
Chapter 1
Chapter 2

Map Reduce and Design Patterns
Lecture 1

Fang Yu

Software Security Lab.
Department of Management Information Systems
College of Commerce, National Chengchi University

http://soslab.nccu.edu.tw

Cloud Computation, March 10, 2015

1 / 14



Chapter 1
Chapter 2

About Me

Yu, Fang

• 2014-present: Associate Professor, Department of
Management Information Systems, National Chengchi
University

• 2010-2014: Assistant Professor, Department of Management
Information Systems, National Chengchi University

• 2005-2010: Ph.D. and M.S., Department of Computer
Science, University of California at Santa Barbara

• 2001-2005: Institute of Information Science, Academia Sinica

• 1994-2000: M.B.A. and B.B.A., Department of Information
Management, National Taiwan University

2 / 14



Chapter 1
Chapter 2

Hadoop and MapReduce Refresh

Hadoop: The Definitive Guide or the Apache Hadoop website.

• Hadoop MapReduce jobs are divided into a set of map tasks
and reduce tasks that run in a distributed fashion on a cluster
of computers.

• Each task works on the small subset of the data it has been
assigned so that the load is spread across the cluster.

• The map tasks generally load, parse, transform, and filter
data.

• Each reduce task is responsible for handling a subset of the
map task output.

3 / 14



Chapter 1
Chapter 2

Numerical summarizations

Summarization

Grouping similar data together and then performing an operation
such as calculating a statistic, building an index, or just simply
counting

• Numerical summarizations

• Inverted index, and

• Counting with counters

4 / 14



Chapter 1
Chapter 2

Numerical summarizations

Numerical Summarization

Group records together by a key and calculate a numerical
aggregate per group

• Consider θ to be a generic numerical summarization function

• Over some list of values (v1, v2, . . . , vn), find λ=θ(v1, v2,
. . . , vn)

• θ could be minimum, maximum, average, median, and
standard deviation

5 / 14



Chapter 1
Chapter 2

Numerical summarizations

Motivation

Consider that your website logs each time a user logs onto the
website, enters a query, clicks ads, or performs any other notable
action

• When your website is more active?

• How affective your ads are?

6 / 14



Chapter 1
Chapter 2

Numerical summarizations

Minimum, maximum, and count example

Problem: Given a list of users comments, determine the first and
last time a user commented and the total number of comments
from that user.

• Key: User ID, Value: MinMaxCountTuple

• Mapper?

• Reducer?

7 / 14



Chapter 1
Chapter 2

Numerical summarizations

Ideas

• Mapper: For each comment, generate a pair
<UserId, (CommentTime, CommentTime, 1)>

• Reducer: For each group by UserID, find min, max, and
aggregate count

8 / 14



Chapter 1
Chapter 2

Numerical summarizations

More details about the Reducer

For each value in a group:

• If the output results minimum is not yet set, or the values
minimum is less than results current minimum, we set the
results minimum to the input value.

• Same to the maximum, except using a greater than operator

• Each values count is added to a running sum

Remark: the reducer code can be used as a combiner as
associativity is preserved.

9 / 14



Chapter 1
Chapter 2

Numerical summarizations

Average example

Problem: Given a list of users comments, determine the average
comment length per hour of day.

• <Hour, CommentLength>

• Mapper?

• Reducer?

• Can the reducer code be used as a combiner?

10 / 14



Chapter 1
Chapter 2

Numerical summarizations

Average example

To calculate an average, we need two values for each group: the
sum of the values that we want to average and the number of
values that went into the sum.

• <Hour, (Count, AvgCommentLength)>

• Mapper: For each comment, generate a pair
<Hour, (1, CommentLength)>

• Reducer: For each group by Hour, accumulate Count and
Sum, and compute AvgCommentLength as Sum/Count. Set
the pair as
<Hour, (Count, AvgCommentLength)>

• The reducer code can be used as a combiner

11 / 14



Chapter 1
Chapter 2

Numerical summarizations

Median and Standard Deviation

Could be more complicated

• Median requires sorting

• Standard deviation requires the average to be discovered prior
to reduction

12 / 14



Chapter 1
Chapter 2

Numerical summarizations

Median and Standard Deviation

Problem: Given a list of users comments, determine the median
and standard deviation of comment lengths per hour of day

• A naive idea: <Hour, CommentLength>

• Mapper: For each comment, generate a pair
<Hour, CommentLength>

• Reducer: For each group by Hour, sort the comment lengths
in a list to find the median value, and accumulate count and
sum to calculate mean. Revisit the list to accumulate sum of
deviations by squaring the difference between each comment
length and the mean and compute standard deviation

• A combiner cannot be used in this implementation. Can we
do better?

13 / 14



Chapter 1
Chapter 2

Numerical summarizations

Memory-conscious median and standard deviation

Instead of having a list whose scaling is O(n) where n = number of
comments, the number of key/value pairs in our map is
O(max(m)) where m = maximum comment length.

• <Hour, A sorted map of (CommentLength, Count)>

• Mapper: For each comment, generate a pair
<Hour, A singleton map with (CommentLength, 1)>

• Reducer: For each group by Hour, maintain the sorted map
<Hour, A sorted map of (CommentLength, Count)> Revisit
the map to find the median and sum, and accumulate sum of
deviations by multiplying the count with the squaring of the
difference between each comment length and the mean to
compute standard deviation

• A combiner can be used to aggregate the sorted map

14 / 14


	Chapter 1
	Chapter 2
	Numerical summarizations


