
VIRTUALIZATION
INTROSPECTION SYSTEM
ON KVM-BASED CLOUD
COMPUTING PLATFORMS
雲端運算平台之虛擬化偵察系統
 李聖瑋
100356010@nccu.edu.tw
Advisor: 郁方
yuf@nccu.edu.tw
Software Security Lab.
國立政治大學資訊管理研究所

Motivation
•  The era of cloud computing

Motivation
•  In the era of cloud computing, security threats could be a

major stunning block.

KVM
•  Linux Kernel Virtual Machine (KVM) is one of the most

common commodity hypervisor driver deployed in the
IaaS layer of clouds.

• KVM provides a full-virtualization environment that
emulates hardware as much as possible including
CPU(s), network interfaces and mother-board chips.

Attacking VM Hypervisor
• An intruder can attack the KVM hypervisor by exploiting a

software defect in its kernel module and can get the Host
privilege with which the intruder can take over the
hypervisor
•  E.g., Cloudburst Attack that exploits the software vulnerability

CVE-2011-1751 (N. Elhage, 2011)

Objective
• We implement a system called Virtualization

Introspection System(VIS) that detects and intercepts
attacks from VMs by monitoring their status.
•  Detect VMs that attack Hypervisor
•  Detect VMs that attack other VMs
•  Detect VMs that have been compromised

• VIS can be deployed on most cloud operating systems

based on KVM such as OpenStack and OpenNebula.

VIS with IaaS and Cloud middle ware

Monitor VM status
• We collect both static and dynamic information to

characterize VM behaviors
•  Run-time status: using “strace” to collect underlying system calls
•  Static status: using “qemu-monitor” to check installed VM image

(hardware).

The VIS Architecture

VIS
• Monitor

•  Monitor running behaviors/status of VMs
•  Strace, Qemu-monitor

•  Store the data into Behavior Databases
•  Visualize running status

• Behavior Analyzer
•  Derive policy/rules for known malicious behaviors
•  For each rule, we implement an introspection module

VIS
•  Introspection Modules

•  Each is an independent python module that can be loaded
dynamically to detect malicious VM on a specific behavior

• Policy Database
•  Rules for the actions on malicious VMs

• Behavior Database
•  Store the previously analyzed patten of malicious behavior of VMs
•  Save the category data as

 Role à Period à Program à System call

VIS
• Behavior Checker

•  Executes the modules to compare the behaviors of underlying VMs
with policy rules

•  Identifies VMs that are (1) executing malicious programs/system
calls or (2) in compromised status

•  Sends the domain action message to controller

Controller

•  Executes commands from Behavior Checker:
destroy, shutdown, migrate etc.

•  This can be done by passing the message to cloud middleware
(e.g. OpenStack, OpenNebula)

•  In our current implementation, we use libvirt and virsh to control the
compromised and malicious VMs.

!

Termination: Shutdown the attack VMs

VIS Defense Operation
•  Termination

•  Direct shutdown and offline migration
•  VMs that are confirmed with severe attacks

•  Isolation
•  Online migration (to a physical isolated place)
•  Potential vulnerable VMs, e.g., VMs that are identified been

compromised

•  Isolation:
 Migrate Malicious VMs and Redirect iptables

!

Evaluation
• Detect Cloudburst Attack
• Detect Social Engineering Attack

Detect Cloudburst Attack

!

Build a VM to execute the cloudburst attack

Detect Cloudburst Attack
•  The attack exploits the KVM software defect

(CVE-2011-1751: a pointer leaking that is triggered by un-
pluging the PIIX4_PM device)

!

Detect Cloudburst Attack
• Checking the change of QEMU device

!

Detect Social Engineering Attack
• We replay social engineering attacks on VMs

•  Hacker VM that executes the attacks
•  Victim VM that is compromised
•  Normal VM that has the same operation system as Hacker VM

Detect Social Engineering Attack
Hacker VM (BackTrack 5 R3)
• Period Initial: do nothing
• Period Prepare: setup the social engineering attack (send

fishing emails)
• Period Compromise: Victim clicks malicious url to build

ssh channel
• Period Attack I: Hacker kills the process inside Victim
• Period Attack II: Hacker keystorkes the Victim for

Passwrod

Detect Social Engineering Attack
Victim VM (Windows 7)
• Period Initial: Having Firewall and Anti-virus installed
• Period Normal: Receive fishing email with malicious url

from Hacker
• Period Compromise: Click the malicious url
• Period under Attack I
• Period under Attack II

Normal VM (BackTrack 5 R3)
• Do nothing.

System Call Distribution (via Strace)

!

Normal VM- the same as Hacker VM: Period initial

!

Hacker VM: Period Compromise

!

Victim VM: Period Compromise

Run the testing

!

Hacker VM : Period initial

01-01_normal-hacker

01-02_normal-victim

01-03_normal-normal

02-01_set-atk-hacker

02-02_set-atk-victim

02-03_set-atk-normal

03-01_atking-hacker

03-02_atking-victim

03-03_atking-normal

04-01_key_storke-hacker

04-02_key_storke-victim

04-03_key_storke-normal

05-01_kill_Proc-hacker

05-02_kill_Proc-victim

05-03_kill_Proc-normal

Clustering result

 Conclusion
• We propose VIS, a virtualization introspection system for

KVM-based cloud platforms
• We monitor both dynamic and static VM status
• We replay and characterize various attacks

•  Detect VMs that attack VM Hypervisor
•  Detect VMs that attack other VMs
•  Detect VMs that are compromised

• VIS can do termination and online migration

Limitation
• VIS is limited to protection on rules that have been

established
•  Need to collect more attack patterns

•  The rules are derived by heuristics
•  False positives and negatives
•  Need more sophisticated analysis, e.g., system call sequences

Q & A

•  Thank you for your attention.

