124 Young

Asymoetric Multidimensional Scaling
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FIG. 6.2. Schematic of asymmetric multidimensional scaling

tangular GEMSs can only be applied to rectangular data, lhus the five models
generate five analyses.

The five rectangular GEMs differ in their specification of V;. The simplest
and. most familiar analysis of rectangular data (sec Figurci 6.3) results from
using the rectangular GEM that invokes the assumption that V; =1 for all i,
This results in

6. Weighled Distance Models 125

Multidimensional Unfelding
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of ratings of n objects on m attributes
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FIG. 6.3. Schematic of multidimensional unfo]dihg

This combination of data and model corresponds 1o Coombs® (1964) proposal
for the unfoldmg of preference datd Schiffman, Reynolds, and Young
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Replicated Mulcidimenslonal Scaling

Input: m {*2) nxn square gymmetrlc (or awymmecrlc)
data matrices Dk' one for each of m subjects
. (°:'._1k is dissimilarity of objecta

i and 3} for subject k).

Number of ways: 3
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object on the a'th dimension), 5 .
Number of waya: 2
Number of components: 1 " L IRYLTENE
i DIMENSIONS
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T
. 2
dyy ::;(Kia_x_]a)
FIG. 6.4. Schematic of replicated multidimensional sealing .
Thus, these models are expressed by the GEM
2 .
dij = (% — x)W (04 — x;)" (6.6)
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Replicated Multidimensional Uniolding
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a matrix is asymmetric, then the adoption ol a synunetric (JLM in our data
analysis implies that we think the asymmetry is error.

Certainly, the most well-known of these eight analyses is EhL one proposed
by Carroll and Chang (1970}. They called this Individual Dllﬁcu,mc:, Scaling
(INDSCAL), since they used the weights to model difl'erenées between indi-
viduals. Their work involves the assumption that the third-way weights W,
are diagonal, and was proposed for symmetric data. This analysis is schema-
tized in Figure 6.6, where the diagonals of W, are shown z1$ the rews of W.
Chapter 9 of this book, by Holfman and Perreaull, uses this analysis.

Shartly after this very famous development, Carroll and Chang (1972)
extended their thinking to include weights W, which were full rank. They
called this Individual Dilfferences in Orientation Scalin:g (IDIOSCALD).
Bloxom (1978) and Young and Lewycky] (1979b) have also discussed the
case where the weights are reduced in rank und represent pr;incipu} directions
(Figure 6.7). Chapter 10 of this book, by DBasierling, usges this analysis.
Finally, Young (1982) atiended 1o the runk-one siluation, and Young {1984}
included the asymmetric data situation as well. Thus, all ughl MDS analyses
and four models have been previously discussed.

The family ol symmetric GEMs share many common aspects: (a) They
may be used when the researcher has obtained, from a mimber of sources
(individuals, occasions, experimental conditions) data about 1:hc: (dis)similarity
of pairs of things to each other; (b) They develop a common space that
represents the structure of the things that is shared in comjmon between the
several sources of data, the representation being as points in a multidimen-
sional Euclidean space; and (c) They portray variation across the third way
of the data (people, occusions, or conditions) in a geomeiric fashion. The
models differ, however, in their assumptions ubout the basie nature of the

variation across the third way, and, thus, in their geometricEreprcsenlalion of

this variation. These differences are reflected in the differentitypes of W,.
The nature of the GEM representation just given can be restated in the

original terminology used by the psychometricians who developed these

models. In this terminology, () the models can be used when the researcher

has obtained data from several individuals about the dissimi:larity of pairs of

stimuli; (b) the model represents the stimutus structure that'is shared by the
group of individuals in a group srimulns space, which has points for each
stimulus; and () individual differences in perception or cognition are
represented geometrically in a weight space, whosc rmtmc depends on the
specific characteristics of the weight matrix W, . '

6.3.2. Analyses Using Asymmetric Three-Way GEMs

The asymmetric three-way GEMs include GEMs that differ in the assump-
t1ione made abotitt hoth the firerowav aned thirmlowny weiaht S raateicse Y amed
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Welghted Multidimensional Scaling
{Individual Dilferences Multidimenslonal Scaling)
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FIG. 6.6, Schematic of weighted multidimensional -scaling

W,. Since the dala must have square asymmetric matrices, all these models
are required to have

h ¥V =
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Principal Directions Scaling
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FIG. 6.7. Schematic of principal dircctions sealing
Thus, these models have the GEM equation
2 _ :
dijk = (Xf - xj)V,-Wk(x; - j)' . (6.7)

There are sixteen models that result from factorially coniabining four of the
five types of V; (excluding identity weights, which were discussed in the pre-
vious section) with four of the five tynes of W. (awain excluding identitv
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weights, discussed in the replicated two-way section). Of these sixtecn
models, only the model having two diagonal weight matrices has been dis-
cussed, to our knowledge. This is the Asymmetric Individual Differences
(ASINDSCAL) model of Young and Lewyckyj (1979a). However, the four
models that invelve a diagonal V; and diagonal, rank one, reduced rank or
full rank W, are implemented in the ALSCAL program (Young, 1982}, even
though not expliciily discussed. The ASINDSCAL analysis is schematized in
Figure 6.8, where the diagonals of V; and W, form the rows of V and W.

6.3.3. AnAaIyses Using Rectangular Three-Way GEMs

The family of twenly GEMs for three-way rectangular (preference) data can
be grouped according to those where V; = 1, and those without this assump-

“tion. For the four GEMs with V; = 1, the full rank W, model is al the heart

of an analysis method proposed by De Sarbo (1978). Young and Lewyckyj
(1979b) and Young (1982, 1984) have discussed the full, reduced, rank-one,
and diagonal W, models. The GEM equation is -

di = (% — X)Wely — x)" (6.8)

The diagonal W, is used in an analysis called Weighted Multidimensional
Unfolding (WMDU) by Young and Lewycky) (1979a). This is schematized in
Figure 6.9, with the diagonals, of W, becoming the rows of W.

The second family of GEMs for three-way rectangular data consists of the
sixteen models for which neither the W, nor the V¥; are required to be iden-
tity mairices. This is the most general GEM, corresponding to the full equa-
tion (Equation 6.1). To our knowledpe, no onc has explicitly discussed ana-
fyses based on any of these models. This family is a set of three-way
models that parallel Carroll’s (1972) family of two-way weighted unlolding
models, but with additional weights for the several matrices,

6.3.4. Analyzing Four-Way Data with Three-Way GEMs

Just us with the Tamily of two-way GEMs, we can take three-way GEMs and .
apply them to higher-way data. Each one of the forty-four different three-way
GEMs can be used with higher-way data, generating an additional set of
forty-four replicated three-way analyses. The essential nature of these ana-
lyses is the same as when the models are applied to threc-way data, the main
difference being that we have several sets of three-way dala that we view as
being the same except for non-systematic error. We are unawarc of any of
these replicated three-way models being explicitly discussed previously in the
literature, nor of any computer programs for fitting them to data.
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Multidimensional Scaling
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FIG, 6.1, Schemalic of classical multidimensional scaling
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lion, the two kinds of data that it can be applicd (o generdle two unique ana-
lyses.

§.2.2. Analyses Using Asymmetric Two-Way GEMs

Il we have a single square matrix of asymmetric dissimilarities we can
employ the symmetric, two-way GEM given by Equation (6.2), as just men-
tioned. Tlowever, il is important to realize that we are not foreed 1o have the
first-way weights V; = T for all stimuli i1 Rather, we choose o assume (or
nol assume) that this is the case. Note that our {reedom to choose does not
work in the reverse direction: We are not [ree to apply an asymmetric model
to symmeltric daty. When the data are symmetric, we must use a symmetric
model.

When we have asymmetric data, and we assume that V; = I the implica-
tion is that the asymmetry is error. If we do nol think that the asymmetry is
error, but is meaningful, systematic information, we can choose to model the
asymmelry via the weights V;. This is the case since, excepl in cerlain spe-
cial cases, the weights V; generate asymmetric distances when at least one
V; # L. There are four members of the family of asymmetric GEMs, the
simplest one being obtained when’ we assume that '

{c) V¥, is a diagonal for all i,
T'his assumption generates the specilic nsynunulfic GEM
d} = (5 = XDVl — %) 6.3

which was first proposed by Young (1975a) as the basis for his ASYMSCAL
analysis (see also Young & Lewyckyj, 1979a). This analysis is used by Col-
lins in Chapler 8 of this book, and is schematized in Figure 6.2 (where the
diagonals of V; arc schematized as the rows of V). The thiee other asym-
metric GEMs (V; is full or reduced rank or rank one) have not been investi-
gated, lo our knowledge. Note that the four asymmetric models can only be
applied (o asymmetric data; thus, there are only four kinds of analyses,

6.2.3. Analyses Using Rectanguiar Two-Way GEMs

The family of five rectangular GEMs dilfer in the type of assumptions made
uboul Y;. All members of the family invelve assuming that

() W, =1, and
b Y # X

Note that we must assume that the eoordinates Y for the rows of our dala

v . Vo b alenge vt thae e e ol
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Weighted Agymmecric Mulcidimensional Scaiing
(Asymmetric Individual Differences MDS)

Inpuc: m (>2) nxn square asymmetrlc data

matrices Ok, one for each of m subjects

(Dijk in dissimilarity of objecrs
1 and § for subject k),
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FIG. 6.8. Schematic ol weighted asymmelric mullidimensional scaling

6.4. DIAGONAL WEIGHTS
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Weighted Mult idimensional Unlolding
(ihree-modue Ualolding)

Input: = (_2) axp rectangular data matrices
W ene tor each of m subjects or cecaslons
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FIG. 6.9. Schematic of weighted multidimensional unfolding
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modify the Buclidean space containing the stimulus points X and  noccihly



353 FE ] A

HERY  FRESHEERBEMY MR RERTEEE (145
FAEVA s SEEB ML) FEELFEHE o |

(1) o =T 4% 5 3% ¥,

MR EEEEEE | N

BERAHMTEEH

(4)4F 42 0 pA % o7 4%,

(5)48 9% & A 5 7 F

”@ﬁﬁ%ﬁ%% f

(7)4R B aq 4% 2 3575

@ﬁkﬁﬁ*ﬁ%_

R -t

1042 % a9 45 A




