String Analysis

Fang Yu Marco Cova

Abstract

String analysis is a static analysis technique that determines the
string values that a variable can hold at specific points in a program.
This information is often useful to help program understanding, to
detect and fix programming errors and security vulnerabilities, and
to solve certain program verification problems. We present a novel
approach to perform string analysis on real-world programs.

1 Introduction

To detect software vulnerabilities and perform sanitization functions in PHP
programs, it is essential to know which values may occur as a result of string
expressions. The exact answer is unknown due to the theoretical result that
the family of context free languages is not closed under intersection and
complementation. String operations for context free languages may yield a
language which is not in the context free family. As a result, except that the
emptiness checking is decidable, all other problems of context-free languages,
e.g., inclusion and equivalence checking, are undecidable.

On the other hand, the family of regular languages is closed under union,
intersection, complementation, star closure, homomorphism and right quo-
tient. Since all problems that we are interested in are decidable when we
deal with regular languages, this family is widely used for string analysis.

Christensen et al. [2] summarize each string expression as a regular lan-
guage that includes all possible values of that string expression. This over
approximation makes it feasible to statically predict values of string expres-
sions in general programs. We extend their method to analyze PHP pro-
grams. Particularly we are interested in context string replacement, which
is a widely-adopted string operation to secure PHP programs but had not
been addressed in [2]. Context string replacement had been discussed in the

context of natural language processing [16, 11, 4, 14]. All these works are
based on the composition of finite state transducers. Vaillette [14] formulates
regular expressions and relations in monadic second order logics, so that the
corresponding DFA generated by MONA accepting the replaced languages.
Vaillette’s method suffers from the requirement of the same length regular
relation. It is also not clear how to generate the specified monadic second
order logics automatically.

Here we propose a new automata based algorithm. We construct several
internal deterministic finite automata (DFA), and take the intersection of
them to yield the one accepting the replaced language. For unconditional
context string replacement, all internal DFAs have liner size to the given
problem.

Our work can be divided into two parts: a front-end that translates the given
PHP program into a flow graph, and a back-end that analyzes the flow graph
and generates finite state automata. The front-hand parser accepts the full
PHP language and then yields the control flow graph which illustrates an
abstract description of a program performing string manipulations. The
back-end analyzer generates a finite automaton for each string expression.
The automaton is updated according to the manipulation along the control
flow, by accepting the regular language summarizing all possible values of
the string expression. Finally, for each string expression we intersect the set
of accepted strings with the set of attacking strings. Once the intersection is
an empty set, the PHP program is proven to be vulnerable free, Otherwise,
a witness to attack the PHP program is automatically generated.

2 Related Work

String Analysis. Christensen, Mgller and Schwartzbach [2] first propose
automata-based analysis (called JSA) to statically determine the values of
string expressions in Java programs. All possible values of string expressions
are generated upon regular expression manipulations. The starting point is
the flow graph, which is then translated into a context free grammar with
one nonterminal for each node. Each edge and its operation is encoded as
a production rule. The size of the resulting grammar is linear in the size
of the flow graph. The context free grammar is then approximated with a
regular grammar. This approximation is achieved by Mohri-Nederhof algo-
rithm. The idea is eliminating production cycles by replacing one operation
production with X — r, where X is a nonterminal and r denotes the regular

language 3*. They further transform the regular grammars into multilevel
finite automata M, which can be then used to generate a DFA. The size of
the final DFA is worst case doubly exponential to the size of M. They have
successfully applied this method to various real applications like analyzing
dynamic generated XML in the JWIG and static syntax checking of SQL.
However, they did not address context string replacement in this work.

Kirkegaard et al. apply JSA to statically analyze the XML transformations
in Java programs [7]: by using DTD schemas as types and modeling the effect
of XML transformation operations, they statically verify that the analyzed
program transform valid input data into valid output data.

Gould et al. [5] use string analysis to check for errors in dynamically gen-
erated SQL query strings in Java-based web applications. Their analysis is
also based on the JSA analysis [2].

Christodorescu et al. [3] present an implementation of string analysis for
executable programs for the x86 architecture. Their technique recovers se-
mantic information from binary code (e.g., they perform string inference,
alias analysis) and leverages the JSA infrastructure of [2] to perform the
string analysis.

Minamide [9] describes an application of string analysis to statically detect
cross-site scripting vulnerabilities and to validate pages generated by web
applications written in the PHP language. Similarly to JSA, he first extracts
a grammar from a PHP program considering assignments as production
rules, the grammar is then transformed into a context-free grammar, and,
finally, this is used to validate the desired properties. He claims to support
most of the string operations available in PHP, including regular expression-
based replacement.

Context String Replacement Context string replacement had been dis-
cussed through in Natural Language Processing [6, 11, 16, 4]. Karttunen [6]
first proposes the replace operator of regular expressions by applying phono-
logical rewrite rules. All these works based on the same strategy that is first
to decompose the complex relation into a set of independent components,
and then define the whole operation as a composition. Mohri and Sproat[11]
implement the rewrite rules with finite state transducers. They also gener-
alize the rewrite rules as ¢ — 1/ ... p, which is interpreted in the following
way: ¢ is to be replaced by ¥ whenever it is preceded by A and followed p.
¥, ¢, A, p are regular languages in general. The finite state transducer corre-
sponding to the left to right obligatory rule ¢ — /X ... p can be obtained

by the composition of the following five transducers: r o f o repalce o ly o ls.
o r: X'p— ¥*>p.
fr Eu{zhHo>— SUu{>H<1,<2}¢9 >.

e replace: replace ¢ with 1 in the context <3 ¢ > using the cross
product transducer ¢ X 1.

o [1: YA <y— XA
° [y: DILDN <9— TE.

The transducer r inserts a marker > before every instance of p. The trans-
ducer f inserts markers <; and <o before each instance of ¢ that is followed
by >. The replace transducer replaces ¢ with v in the context <; ¢ >,
and simultaneously deletes >. The transducer /; admits only those strings
in which occurrences of <; are preceded by A and deletes <; then. The
transducer /7 admits only those strings in which occurrences of <5 are not
preceded by A and deletes <5 then.

In [16, 4], Noord and Gerdemann further propose several transducers to
specify delicate replacement operations, like the left-most, the longest match
and the first-match semantics. An disadvantage is that the finite state trans-
ducer of regular expression is easily becoming quite complicated and hard
to prove its correctness. Unlike using finite state transducers, Vaillette[14]
solves the context string replacement by representing regular language with
monadic second order logics. They represent regular languages and con-
straints in monadic second order logics and let MONA handle the rest. The
left-most longest match replacement can be done in one pass. This is the
only work with the complete proof of its correctness. However, their al-
gorithm only works on the same length regular relation. Recall that finite
state transducer is not closed under intersection and complementarity. This
restricts the application of their method since their algorithm requires to
use intersection and complementarity of finite transducers. For the same
length regular expression, one may treat pair as an alphabet and as a re-
sult boolean closure follows then. To address this problem, Vaillette induces
some specific symbol, e.g., “0” as an empty string, to characterize different
length regular relation. (using 0 to pick up the slack). As Vaillette men-
tioned in the paper, ambiguous packed strings, e.g., 00ab and ab00, may
yield different replaced strings in several cases. Vaillette further proposed
the weaken version algorithm to address this problem, in which a string is
replaced if some of its packed string matches the regular expression.

Tools. All the analyzed approaches to string analysis are based on the
modeling of string values and operations in terms of finite state automata.
There exists a number of tools and libraries to perform manipulation and
analysis of finite state automata. Here we present a brief overview of the
most commonly used tools.

Finite State Automata utilities (FSA) [15] is a collection of utilities to manip-
ulate regular expressions, finite-state automata and finite-state transducers.
The supported manipulations include the standard operations (e.g., mini-
mization, composition, complementation, intersection, Kleene closure), and
an implementation of the Mohri and Sproat’s compiler of rewrite rules [11].
FSA is implemented in Prolog and is released under the GPL license.

The AT&T FSM library [10] is a set of general-purpose software tools avail-
able for Unix, for building, combining, optimizing, and searching weighted
finite-state acceptors and transducers. It was originally designed to provide
algorithms and representations for phonetic, lexical, and language-modeling
components of large-vocabulary speech recognition systems. The mathe-
matical foundation of FSM is the theory of rational power series.

MONA is a tool that translates formulas to finite-state automata [1]. MONA
is based on the Weak Second-order Theory of One or Two successors (WS1S/WS28S).

3 Approach

In the rest of the paper, we will refer to the following example to explain

our technique.

$www = $_GET["www"];

if (strpos($www, "http://") === false) {
$www = "http://" . $www;

$clean_www = ereg_replace("<script", "<script", $www);
g P P P

1
2
3
4 }
5
6 " . $clean_www;

echo "www parameter is:
This code fragment presents a series of string manipulation operations that
can be commonly found in web applications written in the PHP language.
The www variable is set to a value provided by the user (through the request
parameter _GET["www"]). If the provided string does not start with the
string http://, the protocol specifier is prepended to the string. Then, all
‘<’ characters in the string used to start a script tag are replaced with

their corresponding HTML entity “&1t;” (a common defense against cross-
site scripting attacks), and, finally, the string is echoed back to the user.

Most of the string manipulation operations performed in real-world appli-
cations can be reduced to three operations, which we call the basis:

e assignment: assigns the current string value of a variable to another
variable (the assignment operator in PHP is =);

e concatenation: concatenates two string variables, containing either
user-defined or static string values (the concatenation operation in
PHP is .);

e replacement: replaces the parts of a string that match a specified
pattern with the given replacement string. Depending on the spe-
cific replacement function, the manipulation can be modeled as a ho-
momorphism (e.g., the PHP functions htmlspecialchars, tolower,
toupper), transducer (e.g., str_replace, trim), or context replace-
ment (e.g., ereg_replace).

Our approach can be divided in two parts. A back-end component models
the value of string variables in an input program as finite state automata. It
also implements the manipulation operations supported by our tool, i.e., as-
signment, concatenation and replacement. The front-end component parses
the input program, transforms the program’s string manipulation operations
in corresponding basis operations, and, by using standard data-flow tech-
niques and the back-end component, determines (an over-approximation of)
the possible values of string operations in all program points. Note that
the back-end component is language-independent and can be reused to an-
alyze programs written in different programming language. The front-end
supports the PHP language.

3.1 Back-End
3.1.1 String Automaton Generator

Our backend is a BDD-based string automaton generator. We associate
each string variable a DFA, which is manipulated along with the control
flow graph, so that the associated DFA accepts all possible values of the
string variable at its current state. To support basic string manipulations
and checking, we identify the following DFA functions.

e Construct(char *e): e is a regular expression over the ASCII alphabet.
This function returns a dfa M such that L(M) = {w|w € L(e)}.

e Concatenate(dfa My, dfa Msy): This function returns a dfa M such
that L(M) = wjws|w; € L(My),ws € L(Ms) Replace (dfa M, dfa
Ms, dfa Ms3): This function returns a dfa M, such that L(M) =
{wlclwg(:gwkckwkHEIk,wlxlnggwkkakH S L(Ml),vi,l’i € L(M2),wi ¢
L(Mg),Ci S L(Mg)}

e Union (dfa M, dfa M) : This function returns a dfa M, such that
L(M) = L(M;)UL(M2)

e Intersect(dfa M, dfa Ms): This function returns a dfa M, such that
L(M) = L(My) N L(Ms)

We also support the following check functions.

e EmpCheck(dfa M;): Check whether L(M;) is empty, and generate an
example if it is not empty.

o ItrCheck(dfa M, dfa Msy): Check whether L(M;) and L(Ms) are in-
tersected, and generate an example if they are intersected.

e IclCheck(dfa M, dfa My): Check whether L(M;) C L(Ma).

e EquCheck(dfa M;, dfa Msy): Check whether M; and My accept the
same language.

Emptiness and intersection checking are used to detect whether a string
variable may have a vulnerable value; Inclusion and equivalence checking
are used to detect whether a fixed point is reached.

We use the DFA packages of MONA [1] to implement these functions. The
DFAs in MONA are encoded as Binary Decision Diagrams(BDDs). BDD
has a canonical form and can be manipulated efficiently: constant time to
emptiness checking and polynomial time to union, intersection, negation,
and reduction to canonical form.

Two main challenges to achieve our goal is DFA construction and replace-
ment. We discuss more details in the following sub sections.

3.1.2 Encode ASCII code

MONA stands on monadic second order logics, which are the second order
logics over three kinds of variables: Boolean, Integer and Integer Set. The

idea to encode string in MONA is to declare a bounded integer set to denote
the positions of a string. We then recursively construct predicates, e.g.,
isg(p, q), such that the predicate isg(p, q) holds if and only if the substring
from position p to q (including py, letter but not the gy, letter) belongs to
the language defined by E.

We first declare eight subsets for ASCII character.

var?2

bit0 where bitO sub
bitl where bitl sub
bit2 where bit2 sub
bit3 where bit3 sub
bit4 where bit4 sub
bitb where bithb sub
bit6 where bit6 sub
bit7 where bit7 sub

- -

-

- - -

Sh P P PH hH L L BH

-

Each subset represents a set of strings, so that if p is in the subset, the spec-
ified bit of the character in the p;, position of the strings is true. Based on
this idea, one can encode the py;, position of a string is some ASCII character
in the following way. Recall that ASCII ’b’ is 98, which is 01100010.

//the pth position is b
macro is_b(varl p, varl q) =
g=p+1%&

p notin bit0 & p in bitl

& p notin bit2 & p notin bit3
& p notin bit4 & p in bitb

& p in bit6 & p notin bit7;

One can specify that the py, position of a string is any ASCII character by
simply removing the constraints on p.

//the pth position is anything in S
macro is_S(varl p, varl q) =
Q=P+

To concatenate two strings, we first define consecutive positions in an integer
set. We say p and q are two consecutive integers in P, if there does not exist
rin P and pjrjq, which can be specified as the following predicate in MONA.

macro consecutive_in_set(varl p, varl q, var2 P) =
P<qgqé&pinP & qinP &
alll r: p<r & r < q =>r notin P;

Then one can concatenate two regular expressions, e.g., Ex and Ey, in the
following way.

pred is_ExEy(varl p, varl q) =
exl r where p<=r & r<=q: is_Ex(p,r) & is_Ey(r, q);

A star closure, e.g., E* can be specified as a predicate that there exists
an integer set P such that for any two consecutive positions r and r’, the
substring between them is in E. The size of P indicates the repeated times
of E. Since the size of P can be arbitrary, the following predicate specifies
the star closure of E.

pred is_E_star(varl p, varl q) =
ex2 P: pinP & qin P &
alll r,r’: consecutive_in_set(r, r’, P) => is_E(r, r’);

In sum, any regular expression can be specified as a MONA predicate, which
can then be used by mona to generate a DFA encoded in BDDs.

Each time we encounter a new regular expression in PHP programs, we out-
put the corresponding DFA by first generating a mona predicate accordingly.
After we get the DFA, we can manipulate the DFA with previous defined
functions.

3.1.3 Context String Replacement

In this section, we formally define context string replacement and propose
a novel automata-based algorithm to manipulate this operation. We give a
running example in the next section.

Definition Unconditional Context String Replacement: Given three DFAs,
M, Ms, and Ms3. Construct a FA M, such that L(M) = {y|3k > 0, wiz1w; ..
L(Ml),y = wlclwg...wkckwkH,Vl <1 < k,xi € L(Mg),ci € L(Mg),Vl <
1 <k+1,w; & L(Mas)}.

Our algorithm consists of constructing several internal DFAs. Each of them
aims to satisfy a specified condition to construct the final DFA. Formally

CWETEWE41 €

speaking, a DFA M is a tuple < Q,Q;, %, T, Qf >. @ is a finite set of states.
Q; is the initial state. X is a set of alphabet and ()f is the final state. Let

T denote a new string in which we add bar to each character in x. Assume
f1,00 € X, and Vo € X, 7 & 3.

e My, such that L(M;) = {w|3k > 0,w = wir Wy ... WLTEWEL1 €
L(My),w = wit12@1fows . . . w1 Tpfowp41}-

] Mg, such that L(Mg) = {ﬂ)|ﬂ} = w1 T1fews . . . Wik Trlowg1, V1 <
i <k,xp€ L(M),V1<i<k+1lwg¢ L(Mg)}

o My, L(M;) = {w|3k > 0,witi@1fows. .. wphiTpowr 1 € L(My) N
L(Ms), w = withc1@ifows . . . wilicpZrowg41, V0 < i < k, ¢, € L(Ms)}.

o M = M3’g.

M s, denotes projection associated with X. This projection function replaces
all edges labelled with {#1,#2} U to an edge labelled with an empty string.
These € transitions induce the nondeterminism and hence, the projection of
a DFA may result in a NFA (Non-determinstic Finite Automaton). Though
a NFA can be converted to a DFA, in general, the number of states of the
corresponding DFA is exponential to the number of states of the given NFA.

3.1.4 A running example

We demonstrate the DFAs of our running example in Figure 1.

3.2 Front-End

The front-end parses programs written in the PHP language, transforms
them into a three address code format, and builds the corresponding Con-
trol Flow Graph (CFG). In these phases of the analysis, most of the PHP
language feature are correctly handled, but there currently is limited support
for code that uses object oriented features.

String analysis is built on top of our implementation of the interprocedural
data flow framework described in [13]. The framework approaches interpro-
cedural analysis using a “functional approach”: each procedure is treated as
a structure of blocks and establishes relations between attribute data at its
entry and related data at any of its nodes. Using these relations, attribute

10

S S—{<}S~{s} S-{c} S-{ S-{i} S-{p}s-{§ S

M1:

#2

§
O

Figure 1: The internal DFAs of the running example

data is propagated through each procedure call in a program. Unlike other
algorithms for interprocedural data flow analysis, e.g., [12], the framework
of [13] does not require the set of data flow facts to be finite or the data flow
functions to be distributive, and, therefore, it can be applied to implement
a larger number and type of analyses.

In string analysis, the set of data flow facts consists of strings in the al-
phabet of ASCII characters. We use FAs to represent sets of strings: a FA
represents the set of strings that correspond to the language accepted by the
automaton. In particular, we encode finite automata using the DFA format
specified in the MONA package. The meet operator for our analysis is the
union operation on FAs.

The analysis is performed in two steps. First, transfer functions are assigned
to each node in the CFG of the program. Besides the standard id, top
and bottom functions, we have implemented functions to propagate string
information along CFG nodes where string assignment, concatenation, or
replacement is performed. We also define functions to model the effect of
specific library functions, which, e.g., return string values by reading the
contents of external data sources, such as databases and files. This step of
the analysis simply requires an inspection of each node of the CFG and,
thus, is linear in the size of the analyzed program.

11

The second step of the analysis is the actual computation of the data flow
facts. This step is performed leveraging the iterative, workpile-driven al-
gorithm described in [13]. When the meet operator or one of the basis
operations needs to be applied (e.g., in a transfer function), the front-end
invokes the implementation of the corresponding operation provided by the
MONA-based back-end. Currently, an external program (written in the
C language) provides the interface through which the front-end and the
back-end communicate. All data required to execute a string operation is
exchanged using the DFA format specified by MONA.

For example, consider the statement $www = "http://" . $www; in our
sample program. During the first phase of the analysis, it is assigned the con-
catenate transfer function, which models the concatenation of two strings.
During the second phase, when information is propagated through the node
corresponding to this statement, the transfer function is applied. The trans-
fer function retrieves the DFAs corresponding to the values associated with
the string http:// and the variable $www at current point of the analy-
sis. Then, it invokes the interface program to execute the concatenation
of the two DFAs. The concatenation operation is performed by the back-
end, and the result, a DFA whose language consists of the concatenation
of the languages of the input DFAs, is sent back to the front-end. Finally,
the front-end updates the known facts about the variable $www storing the
returned DFA.

Depending on the specific problem at hand, the results of the analysis can
be used in different ways. Consider, for example, the problem of finding
cross-site scripting vulnerabilities in web applications. An application is
vulnerable to cross-site scripting attacks if it can be tricked into storing ma-
licious code (typically JavaScript code) from an attacker and then presenting
the malicious code to users [8]. In this case, victim users will execute the
code under the assumption that it originates from the (trusted) application,
rather than from the attacker. A well-understood method to check for the
presence of cross-site scripting vulnerabilities consists of determining if an
application can send back to a user data containing malicious JavaScript
code. This approach can be easily implemented using string analysis. In
fact, it is sufficient to determine all the program points where the applica-
tion sends attacker-controlled data to the user and, for each of these points,
determine if the set of possible string values of the transmitted data (as
determined by our analysis) intersects the language of malicious code. Note
that intersection and emptiness check are standard operations on DFAs and
therefore are easily implemented by our back-end component.

12

Finally, we implemented a taint analysis for PHP applications. Taint analy-
sis is a data flow analysis that determines the set of program variables whose
value is directly or indirectly under control of a user of a program. We use
taint analysis to perform the first step in the detection of cross site scripting
vulnerabilities: the identification of program points where attack-controlled
data is sent to a user. We specify a set of taint sources, i.e., sources of pos-
sibly attacker-controller data (e.g., request parameters, database content),
and a set of transfer functions that model how taint is propagated through
the application. Then, by reusing our implementation of the interprocedural
data flow framework, we can determine the taintedness of any variable in
the program.

4 Current status and Future Work

We have implemented a prototype tool, called STRANGER (standing on
STRing AutomatoN GEneratoR). The front end is implemented in PHP,
which can parse general PHP programs, analyze control flows, and proceed
taint analysis. The backend incorporated with MONA DFA packages is
implemented in C. STRANGER can proceed string analysis by combining
the front end and the back end as we described in the previous section. For
basic operations, STRANGER shows some promise in performance.

However, our current version is incomplete in several folds: a) the input
files of mona predicates are generated manually, and b) the implementation
of concatenate and replace operations of our backend is not exactly as we
specify. In our future work, we will first fix these defects, and then apply
our method to real applications.

References

[1] BRICS. The MONA project. http://www.brics.dk/mona/.

[2] Aske Simon Christensen, Anders Mgller, and Michael I. Schwartzbach.
Precise analysis of string expressions. In Proc. 10th International Sta-
tic Analysis Symposium, SAS ’03, volume 2694 of LNCS, pages 1-18.
Springer-Verlag, June 2003. Available from http://wuw.brics.dk/JSA/.

[3] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String
analysis for x86 binaries. In Proceedings of the 6th ACM SIGPLAN-

13

[11]

[12]

SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE 2005). ACM Press, September 2005.

Dale Gerdemann and Gertjan van Noord. Transducers from rewrite
rules with backreferences. In Proceedings of the 9th Conference of the
European Chapter of the Association for Computational Linguistics,
pages 126-133, 1999.

Carl Gould, Zhendong Su, and Premkumar Devanbu. Static checking of
dynamically generated queries in database applications. In Proceedings
of the 26th International Conference on Software Engineering, pages
645-654, 2004.

Lauri Karttunen. The replace operator. In Proceedings of the 33rd
annual meeting on Association for Computational Linguistics, pages
16-23, 1995.

Christian Kirkegaard, Anders Mller, and Michael I. Schwartzbach. Sta-
tic analysis of xml transformations in java. IEEE Transactions on Soft-
ware Engineering, 30(3), March 2004.

A. Klein. Cross site scripting explained. Technical report, Sanctum
Inc., 2002.

Yasuhiko Minamide. Static approximation of dynamically generated
web pages. In Proceedings of the 14th International World Wide Web
Conference, pages 432—441, 2005.

Mehryar Mohri, Fernando C. N. Pereira, and Michael D. Riley. AT&T
FSM library — finite-state machine library. http://www.research.
att.com/~fsmtools/fsm/.

Mehryar Mohri and Richard Sproat. An efficient compiler for weighted
rewrite rules. In Proceedings of the 34th annual meeting on Association
for Computational Linguistics, pages 231-238. Association for Compu-
tational Linguistics, 1996.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the Symposium on
Principles of Programming Languages, pages 49-61, 1995.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. In S. Muchnick and N. Jones, editors, Program Flow Analysis:
Theory and Applications, pages 189-234. Prentice-Hall, 1981.

14

[14] Nathan Vaillette. Logical specification of regular relations for NLP.
Natural Language Engineering, 9(1):65-85, 2003.

[15] Gertjan van Noord. FSA utilities toolbox. http://odur.let.rug.nl/
~vannoord/Fsa/.

[16] Gertjan van Noord and Dale Gerdemann. An extendible regular expres-
sion compiler for finite-state approaches in natural language processing.
In Proc. of the 4th International Workshop on Implementing Automata
(WIA), pages 122-139. Springer-Verlag, July 1999.

15

