
Introduction to KVM

By Sheng-wei Lee
swlee@swlee.org #20110929

Outline
•  Hypervisor - KVM  

•  virt-manager

•  Libvirt 

•  Migration

  How to install KVM.

  Bridged Networking

  Virsh
How to new a VM
How to adjust the setting of a VM.
How to make an image of a VM
How to new a VM using an existed image
How to close a VM.

  Virt-manager (VMM)

  KVM (for Kernel-based Virtual Machine) is a
full virtualization solution for Linux on x86
hardware containing virtualization extensions
(Intel VT or AMD-V). It consists of a loadable
kernel module, kvm.ko, that provides the
core virtualization infrastructure and a
processor specific module, kvm-intel.ko or
kvm-amd.ko. KVM also requires a modified
QEMU although work is underway to get the
required changes upstream.

  Using KVM, one can run multiple virtual
machines running unmodified Linux or
Windows images. Each virtual machine has
private virtualized hardware: a network card,
disk, graphics adapter, etc.

  The kernel component of KVM is included in
mainline Linux, as of 2.6.20.

  KVM is open source software.

  Guest Support Status 
http://www.linux-kvm.org/page/
Guest_Support_Status

The "Virtual Machine Manager" application (virt-
manager for short package name) is a desktop
user interface for managing virtual machines. It
presents a summary view of running domains,
their live performance & resource utilization
statistics. The detailed view graphs performance
& utilization over time. Wizards enable the
creation of new domains, and configuration &
adjustment of a domain's resource allocation &
virtual hardware. An embedded VNC client viewer
presents a full graphical console to the guest
domain.

  libvirt supports:
  The Xen hypervisor on Linux and Solaris hosts.
  The QEMU emulator
  The KVM Linux hypervisor
  The LXC Linux container system
  The OpenVZ Linux container system
  The User Mode Linux paravirtualized kernel
  The VirtualBox hypervisor
  The VMware ESX and GSX hypervisors
  The VMware Workstation and Player hypervisors
  Storage on IDE/SCSI/USB disks, FibreChannel, LVM, iSCSI, NFS

and filesystems

  See also:
 http://www.ibm.com/developerworks/linux/library/l-libvirt/index.html

  Storage drivers
  Directory backend
  Local filesystem backend
  Network filesystem backend
  Logical Volume Manager (LVM) backend
  Disk backend
  iSCSI backend
  SCSI backend
  Multipath backend

  KVM currently supports savevm/loadvm and
offline or live migration Migration commands
are given when in qemu-monitor (Alt-Ctrl-2).
Upon successful completion, the migrated VM
continues to run on the destination host.

  Note
 You can migrate a guest between an AMD

host to an Intel host and back. Naturally, a
64-bit guest can only be migrated to a 64-bit
host, but a 32-bit guest can be migrated at
will.

  Requirements
  The VM image is accessible on both source and

destination hosts (located on a shared storage, e.g.
using nfs).

  It is recommended an images-directory would be
found on the same path on both hosts (for migrations
of a copy-on-write image -- an image created on top
of a base-image using "qemu-image create -b ...")

  The src and dst hosts must be on the same subnet
(keeping guest's network when tap is used).

  Do not use -snapshot qemu command line option.
  For tcp: migration protocol
  the guest on the destination must be started the

same way it was started on the source.

internet

Switch

Shared Storage (Storage Pool)

Physical Server

  https://help.ubuntu.com/community/KVM

  Check that your CPU supports hardware virtualization

  To run KVM, you need a processor that supports
hardware virtualization. Intel and AMD both have
developed extensions for their processors, deemed
respectively Intel VT-x (code name Vanderpool) and
AMD-V (code name Pacifica). To see if your processor
supports one of these, you can review the output
from this command:

  egrep -c '(vmx|svm)' /proc/cpuinfo

  If 0 it means that your CPU doesn't support
hardware virtualization.

  If 1 (or more) it does - but you still need to
make sure that virtualization is enabled in the
BIOS.

  Use a 64 bit kernel (if possible)

  Running a 64 bit kernel on the host operating system
is recommended but not required.

  To serve more than 2GB of RAM for your VMs,
you must use a 64-bit kernel (see 32bit_and_64bit).
On a 32-bit kernel install, you'll be limited to 2GB
RAM at maximum for a given VM.

  Also, a 64-bit system can host both 32-bit and 64-
bit guests. A 32-bit system can only host 32-bit
guests.

  To see if your processor is 64-bit, you can run this
command:

 egrep -c ' lm ' /proc/cpuinfo

  If 0 is printed, it means that your CPU is not 64-bit.
  If 1 or higher, it is.
 Note: lm stands for Long Mode which equates to a 64-bit

CPU.

  Now see if your running kernel is 64-bit, just issue the
following command:

 uname –m

  x86_64 indicates a running 64-bit kernel. If you use see
i386, i486, i586 or i686, you're running a 32-bit kernel.

  Note: x86_64 is synonymous with amd64.

  Install Necessary Packages
  For the following setup, we will assume that

you are deploying KVM on a server, and
therefore do not have any X server on the
machine.

  Lucid (10.04) or later
  $ sudo apt-get install qemu-kvm libvirt-bin

ubuntu-vm-builder bridge-utils

  Add Users to Groups

  To check:
$ groups
adm dialout cdrom floppy audio dip video plugdev fuse lpadmin

admin sambashare kvm libvirtd

  To add your <username> to the groups:
 $ sudo adduser `id -un` kvm
 Adding user '<username>' to group 'kvm' ...
$ sudo adduser `id -un` libvirtd
 Adding user '<username>' to group 'libvirtd' ...

  Verify Installation
  You can test if your install has been

successful with the following command:

 $ virsh -c qemu:///system list
 Id Name State

  If on the other hand you get something like
this:

 $ virsh -c qemu:///system list
 libvir: Remote error : Permission denied
 error: failed to connect to the hypervisor

  Creating a network bridge on the host
  Install the bridge-utils package:

 $sudo apt-get install bridge-utils

  We are going to change the network
configuration1. To do it properly, you should
first stop networking2:

 $sudo invoke-rc.d networking stop/restart

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet static

Address <your_IP>
network <network>
netmask <netmask>
Broadcast <broadcast>
gateway <gateway>
bridge_ports eth0
bridge_stp off
bridge_fd 0
bridge_maxwait 0

$ sudo /etc/init.d/networking restart

  Creating a guest
  Guests can be created from XML

configuration files. You can copy existing
XML from previously created guests or use
the dumpxml option(refer to
Creating a virtual machine XML
dump(configuration file)). To create a guest
with virsh from an XML file:

$ virsh create configuration_file.xml

  Alternatively, if you want to define it, but not
run it, you could have used:

 $ virsh define /tmp/foo_new.xml

  Once a virtual machine is running, you can

manage it in many different ways, such as:

 $ virsh start foo

  Creating a virtual machine XML
dump(configuration file)

  To perform a data dump for an existing guest
with virsh:

$ virsh dumpxml [domain-id, domain-name or
domain-uuid] > <domain>.xml

  You can perform the following to install
Ubuntu Hardy:

$ sudo virt-install --connect qemu:///system\
 -n hardy -r 512 -f hardy.qcow2 -s 12 /
-c hardy-server-amd64.iso --vnc --

noautoconsole --os-type linux --os-variant
ubuntuHardy --accelerate --
network=network:default

  <domain type='kvm'>
  <name>Ubuntu-11.04-i686_Base</name>
  <uuid>4b4c19e8-9d76-0c9d-

cbf8-12141823d393</uuid>
  <memory>524288</memory>
  <currentMemory>524288</currentMemory>
  <vcpu>2</vcpu>
  <os>
  <type arch='i686' machine='pc-0.14'>hvm</

type>
  <boot dev='cdrom'/>
  <boot dev='hd'/>
  <bootmenu enable='no'/>
  </os>
 

  <features>
  <acpi/>
  <apic/>
  <pae/>
  </features>
  <clock offset='utc'/>
  <on_poweroff>destroy</on_poweroff>
  <on_reboot>restart</on_reboot>
  <on_crash>restart</on_crash>
  <devices>
  <emulator>/usr/bin/kvm</emulator>
  <disk type='file' device='disk'>
  <driver name='qemu' type='qcow2'/>
  <source file='/Storage/local/Base/Ubuntu-11.04-i686_Base.qcow2'/>
  <target dev='hda' bus='ide'/>
  <address type='drive' controller='0' bus='0' unit='0'/>
  </disk>

  <disk type='file' device='cdrom'>
  <driver name='qemu' type='raw'/>
  <target dev='hdc' bus='ide'/>
  <readonly/>
  <address type='drive' controller='0' bus='1' unit='0'/>
  </disk>
  <controller type='ide' index='0'>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x01'

function='0x1'/>
  </controller>
  <interface type='network'>
  <mac address='52:54:00:4a:9a:02'/>
  <source network='default'/>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x03'

function='0x0'/>
  </interface>
 

  <serial type='pty'>
  <target port='0'/>
  </serial>
  <console type='pty'>
  <target type='serial' port='0'/>
  </console>
  <input type='mouse' bus='ps2'/>
  <graphics type='vnc' port='-1' autoport='yes'/>
  <sound model='ac97'>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
  </sound>
  <video>
  <model type='cirrus' vram='9216' heads='1'/>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
  </video>
  <memballoon model='virtio'>
  <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
  </memballoon>
  </devices>
  </domain>

  Create the hard drive image with qcow2
format:

$ qemu-img create -f qcow2 <image

name>.qcow2

  Cloning a virtual machine
  You can clone an existing virtual machine

using the virt-clone tool. This duplicates the
disk image and sets up the virtual machine
domain configuration.

  If you wish to clone a virtual machine
named srchost to a new machine newhost,
ensure that the virtual machine srchost is not
running and execute the following command.

$ virt-clone --connect=qemu:///system -o srchost -n newhost -
f /path/to/newhost.qcow2

$ virsh shutdown foo

$ virsh suspend foo

$ virsh resume foo

$ virsh save foo state-file
 To save the current state of a guest to a file using the virsh command

$virsh restore foo stat-file
To restore a guest that you previously saved with the

virsh save option using the virsh command

  Virt-Manager

  If you are working on a desktop computer
you might want to install a GUI tool to
manage virtual machines.

 $ sudo apt-get install virt-manager

