must move relatively faster. Even
if there are temporary violations of user intention, the
user should be able to adjust the input command to
reflect his intention interactively.

In order to respect a user’s input, we adopt a dy-
namic update scheme to modify the strength of the
force field at run time. This adaptive scheme is based
on a user’s navigation behavior, such as speed, orien-
tation, and history. First, we think the force should be
proportional to the speed of the viewpoint. Thus, no
forces should be applied to a static viewpoint. Second,
the applied force should reflect a user’s intention
through the moving direction and navigation history.
For example, when a user intends to move toward
obstacle boundary, we should reduce the magnitude of

Figure 5: top view of the maze environment

Figure 6: a snapshot of the VRML browser

the force gradually until the viewpoint reaches obsta-
cle boundary. If the viewpoint moves outward from
the obstacle boundary, we should assist the user in
increasing the strength of the repulsive force.

The adjusted force is computed with the following
formula:

’

F,=u,Xu, xF,, (3)
where F, is the pre-computed force from eq.(1). u,
and p, are two coefficients that modify the magni-
tude of the force. The speed coefficient p is defined
as u, = kv, where v is the viewpoint’s linear speed
and x is a constant scalar. The direction coefficient
u, is defined as pu,(z,)=nxu,,,), where
u, (¢, ) is the direction coefficient in the previous
time step and 7 is a scaling factor that could be lar-

ger than or smaller than one depending on whether dot
product of the viewpoint’s movement vector and the
applied force vector is greater than 0 (same direction)
or less than 0 (opposite direction). In other words,
when the force is applied along or against the direc-
tion of the viewpoint’s motion, its magnitude will be
enlarged or reduced, respectively. With this update
scheme, the user is capable of moving close to an ob-
stacle boundary if he/she intends to do so since 7

becomes smaller and smaller. When the user moves
away from the obstacle, the magnitude of n is

gradually recovered. In order to prevent 1 from be-

coming too larger, we also set a reasonable upper
bound for the maximal value of 7.



4. Implementation

4.1. Connecting to a VRML browser

In order to make the research result be more port-
able, we choose to modify the open source VRML
browser implemented based on the Java3D SDK li-
brary.[18] This SDK and the VRML browser are all
available for FTP on the public domain.[18] The force
field computation programs, implemented in Java,
read in a 2D-layout map of obstacles as well as a 3D
VRML file. The top view of a typical maze-like sce-
nario for our experiment is depicted in Figure 5 and a
snapshot of the VRML browser interface is shown in
Figure 6. For collision-detection purpose, we decom-
posed the workspace into a 128x128 uniform grid of
cells. In these programs, we have modified the routine
for processing mouse events and the routine for up-
dating the next viewpoint configuration. In a typical
walkthrough interface, a user issues his command by
dragging a vector that is decomposed into horizontal
and vertical components, representing the rotational
and translation velocities, respectively. These veloci-
ties correspond to a transformation that transforms the
viewpoint to its new configuration in the next time
frame. This transformation is modified according to a
vector proportional to the artificial force proposed in
this paper to keep the viewpoint away from the obsta-
cles.

4.2. System parameters

Several parameters determine how the force field
affects user navigation. First, the static force field is
computed in a preprocessing step. Each grid point in
the workspace is associated with a force that is com-
puted as a resultant force from all boundary points in a
window of size 21x21. The speed coefficient, i , in

eq.(3) is proportional to the magnitude of navigation
input and bounded by a reasonable value. Second, the
scale-down factor, n, for the direction coefficient in

eq.(3) is set to 90% and the lower bound for this coef-
ficient is 20%. When the coefficient is scaled up, the
scaling factor, 7, is set to 110% and the its upper

bound is 200%.
5. Experiments

5.1. Experimental settings

Ten subjects were invited to test the implemented
system. Each of them is asked to perform four runs of
experiments. Each run of the navigation experiments
uses a different assistance method. These four meth-
ods include the original method with no assistance, the
path-planning method proposed in [10], the force field
method proposed in this paper, and the method of
combining the two aforementioned methods. They are
given a short instruction about how to use the browser
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Figure 7: sequential landmarks in the experimental
environment

and how to perform the experiment. The experiment
asks a user to navigation through several landmarks
labeled in sequence as shown in Figure 7. The user
navigates in the maze with the first-person WALK
mode provided by the VRML browser. In each run of
the experiment, a user is asked to move the viewpoint
from landmark 1 through landmark 6 as quickly as
possible. A bouncing ball is placed in the scene to
help the users identify the targeting landmark. In order
to control the experimental environment, these land-
marks are placed in a way that the navigation paths
executed by different user will be of the same topol-
ogy. In addition, the order that a user tries out these
four methods is random such that the effects of getting
familiar with the test environment is minimized.

5.2. Experimental results

The experimental results consist of two parts: ob-
jective statistic data and subjective user comments.
The comparisons of the navigation performance under
different methods are summarized in Table 1. Two
data items: overall execution times and number of
detected collisions for each method are listed. The
average overall navigation time without any assistance
is 160 seconds while the times with the path-planning
method and the force field method are 130 and 125
seconds, respectively. This result implies that the force
field method could be as effective as the
path-planning method.

Another interesting result we have found is that
when we apply both methods, the average navigation
performance (107 seconds) is the best among all
methods as shown in the fourth category of Table 1.
This result implies that the force field method com-
plements the path-planning method and therefore can
be applied to enhance the overall efficiency. Intui-
tively speaking, the force field is used to reduce the
chance of collisions with obstacles while the
path-planning method resolves the collision situation
if it occurs. For this experimental scene, the naviga-
tion performance can be improved by as much as 49
percents.



Table 1: statistic data (navigation time in seconds
and number of collisions) of ten users using the in-
telligent interface

eth Force Field

od| Neither Planner | Force Field | & Planner
Time| Colli- |Time| Colli- |Time| Colli- | Time| Colli-

User sion sion sion sion
1 128 136 82 149| 83 45| 82 64
2 211 231| 214| 487| 184 135 139 151
3 91 191] 98 167| 130 166| 99| 206
4 113 142| 78 159| 101 66| 116| 316
5 176 171 178 430| 161 122 109 101
6 199| 427 103 236| 80 139| 73 95
7 129 129| 119| 339| 115 79 116 171
8 112 43| 108 81| 118 33| 102 41
9 120 227| 95 318| 98 126 88 91
10 | 322| 496| 226 732| 176 111| 148 117
Avg.| 160 219 130[ 310| 125 102| 107| 135

+ 0% 23% 29% 49%

The users’ subjective comments suggest that the
force-field method could be more natural than the
path-planning method for navigation experience. The
number of detected collisions reveals some of the ra-
tionale behind. When the force-field method is used,
the number of collisions is much smaller than other
methods as expected. However, when the
path-planning method is used, this number is even
larger than the case of using neither method. This
might imply that the users tend to rely on the path
planner to resolve the collision situation instead of
trying hard to avoid it. When the force-field method is
applied as well, we found that this number can be ef-
fectively reduced.

6. Conclusion

In this paper, we have proposed a effective method
on designing an intelligent user interface for architec-
tural walkthrough applications. An artificial force
field is computed to assist users in navigating through
difficult areas where the users often get stuck with the
traditional user interface. This method has been suc-
cessfully integrated with the low-level control loop in
a VRML browser. Our preliminary experimental re-
sults show that this method can reduce the overall
navigation time as effectively as the path-planning
method. In addition, since both methods complement
each other, the improvement on navigation efficiency
is even more significant when both methods are ap-
plied simultaneously.
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