

Structural Induction on Trees

Structural induction is not limited to lists; it applies to any tree
structure.

The general induction principle is the following:

To prove a property P(t) for all trees t of a certain type,

» show that P(1) holds for all leaves 1 of a tree,
» for each type of internal node t with subtrees s,, ..., s,, show
that
P(s1) A ... AP(sn) implies P(t).

Example: IntSets

Recall our definition of IntSet with the operations contains and
incl:

abstract class IntSet {
def incl(x: Int): IntSet
def contains(x: Int): Boolean

object Empty extends IntSet {
def contains(x: Int): Boolean = false
def incl(x: Int): IntSet = NonEmpty(x, Empty, Empty)

Example: IntSets (2)

case class NonEmpty(elem: Int, left: IntSet, right: IntSet) extends IntSet {

def contains(x: Int): Boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true

def incl(x: Int): IntSet =
if (x < elem) NonEmpty(elem, left incl x, right)
else if (x > elem) NonEmpty(elem, left, right incl x)
else this

The Laws of IntSet

What does it mean to prove the correctness of this implementation?

One way to define and show the correctness of an implementation
consists of proving the laws that it respects.

In the case of IntSet, we have the following three laws:

For any set s, and elements x and y:

Empty contains x = false
(s incl x) contains x = true
(s incl x) contains y = s contains y if x =y

(In fact, we can show that these laws completely characterize the
desired data type).

Proving the Laws of IntSet (1)

How can we prove these laws?
Proposition 1: Empty contains x = false.

Proof: According to the definition of contains in Empty.

Proving the Laws of IntSet (2)

Proposition 2: (s incl x) contains x = true

Proof by structural induction on s.

Base case: Empty

(Empty incl x) contains x

Proving the Laws of IntSet (2)

Proposition 2: (s incl x) contains x = true

Proof by structural induction on s.

Base case: Empty

(Empty incl x) contains x

= NonEmpty(x, Empty, Empty) contains x // by definition of Empty.incl

Proving the Laws of IntSet (2)

Proposition 2: (s incl x) contains x = true

Proof by structural induction on s.

Base case: Empty

(Empty incl x) contains x

NonEmpty(x, Empty, Empty) contains x // by definition of Empty.incl

= true // by definition of NonEmpty.contains

Proving the Laws of IntSet (3)

’Induction step: NonEmpty(x, 1, r)‘

(NonEmpty(x, 1, r) incl x) contains x

Nwéw?‘-/ (7—, Q\'V)

ppinto

ppinto

Proving the Laws of IntSet (3)

’Induction step: NonEmpty(x, 1, r)‘

(NonEmpty(x, 1, r) incl x) contains x

N\

= NonEmpty(x, 1, r) contains x // by definition of NonEmpty.incl

ppinto

Proving the Laws of IntSet (3)

‘Induction step: NonEmpty(x, 1, r)‘

(NonEmpty(x, 1, r) incl x) contains x

= NonEmpty(x, 1, r) contains x // by definition of NonEmpty.incl

true // by definition of NonEmpty.contains

Proving the Laws of IntSet (4)

’Induction step: NonEmpty(y, 1, r) where y < x

(NonEmpty(y, 1, r) incl x) contains x

Proving the Laws of IntSet (4)

’Induction step: NonEmpty(y, 1, r) where y < x

(NonEmpty(y, 1, r) incl x) contains x

= NonEmpty(y, 1, r incl x) contains x // by definition of NonEmpty.incl

ppinto

Proving the Laws of IntSet (4)

’Induction step: NonEmpty(y, 1, r) where y < x

(NonEmpty(y, 1, r) incl x) contains x

= NonEmpty(y, 1, r incl x) contains x // by definition of NonEmpty.incl

(r incl x) contains x // by definition of NonEmpty.contains

Proving the Laws of IntSet (4)

‘Induction step: NonEmpty(y, 1, r) where y < x

(NonEmpty(y, 1, r) incl x) contains x

= NonEmpty(y, 1, r incl x) contains x // by definition of NonEmpty.incl

(r incl x) contains x // by definition of NonEmpty.contains

true // by the induction hypothesis

Proving the Laws of IntSet (4)

’Induction step: NonEmpty(y, 1, r) where y < x

(NonEmpty(y, 1, r) incl x) contains x

= NonEmpty(y, 1, r incl x) contains x // by definition of NonEmpty.incl

(r incl x) contains x // by definition of NonEmpty.contains

= true // by the induction hypothesis

Induction step: NonEmpty(y, 1, r) where y > x|is analogous

Proving the Laws of IntSet (5)

Proposition 3: If x !=y then
(xs incl y) contains x = xs contains x.

Proof by structural induction on s. Assume that y < x (the dual
case x < y is analogous).

Base case: Empty ‘

(Empty incl y) contains x // to show: = Empty contains x

Proving the Laws of IntSet (5)

Proposition 3: If x !=y then
(xs incl y) contains x = xs contains x.

Proof by structural induction on s. Assume that y < x (the dual
case x < y is analogous).

Base case: Empty ‘

(Empty incl y) contains x // to show: = Empty contains x

= NonEmpty(y, Empty, Empty) contains x // by definition of Empty.incl

ppinto

Proving the Laws of IntSet (5)

Proposition 3: If x !=y then
(xs incl y) contains x = xs contains x.

Proof by structural induction on s. Assume that y < x (the dual
case x < y is analogous).

Base case: Empty ‘

(Empty incl y) contains x // to show: = Empty contains x

NonEmpty(y, Empty, Empty) contains x // by definition of Empty.incl

_J
—
Empty contains x // by definition of NonEmpty.contains

ppinto

Proving the Laws of IntSet (6)

For the inductive step, we need to consider a tree NonEmpty(z, 1,

r). We distinguish five cases:

y < X

z < X

SAREETE A
< N
A A

ppinto

First Two Cases: z = x, z = y

’Induction step: NonEmpty(x, 1, r)

(NonEmpty(x, 1, r) incl y) contains x // to show: = NonEmpty(x, 1, r) contains x

First Two Cases: z = x, z = y

’Induction step: NonEmpty(x, 1, r)

(NonEmpty(x, 1, r) incl y) contains x // to show: = NonEmpty(x, 1, r) contains x
S~—

= NonEmpty(x, 1 incl y, r) contains x // by definition of NonEmpty.incl

_—

ppinto

First Two Cases: z = x, z = y

‘Induction step: NonEmpty(x, 1, r)

(NonEmpty(x, 1, r) incl y) contains x // to show: = NonEmpty(x, 1, r) contains x

= NonEmpty(x, 1 incl y, r) contains x // by definition of NonEmpty.incl

// by definition of NonEmpty.contains

true

First Two Cases: z = x, z = y

‘Induction step: NonEmpty(x, 1, r)

(NonEmpty(x, 1, r) incl y) contains x // to show: = NonEmpty(x, 1, r) contains x

= NonEmpty(x, 1 incl y, r) contains x // by definition of NonEmpty.incl

true // by definition of NonEmpty.contains

NonEmpty(x, 1, r) contains x // by definition of NonEmpty.contains

First Two Cases: z = x, z = y

‘Induction step: NonEmpty(x, 1, r)

(NonEmpty(x, 1, r) incl y) contains x // to show: = NonEmpty(x, 1, r) contains x

= NonEmpty(x, 1 incl y, r) contains x // by definition of NonEmpty.incl

true // by definition of NonEmpty.contains

NonEmpty(x, 1, r) contains x // by definition of NonEmpty.contains

Induction step: NonEmpty(y, 1, r)

(NonEmpty(y, 1, r) incl y) contains x // to show: = NonEmpty(y, 1, r) contains x

First Two Cases: z = x, z = y

‘Induction step: NonEmpty(x, 1, r)

(NonEmpty(x, 1, r) incl y) contains x // to show: = NonEmpty(x, 1, r) contains x

= NonEmpty(x, 1 incl y, r) contains x // by definition of NonEmpty.incl

true // by definition of NonEmpty.contains

NonEmpty(x, 1, r) contains x // by definition of NonEmpty.contains

Induction step: NonEmpty(y, 1, r)

(NonEmpty(y, 1, r) incl y) contains x // to show: = NonEmpty(y, 1, r) contains x

= NonEmpty(y, 1, r) contains x // by definition of NonEmpty.incl

Casez <y

’Induction step: NonEmpty(z, 1, r) where z < y < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

Casez <y

’Induction step: NonEmpty(z, 1, r) where z < y < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1, r incl y) contains x // by definition of NonEmpty.incl

Casez <y

’Induction step: NonEmpty(z, 1, r) where z < y < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1, r incl y) contains x // by definition of NonEmpty.incl

(r incl y) contains x // by definition of NonEmpty.contains

Casez <y

‘Induction step: NonEmpty(z, 1, r) where z < y < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1, r incl y) contains x // by definition of NonEmpty.incl

(r incl y) contains x // by definition of NonEmpty.contains

= r contains x // by the induction hypothesis

Casez <y

’Induction step: NonEmpty(z, 1, r) where z < y < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1, r incl y) contains x // by definition of NopEmpty.incl
= (r incl y) contains x // by definition of MNonEmpty.contains
= r contains x // by the inducti

n hypothesis

= NonEmpty(z, 1, r) contains x inj¥ion of NonEmpty.contains

ppinto

Casey < z < x

’Induction step: NonEmpty(z, 1, r) wherey < z < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

Casey < z < x

’Induction step: NonEmpty(z, 1, r) wherey < z < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1 incl y, r) contains x // by definition of NonEmpty.incl

Casey < z < x

’Induction step: NonEmpty(z, 1, r) wherey < z < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1 incl y, r) contains x // by definition of NonEmpty.incl

// by definition of NonEmpty.contains

r contains x

Casey < z < x

‘Induction step: NonEmpty(z, 1, r) wherey < z < x

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1 incl y, r) contains x // by definition of NonEmpty.incl

r contains x // by definition of NonEmpty.contains

NonEmpty(z, 1, r) contains x // by definition of NonEmpty.contains

Case x < z

’Induction step: NonEmpty(z, 1, r) wherey < x < z

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

Case x < z

’Induction step: NonEmpty(z, 1, r) wherey < x < z

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1 incl y, r) contains x // by definition of NonEmpty.incl

Case x < z

’Induction step: NonEmpty(z, 1, r) wherey < x < z

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1 incl y, r) contains x // by definition of NonEmpty.incl

(1 incl y) contains x // by definition of NonEmpty.contains

Case x < z

‘Induction step: NonEmpty(z, 1, r) wherey < x < z

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1 incl y, r) contains x // by definition of NonEmpty.incl

(1 incl y) contains x // by definition of NonEmpty.contains

= 1 contains x // by the induction hypothesis

Case x < z

’Induction step: NonEmpty(z, 1, r) wherey < x < z

(NonEmpty(z, 1, r) incl y) contains x // to show: = NonEmpty(z, 1, r) contains x

= NonEmpty(z, 1 incl y, r) contains x // by definition of NonEmpty.incl

= (1 incl y) contains x // by definition of NonEmpty.contains
= 1 contains x // by the induction hypothesis
= NonEmpty(z, 1, r) contains x // by definition of NonEmpty.contains

These are all the cases, so the proposition is established.

Exercise (Hard)

Suppose we add a function union to IntSet:

abstract class IntSet { ...
def union(other: IntSet): IntSet
}
object Empty extends IntSet { ...
def union(other: IntSet) = other
}
class NonEmpty(x: Int, 1: IntSet, r: IntSet) extends IntSet { ...
def union(other: IntSet): IntSet = (1 union (r union (other))) incl x

Exercise (Hard)

The correctness of union can be translated into the following law:

Proposition 4
(xs union ys) contains x = xs contains x || ys contains x

Show proposition 4 by using structural induction on xs.

Collections and Combinatorial Search

We've seen a number of immutable collections that provide powerful
operations, in particular for combinatorial search.

For instance, to find the second prime number between 1000 and
10000:

((1000 to 10000) filter isPrime) (1)
This is much shorter than the recursive alternative:

def secondPrime(from: Int, to: Int) = nthPrime(from, to, 2)
def nthPrime(from: Int, to: Int, n: Int): Int =
if (from >= to) throw new Error(”no prime”)
else if (isPrime(from))
if (n == 1) from else nthPrime(from + 1, to, n - 1)
else nthPrime(from + 1, to, n)

Performance Problem

But from a standpoint of performance,
((1000 to 10000) filter isPrime) (1)

is pretty bad; it constructs all prime numbers between 1000 and
10000 in a list, but only ever looks at the first two elements of that
list.

Reducing the upper bound would speed things up, but risks that we
miss the second prime number all together.

Delayed Evaluation

However, we can make the short-code efficient by using a trick:

Avoid computing the tail of a sequence until it is needed
for the evaluation result (which might be never)

This idea is implemented in a new class, the Stream.

Streams are similar to lists, but their tail is evaluated only on
demand.

Defining Streams

Streams are defined from a constant Stream.empty and a constructor
Stream. cons.

For instance,

val xs = Stream.cons(1, Stream.cons(2, Stream.empty))

They can also be defined like the other collections by using the ;,__L—\l

object Stream as a factory. A 73
Stream(1, 2, 3)

The toStream method on a collection will turn the collection into a
stream:

(1 to 1000).toStream > resQ: Streamf[Int] = Stream(1, ?)

ppinto

Stream Ranges

Let's try to write a function that returns (1o until hi).toStream Q‘{mam Pa_gy
directly:

def streamRange(lo: Int, hi: Int): Stream[Int] =

A
if (lo >= hi) Stream.empty - /?:D\\
else Stream.cons(lo, streamRange(lo + 1, hi)) 2

z

.

Compare to the same function that produces a list:

def listRange(lo: Int, hi: Int): List[Int] = QLS!?“‘XZ (4 (AO)
if (lo >= hi) Nil 1o
else lo :: listRange(lo + 1, hi) ﬁ—/ N

K,
/.

lv e

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

Comparing the Two Range Functions

The functions have almost identical structure yet they evaluate
quite differently.

» listRange(start, end) will produce a list with end - start
elements and return it.

> streamRange(start, end) returns a single object of type Stream
with start as head element.

» The other elements are only computed when they are needed,
where “needed” means that someone calls tail on the stream.

Methods on Streams

Stream supports almost all methods of List.

For instance, to find the second prime number between 1000 and
10000:

((1000 to 10000).toStream filter isPrime) (1)

Stream Cons Operator

The one major exception is ::.
x :: xs always produces a list, never a stream.

There is however an alternative operator #:: which produces a
stream.

x #:: xs == Stream.cons(x, Xxs)

#:: can be used in expressions as well as patterns.

Implementation of Streams
The implementation of streams is quite close to the one of lists.
Here's the trait Stream:

trait Stream[+A] extends Seq[A] {
def isEmpty: Boolean
def head: A
def tail: Stream[A]

3

As for lists, all other methods can be defined in terms of these three.

Implementation of Streams(2)

Concrete implementations of streams are defined in the Stream
companion object. Here's a first draft:
object Stream { o~ el

S'l-RdAA’m‘ ~
def cons[T]1(hd: T, tl:@Stream[T]) = new Stream[T] {
def isEmpty = false

def head = hd
def tail = tl
e

}

val empty = new Stream[Nothing] {
def isEmpty = true
def head = throw new NoSuchElementException(”empty.head”)
def tail = throw new NoSuchElementException(”empty.tail”)

ppinto

ppinto

ppinto

Difference to List

The only important difference between the implementations of List
and Stream concern t1, the second parameter of Stream.cons.

For streams, this is a by-name parameter.

That's why the second argument to Stream.cons is not evaluated at
the point of call.

Instead, it will be evaluated each time someone calls tail on a
Stream object.

Other Stream Methods

The other stream methods are implemented analogously to their list
counterparts.

For instance, here's filter:
class Stream[+T] {

def filter(p: T => Boolean): Stream[T] =
if (isEmpty) this
else if (p(head)) cons(head,
else tail.filter(p)

ppinto

ppinto

Exercise

Consider this modification of streamRange.

def streamRange(lo: Int, hi: Int): Stream[Int] = {
print(lo+”)
if (lo >= hi) Stream.empty
else Stream.cons(lo, streamRange(lo + 1, hi))

3

When you write streamRange(1, 10).take(3).toList
what gets printed?

Nothing

1

123

1234
123456789

O O O O o

Exercise

Consider this modification of streamRange.

def streamRange(lo: Int, hi: Int): Stream[Int] = {
print(lo+”)

if (lo >= hi) Stream.empty m

else Stream.cons(lo, streamRange(lo + 1, hi))

2
’ .
/T N\

When you write streamRange(1, 10).take(3).toList 2 (l {
what gets printed? / \

0 Nothing M
0 1

0 123

0 1234

0 123456789

ppinto

ppinto

ppinto

Lazy Evaluation

The proposed implementation suffers from a serious potential
performance problem: If tail is called several times, the
corresponding stream will be recomputed each time.

This problem can be avoided by storing the result of the first
evaluation of tail and re-using the stored result instead of
recomputing tail.

This optimization is sound, since in a purely functional language an
expression produces the same result each time it is evaluated.

We call this scheme /azy evaluation (as opposed to by-name
evaluation in the case where everything is recomputed, and strict
evaluation for normal parameters and val definitions.)

Lazy Evaluation in Scala

Haskell is a functional programming language that uses lazy
evaluation by default.

Scala uses strict evaluation by default, but allows lazy evaluation of
value definitions with the lazy val form:

lazy val x = expr M X = g;i@*

ppinto

Exercise:

Consider the following program:

def expr = { XZZZ
val x = { print("x”); 1}
lazy val y = { print(”y”); 2 }
def z = { print(”z”); 3 }
z+y+Xx+z+y+Xx
3

expr

If you run this program, what gets printed as a side effect of
evaluating expr?

0 ZYXZyX (] Xzyz
0 Xyzz 0 zyzz
0 something else

ppinto

ppinto

ppinto

ppinto

ppinto

Lazy Vals and Streams

Using a lazy value for tail, Stream.cons can be implemented more
efficiently:

def cons[T](hd: T, tl: => Stream[T]) = new Stream[T] {
def head = hd
lazy val tail = tl

Seeing it in Action

To convince ourselves that the implementation of streams really
does avoid unnecessary computation, let's observe the execution
trace of the expression:

(streamRange (1000, 10000) filter isPrime) apply 1

Seeing it in Action

To convince ourselves that the implementation of streams really
does avoid unnecessary computation, let's observe the execution
trace of the expression:

(streamRange (1000, 10000) filter isPrime) apply 1

-=> (if (1000 >= 10000) empty // by expanding streamRange
else cons(1000, streamRange(1000 + 1, 10000))
.filter(isPrime).apply(1)

ppinto

Seeing it in Action

To convince ourselves that the implementation of streams really
does avoid unnecessary computation, let's observe the execution
trace of the expression:

(streamRange (1000, 10000) filter isPrime) apply 1

-=> (if (1000 >= 10000) empty // by expanding streamRange
else cons(1000, streamRange(1000 + 1, 10000))
.filter(isPrime).apply(1)

--> cons(1000, streamRange(1000 + 1, 10000)) // by evaluating if
.filter(isPrime).apply(1)

Evaluation Trace (2)

Let's abbreviate cons(1000, streamRange(1000 + 1, 10000)) to C1.

Cl.filter(isPrime).apply(1)

Evaluation Trace (2)

Let's abbreviate cons(1000, streamRange(1000 + 1, 10000)) to C1.
Cl.filter(isPrime).apply(1)

--> (if (C1.isEmpty) C1 // by expanding filter
else if (isPrime(Cl1.head)) cons(C1.head, C1.tail.filter(isPrime))
else Cl.tail.filter(isPrime))
-apply(1)

Evaluation Trace (2)

Let's abbreviate cons(1000, streamRange(1000 + 1, 10000)) to C1.
Cl.filter(isPrime).apply(1)

--> (if (C1.isEmpty) C1 // by expanding filter
else if (isPrime(Cl1.head)) cons(C1.head, C1.tail.filter(isPrime))
else Cl.tail.filter(isPrime))
-apply(1)

--> (if (isPrime(C1.head)) cons(Cl1.head, C1.tail.filter(isPrime))
else C1.tail.filter(isPrime)) // by eval. if

-apply(1)

Evaluation Trace (2)

Let's abbreviate cons(1000, streamRange(1000 + 1, 10000)) to C1.

Cl.filter(isPrime).apply(1)

--> (if (C1.isEmpty) C1 // by expanding filter
else if (isPrime(C1.head)) cons(C1.head, Cl1.tail.filter(isPrime))
else Cl.tail.filter(isPrime))

-apply (1)

--> (if (isPrime(C1.head)) cons(Cl1.head, C1.tail.filter(isPrime))
else C1.tail.filter(isPrime)) // by eval. if
-apply (1)

-=> (if (isPrime(1000)) cons(C1.head, Cl1.tail.filter(isPrime))
else Cl1.tail.filter(isPrime)) // by eval. head

.apply (1)

Evaluation Trace (3)

-->> (if (false) cons(Cl.head, C1.tail.filter(isPrime)) // by eval. isPrime
else C1.tail.filter(isPrime))
-apply (1)

Evaluation Trace (3)

-->> (if (false) cons(Cl.head, C1.tail.filter(isPrime)) // by eval. isPrime
else C1.tail.filter(isPrime))
-apply (1)

-=> (Cl.tail.filter(isPrime).apply(1) // by eval. if

Evaluation Trace (3)

-->> (if (false) cons(Cl.head, C1.tail.filter(isPrime)) // by eval. isPrime
else C1.tail.filter(isPrime))

-apply (1)
-=> (Cl.tail.filter(isPrime).apply(1) // by eval. if
-->> streamRange(1001, 10000) // by eval. tail

.filter(isPrime).apply(1)

The evaluation sequence continues like this until:

ppinto

Evaluation Trace (3)

-->> (if (false) cons(Cl.head, Cl1.tail.filter(isPrime)) // by

else C1.tail.filter(isPrime))
-apply (1)

--> C(Cl.tail.filter(isPrime).apply(1)

-->> streamRange(1001, 10000)
.filter(isPrime).apply(1)

The evaluation sequence continues like this until:

-->> streamRange (1009, 10000)
.filter(isPrime).apply(1)

--> cons(1009, streamRange(1009 + 1, 10000))
.filter(isPrime).apply(1)

// by

// by

// by

eval.

eval.

eval.

eval.

isPrime

if

tail

streamRange

Evaluation Trace (4)

Let's abbreviate cons(1009, streamRange(1009 + 1, 10000)) to C2

C2.filter(isPrime).apply(1)

Evaluation Trace (4)

Let's abbreviate cons(1009, streamRange(1009 + 1, 10000)) to C2.
C2.filter(isPrime).apply(1)

-=>% cons (1009, C2.tail.filter(isPrime)).apply(1) / &Q{c‘

ppinto

ppinto

Evaluation Trace (4)

Let's abbreviate cons(1009, streamRange(1009 + 1, 10000)) to C2
C2.filter(isPrime).apply(1)
--> cons(1009, C2.tail.filter(isPrime)).apply(1)

--> if (1 == @) cons(1009, C2.tail.filter(isPrime)).head // by eval. apply
else cons(1009, C2.tail.filter(isPrime)).tail.apply (@)

Assuming apply is defined like this in Stream[T]
def apply(n: Int): T =

if (n == @) head
else tail.apply(n-1)

Evaluation Trace (4)
Let's abbreviate cons(1009, streamRange(1009 + 1, 10000)) to C2
C2.filter(isPrime).apply(1)
-->> cons (1009, C2.tail.filter(isPrime)).apply(1) // by eval. filter

--> if (1 == @) cons(1009, C2.tail.filter(isPrime)).head // by eval. apply
else cons(1009, C2.tail.filter(isPrime)).tail.apply (@)

--> cons(1009, C2.tail.filter(isPrime)).tail.apply(@) // by eval. if

Evaluation Trace (4)
Let's abbreviate cons(1009, streamRange(1009 + 1, 10000)) to C2
C2.filter(isPrime).apply(1)
-->> cons (1009, C2.tail.filter(isPrime)).apply(1) // by eval. filter

--> if (1 == @) cons(1009, C2.tail.filter(isPrime)).head // by eval. apply
else cons(1009, C2.tail.filter(isPrime)).tail.apply (@)

--> cons(1009, C2.tail.filter(isPrime)).tail.apply(@) // by eval. if

--> (C2.tail.filter(isPrime).apply(@) // by eval. tail

—

ppinto

ppinto

Evaluation Trace (4)
Let's abbreviate cons(1009, streamRange(1009 + 1, 10000)) to C2
C2.filter(isPrime).apply(1)
-->> cons (1009, C2.tail.filter(isPrime)).apply(1) // by eval. filter

--> if (1 == @) cons(1009, C2.tail.filter(isPrime)).head // by eval. apply
else cons(1009, C2.tail.filter(isPrime)).tail.apply (@)

--> cons(1009, C2.tail.filter(isPrime)).tail.apply(@) // by eval. if
--> (C2.tail.filter(isPrime).apply(@) // by eval. tail

--> streamRange (1010, 10000).filter(isPrime).apply(@) // by eval. tail

—

ppinto

ppinto

Evaluation Trace (5)

The process continues until

--> streamRange(1013, 10000).filter(isPrime).apply (@)

Evaluation Trace (5)

The process continues until

--> streamRange(1013, 10000).filter(isPrime).apply (@)

--> cons(1013, streamRange(1013 + 1, 10000)) // by eval. streamRange
.filter(isPrime).apply (@)

Let C3 be a shorthand for cons(1013, streamRange(1013 + 1, 10000).

== (C3.filter(isPrime).apply(@)

Evaluation Trace (5)

The process continues until

--> streamRange(1013, 10000).filter(isPrime).apply (@)

--> cons(1013, streamRange(1013 + 1, 10000)) // by eval. streamRange
.filter(isPrime).apply (@)

Let C3 be a shorthand for cons(1013, streamRange(1013 + 1, 10000).
== (C3.filter(isPrime).apply(@)

-->> cons(1013, C3.tail.filter(isPrime)).apply(0) // by eval. filter

Evaluation Trace (5)

The process continues until

--> streamRange (1013, 10000).filter(isPrime).apply(0)

--> cons(1013, streamRange(1013 + 1, 10000)) // by eval. streamRange
.filter(isPrime).apply (@)

Let C3 be a shorthand for cons(1013, streamRange(1013 + 1, 10000).

== (C3.filter(isPrime).apply (@)

-->> cons (1013, C3.tail.filter(isPrime)).apply(@) // by eval. filter

-—> // by eval. apply

Only the part of the stream necessary to compute the result has
been constriicted

ppinto

Infinite Streams

You saw that all elements of a stream except the first one are
computed only when they are needed to produce a result.

This opens up the possibility to define infinite streams!

For instance, here is the stream of all integers starting from a given
number:

def from(n: Int): Stream[Int] = n #:: from(n+1)

The stream of all natural numbers:

Infinite Streams

You saw that all elements of a stream except the first one are
computed only when they are needed to produce a result.

This opens up the possibility to define infinite streams!

For instance, here is the stream of all integers starting from a given
number:

def from(n: Int): Stream[Int] = n #:: from(n+1)
The stream of all natural numbers:
val nats = from(0Q)

The stream of all multiples of 4:

Infinite Streams

You saw that all elements of a stream except the first one are
computed only when they are needed to produce a result.

This opens up the possibility to define infinite streams!

For instance, here is the stream of all integers starting from a given
number:

def from(n: Int): Stream[Int] = n #:: from(n+1)
The stream of all natural numbers:

val nats = from(0Q)
The stream of all multiples of 4:

nats map (_ * 4)

The Sieve of Eratosthenes

The Sieve of Eratosthenes is an ancient technique to calculate prime

numbers. L 1 |)| L
REISErE bl Ri% & l¢
J
2% 5

> Start with all integers from 2, the first prime number.

The idea is as follows:

v

Eliminate all multiples of 2.

v

The first element of the resulting list is 3, a prime number.

v

Eliminate all multiples of 3.

v

Iterate forever. At each step, the first number in the list is a
prime number and we eliminate all its multiples.

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

The Sieve of Eratosthenes in Code

Here's a function that implements this principle:

def sieve(s: Stream[Int]): Stream[Int] =
s.head #:: sieve(s.tail filter (_ % s.head != 0))

val primes = sieve(from(2))
To see the list of the first N prime numbers, you can write

(primes take N).tolList

Back to Square Roots

Our previous algorithm for square roots always used a isGoodEnough
test to tell when to terminate the iteration.

With streams we can now express the concept of a converging
sequence without having to worry about when to terminate it:

def sqrtStream(x: Double): Stream[Double] = {
def improve(guess: Double) = (guess + x / guess) / 2
lazy val guesses: Stream[Double] = 1 #:: (guesses map improve)

guesses

Termination

We can add isGoodEnough later.

def isGoodEnough(guess: Double, x: Double) =
math.abs((guess * guess - x) / x) < 0.0001

sqgrtStream(4) filter (isGoodEnough(_, 4))

Exercise:

Consider two ways to express the infinite stream of multiples of a
given number N:

val xs = from(1) map (_ * N)

val ys = from(1) filter (_ % N == 0)
Which of the two streams generates its results faster?

0 from(1) map (_ * N)
0 from(1) filter (_ % N == @)

Exercise:

Consider two ways to express the infinite stream of multiples of a

given number N: N=13
_ A 2 34S
val xs = from(1) map (_ * N) 23 6 Y42 ...
val ys = from(1) filter (_ % N == Q) A 23 ¢35 6 1
3

Which of the two streams generates its results faster?

[] from(1) map (_ * N)
0 from(1) filter (_ % N == @)

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

The Water Pouring Problem

ppinto

ppinto

ppinto

ppinto

States and Moves

Glass: 1Int

State: Vector[Int] (one entry per glass)

Moves:
Empty(glass)

Fill(glas
Pour (frg

Palles

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

ppinto

Variants

In a program of the complexity of the pouring program, there are
many choices to be made.

Choice of representations.

» Specific classes for moves and paths, or some encoding?

» Object-oriented methods, or naked data structures with
functions?

The present elaboration is just one solution, and not necessarily the
shortest one.

Guiding Principles for Good Design

> Name everything you can.
» Put operations into natural scopes.

> Keep degrees of freedom for future refinements.

Traits of Functional Programming

Functional programming provides a coherent set of notations and
methods based on

> higher-order functions,

> case classes and pattern matching,

v

immutable collections,

v

absence of mutable state,

v

flexible evaluation strategies: strict/lazy/by name.

A useful toolkit for every programmer.

A different way of thinking about programs.

More Material on Scala

Reference material:

Scala Ref Card (adapted from a forum post by Laurent Poulain)
Twitter's Scala School

Programming in Scala

Scala Tour

To stay current:

Scala Meetups

Typesafe Blog and Newsletter

This Week in Scala Blogs

https://class.coursera.org/progfun-2012-001/wiki/view?page=CheatSheet
https://class.coursera.org/progfun-2012-001/forum/thread?thread_id=2002
http://twitter.github.com/scala_school/
http://www.artima.com/shop/programming_in_scala_2ed
http://docs.scala-lang.org/tutorials/tour/tour-of-scala.html
http://scala.meetup.com/
http://www.typesafe.com/
http://www.cakesolutions.net/teamblogs/

What Remains to Be Covered

Worthwhile topics we did not cover in this course:

Functional programming and state

» what does it mean to have mutable state?

» what changes if we add it?
Parallelism

» how to exploit immutability for parallel execution.
Domain-Specific Languages

> high-level libraries as embedded DSLs.

> interpretation techniques for external DSLs.

