


Functions and Data

In this section, we'll learn how functions create and encapsulate
data structures.

Example
Rational Numbers

We want to design a package for doing rational arithmetic.

A rational number § is represented by two integers:

» its numerator x, and

> its denominator y.



Rational Addition

Suppose we want to implement the addition of two rational
numbers.

def addRationalNumerator(nl: Int, d1: Int, n2: Int, d2: Int): Int
def addRationalDenominator(ni: Int, d1: Int, n2: Int, d2: Int): Int

but it would be difficult to manage all these numerators and
denominators.

A better choice is to combine the numerator and denominator of a
rational number in a data structure.



Classes

In Scala, we do this by defining a class:

class Rational(x: Int, y: Int) {
def numer = x
def denom =y

3

This definition introduces two entities:

> A new type, named Rational.
» A constructor Rational to create elements of this type.

Scala keeps the names of types and values in different namespaces.
So there’s no conflict between the two defintions of Rational.



Objects

We call the elements of a class type objects.

We create an object by prefixing an application of the constructor of
the class with the operator new.

Example

new Rational(1l, 2)



Members of an Object

Objects of the class Rational have two members, numer and denom.

We select the members of an object with the infix operator " (like
in Java).

Example

val x = new Rational(1, 2) > x: Rational = Rational@2abe0e27
x.numer > 1
x.denom > 2



Rational Arithmetic

We can now define the arithmetic functions that implement the
standard rules.

moy on nido+nodq
di do dido
N _ n2 _ nida—nad;
di do dido
m N2 _ Mmn

d do T did>
mom mds

di/ da ding

m — n; iff nidy = ding



Implementing Rational Arithmetic

def addRational(r: Rational, s: Rational): Rational =
new Rational(
r.numer * s.denom + s.numer * r.denom,
r.denom * s.denom)

def makeString(r: Rational) =
r.numer + ”/” + r.denom

makeString(addRational(new Rational(1, 2), new Rational(2, 3)))

> 7/6



Methods

One can go further and also package functions operating on a data
abstraction in the data abstraction itself.

Such functions are called methods.
Example

Rational numbers now would have, in addition to the functions
numer and denom, the functions add, sub, mul, div, equal, toString.



Methods for Rationals

Here's a possible implementation:

class Rational(x: Int, y: Int) {
def numer = x

def denom =y
def add(r: Rational)
new Rational(numer * r.denom + r.numer * denom,
*

denom
def mul(r: Rational)

r.denom)

override def toString = numer + ”/” + denom

}

Remark: the modifier override declares that toString redefines a
method that already exists (in the class java.lang.Object).



Calling Methods

Here is how one might use the new Rational abstraction:

val x = new Rational(1l, 3)
val y = new Rational(5, 7)
val z = new Rational(3, 2)
x.add(y) .mul(z)



Exercise

1. In your worksheet, add a method neg to class Rational that is
used like this:

X.neg // evaluates to -x

2. Add a method sub to subtract two rational numbers.

3. With the values of x, y, z as given in the previous slide, what is
the result of

X-y-z






Data Abstraction

The previous example has shown that rational numbers aren’t
always represented in their simplest form. (Why?)

One would expect the rational numbers to be simplified:

> reduce them to their smallest numerator and denominator by
dividing both with a divisor.

We could implement this in each rational operation, but it would be
easy to forget this division in an operation.

A better alternative consists of simplifying the representation in the
class when the objects are constructed:



Rationals with Data Abstraction

class Rational(x: Int, y: Int) {
private def gcd(a: Int, b: Int): Int = if (b == @) a else gcd(b, a % b)
private val g = gcd(x, y)
def numer = x / g
def denom =y / g

3

ged and g are private members; we can only access them from inside
the Rational class.

In this example, we calculate gcd immediately, so that its value can
be re-used in the calculations of numer and denom.



Rationals with Data Abstraction (2)

It is also possible to call gcd in the code of numer and denom:

class Rational(x: Int, y: Int) {
private def gcd(a: Int, b: Int): Int = if (b == @) a else gcd(b, a % b)
def numer = x / gcd(x, y)
def denom =y / gcd(x, y)

}

This can be advantageous if it is expected that the functions numer
and denom are called infrequently.



Rationals with Data Abstraction (3)

It is equally possible to turn numer and denom into vals, so that they
are computed only once:

class Rational(x: Int, y: Int) {
private def gcd(a: Int, b: Int): Int = if (b == @) a else gcd(b, a % b)
val numer = x / gcd(x, y)
val denom =y / gcd(x, y)

}

This can be advantageous if the functions numer and denom are
called often.



The Client's View

Clients observe exactly the same behavior in each case.

This ability to choose different implementations of the data without
affecting clients is called data abstraction.

It is a cornerstone of software engineering.



Self Reference

On the inside of a class, the name this represents the object on
which the current method is executed.

Example

Add the functions less and max to the class Rational.

class Rational(x: Int, y: Int) {

def less(that: Rational) =
numer * that.denom < that.numer * denom

def max(that: Rational) =
if (this.less(that)) that else this



Self Reference (2)

Note that a simple name x, which refers to another member of the
class, is an abbreviation of this.x. Thus, an equivalent way to
formulate less is as follows.

def less(that: Rational) =
this.numer x that.denom < that.numer * this.denom



Preconditions

Let's say our Rational class requires that the denominator is
positive.

We can enforce this by calling the require function.

class Rational(x: Int, y: Int) {
require(y > @, ”denominator must be positive”)

require is a predefined function.
It takes a condition and an optional message string.

If the condition passed to require is false, an
IllegalArgumentException is thrown with the given message string.



Assertions

Besides require, there is also assert.

Assert also takes a condition and an optional message string as
parameters. E.g.

val x = sqrt(y)
assert(x >= 0)

Like require, a failing assert will also throw an exception, but it's a
different one: AssertionError for assert, I1legalArgumentException
for require.

This reflects a difference in intent
> require is used to enforce a precondition on the caller of a

function.
> assert is used as to check the code of the function itself.



Constructors

In Scala, a class implicitly introduces a constructor. This one is
called the primary constructor of the class.

The primary constructor

> takes the parameters of the class

» and executes all statements in the class body (such as the
require a couple of slides back).



Auxiliary Constructors

Scala also allows the declaration of auxiliary constructors.
These are methods named this

ExampleAdding an auxiliary constructor to the class Rational.

class Rational(x: Int, y: Int) {
def this(x: Int) = this(x, 1)

}

new Rational(2) > 2/1



Exercise

Modify the Rational class so that rational numbers are kept
unsimplified internally, but the simplification is applied when
numbers are converted to strings.

Do clients observe the same behavior when interacting with the
rational class?

0 yes
0 no
<] yes for small sizes of denominators and nominators

and small numbers of operations.


ppinto





Classes and Substitutions

We previously defined the meaning of a function application using a
computation model based on substitution. Now we extend this
model to classes and objects.

Question: How is an instantiation of the class new C(e, ..., e;)
evaluted?
Answer: The expression arguments e;, ..., e, are evaluated like the

arguments of a normal function. That’s it.

The resulting expresion, say, new C(vy,...,v,), is already a value.



Classes and Substitutions

Now suppose that we have a class definition,

class C(xqy ooy Xp){ .. def f(y1,...,yn) =b ... }

where
» The formal parameters of the class are xi, ..., x;.
» The class defines a method f with formal parameters y, ..., y,.

(The list of function parameters can be absent. For simplicity, we
have omitted the parameter types.)

Question: How is the following expression evaluated?

new C(Vi, vy Vi) F(Wpy ooy Wy)



Classes and Substitutions (2)

Answer: The expression new C(vi, ..., vy).f(wy, ..., w,) is rewritten to:

(Wi /Y15 ooy Wa /Yn][Vi /X1y ooy Vin /X [new C(vq, ...y vy) /this] b

There are three substitutions at work here:

> the substitution of the formal parameters y, ..., y, of the
function f by the arguments wy, ..., w,,

> the substitution of the formal parameters xi, ..., x, of the class C
by the class arguments v, ..., vy,

» the substitution of the self reference this by the value of the

object new C(vi, ..., vn). Hass € Cxyyerp¥om ) {.

OM Q C 40 ,AM) = By ts ..
P


ppinto

ppinto


Object Rewriting Examples

new Rational(1, 2).numer



Object Rewriting Examples

new Rational(1, 2).numer

— [1/x,2/y] [] [new Rational(1,2)/this] x



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x
1



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

— [1/x,2/y] [newRational(2,3)/that| [new Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

— [1/x,2/y] [newRational(2,3)/that| [new Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <
new Rational(2, 3).numer * new Rational(1, 2).denom



Object Rewriting Examples

new Rational(1, 2).numer
— [1/x,2/y] [] [new Rational(1,2)/this] x

= 1

new Rational(1, 2).less(new Rational(2, 3))

— [1/x,2/y] [newRational(2,3)/that| [new Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= new Rational(1, 2).numer * new Rational(2, 3).denom <
new Rational(2, 3).numer * new Rational(1, 2).denom

—» 1 % 3<2x%2

—» true



Operators

In principle, the rational numbers defined by Rational are as natural
as integers.

But for the user of these abstractions, there is a noticeable
difference:

» We write x + y, if x and y are integers, but

» We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We procede in two steps.



Step 1: Infix Notation

Any method with a parameter can be used like an infix operator.

It is therefore possible to write

r add s r.add(s)
r less s /* in place of */ r.less(s)
r.max(s)

r max s



Step 2: Relaxed Identifiers

Operators can be used as identifiers.

Thus, an identifier can be:

> Alphanumeric: starting with a letter, followed by a sequence of
letters or numbers

» Symbolic: starting with an operator symbol, followed by other

operator symbols.
» The underscore character ’_’ counts as a letter.

» Alphanumeric identifiers can also end in an underscore,
followed by some operator symbols.

Examples of identifiers:

x1 * +?%& vector_++ counter_=



Operators for Rationals

A more natural definition of class Rational:

class Rational(x: Int, y: Int) {
private def gcd(a: Int, b: Int): Int = if (b == @) a else gcd(b, a % b)
private val g = gcd(x, y)
def numer = x / g
def denom =y / g
def + (r: Rational) =
new Rational(

numer * r.denom + r.numer * denom,

denom * r.denom)
def - (r: Rational)
def %= (r: Rational)



Operators for Rationals

.. and rational numbers can be used like Int or Double:

val x = new Rational(1l, 2)
val y = new Rational(1, 3)

(x * x) +(y x y)


ppinto


Precedence Rules

The precedence of an operator is determined by its first character.

The following table lists the characters in increasing order of priority
precedence:

(all letters)
I

A
&
<
= !
+ -

*/ %
(all other special characters)



Exercise

Provide a fully parenthized version of

((a ¢ 5)22(c 2 dresd == 1)1 )

Every binary operation needs to be put into parentheses, but the
structure of the expression should not change.


ppinto

ppinto

ppinto

ppinto

ppinto





Abstract Classes

Consider the task of writing a class for sets of integers with the
following operations.

abstract class IntSet {
def incl(x: Int): IntSet
def contains(x: Int): Boolean

IntSet is an abstract class.

Abstract classes can contain members which are missing an
implementation (in our case, incl and contains).

Consequently, no instances of an abstract class can be created with
the operator new.



Class Extensions

Let's consider implementing sets as binary trees.

There are two types of possible trees: a tree for the empty set, and
a tree consisting of an integer and two sub-trees.

Here are their implementations:
class Empty extends IntSet {

def contains(x: Int): Boolean = false
def incl(x: Int): IntSet = new NonEmpty(x, new Empty, new Empty)



Class Extensions (2)

class NonEmpty(elem: Int, left: IntSet, right: IntSet) extends IntSet {

def contains(x: Int): Boolean =
if (x < elem) left contains x
else if (x > elem) right contains x

else true

def incl(x: Int): IntSet =
if (x < elem) new NonEmpty(elem, left incl x, right)
else if (x > elem) new NonEmpty(elem, left, right incl x)

else this



Terminology

Empty and NonEmpty both extend the class IntSet.
This implies that the types Empty and NonEmpty conform to the type
IntSet

> an object of type Empty or NonEmpty can be used wherever an
object of type IntSet is required.



Base Classes and Subclasses

IntSet is called the superclass of Empty and NonEmpty.
Empty and NonEmpty are subclasses of IntSet.
In Scala, any user-defined class extends another class.

If no superclass is given, the standard class Object in the Java
package java.lang is assumed.

The direct or indirect superclasses of a class C are called base classes
of C.

So, the base classes of NonEmpty are IntSet and Object.



Implementation and Overriding

The definitions of contains and incl in the classes Empty and
NonEmpty implement the abstract functions in the base trait IntSet.

It is also possible to redefine an existing, non-abstract definition in a
subclass by using override.

Example
abstract class Base { class Sub extends Base {
def foo =1 override def foo = 2
def bar: Int def bar = 3



Object Definitions

In the IntSet example, one could argue that there is really only a
single empty IntSet.

So it seems overkill to have the user create many instances of it.
We can express this case better with an object definition:
object Empty extends IntSet {

def contains(x: Int): Boolean = false
def incl(x: Int): IntSet = new NonEmpty(x, Empty, Empty)

This defines a singleton object named Empty.
No other Empty instances can be (or need to be) created.

Singleton objects are values, so Empty evaluates to itself.



Programs

So far we have executed all Scala code from the REPL or the
worksheet.

But it is also possible to create standalone applications in Scala.

Each such application contains an object with a main method.

For instance, here is the “Hello World!” program in Scala.
object Hello {

def main(args: Array[String]) = println(”hello world!”)
}

Once this program is compiled, you can start it from the command
line with

> scala Hello



Exercise

Write a method union for forming the union of two sets. You should
implement the following abstract class.

abstract class IntSet {
def incl(x: Int): IntSet
def contains(x: Int): Boolean
def union(other: IntSet): IntSet



Dynamic Binding
Object-oriented languages (including Scala) implement dynamic

method dispatch.

This means that the code invoked by a method call depends on the
runtime type of the object that contains the method.

Example

Empty contains 1



Dynamic Binding
Object-oriented languages (including Scala) implement dynamic

method dispatch.

This means that the code invoked by a method call depends on the
runtime type of the object that contains the method.

Example
Empty contains 1

— [1/x] [Empty/this] false



Dynamic Binding
Object-oriented languages (including Scala) implement dynamic

method dispatch.

This means that the code invoked by a method call depends on the
runtime type of the object that contains the method.

Example
Empty contains 1
— [1/x] [Empty/this] false

= false



Dynamic Binding (2)

Another evaluation using NonEmpty:

(new NonEmpty(7, Empty, Empty)) contains 7



Dynamic Binding (2)

Another evaluation using NonEmpty:
(new NonEmpty(7, Empty, Empty)) contains 7

— [7/elem] [7/x] [new NonEmpty(7,Empty, Empty)/this]
if (x < elem) this.left contains x
else if (x > elem) this.right contains x else true



Dynamic Binding (2)

Another evaluation using NonEmpty:
(new NonEmpty(7, Empty, Empty)) contains 7

— [7/elem] [7/x] [new NonEmpty(7,Empty, Empty)/this]
if (x < elem) this.left contains x
else if (x > elem) this.right contains x else true

= if (7 < 7) new NonEmpty(7, Empty, Empty).left contains 7
else if (7 > 7) new NonEmpty(7, Empty, Empty).right
contains 7 else true



Dynamic Binding (2)

Another evaluation using NonEmpty:
(new NonEmpty(7, Empty, Empty)) contains 7

— [7/elem] [7/x] [new NonEmpty(7,Empty, Empty)/this]
if (x < elem) this.left contains x
else if (x > elem) this.right contains x else true

= if (7 < 7) new NonEmpty(7, Empty, Empty).left contains 7
else if (7 > 7) new NonEmpty(7, Empty, Empty).right
contains 7 else true

— true



Something to Ponder

Dynamic dispatch of methods is analogous to calls to higher-order
functions.

Question:

Can we implement one concept in terms of the other?

» Objects in terms of higher-order functions?

» Higher-order functions in terms of objects?






Packages

Classes and objects are organized in packages.

To place a class or object inside a package, use a package clause at
the top of your source file.

package progfun.examples
object Hello { ... }

This would place Hello in the package progfun.examples.

You can then refer to Hello by its fully qualified name
progfun.examples.Hello. For instance, to run the Hello program:

> scala progfun.examples.Hello



Imports

Say we have a class Rational in package week3.

You can use the class using its fully qualified name:
val r = new week3.Rational(1, 2)
Alternatively, you can use an import:

import week3.Rational
val r = new Rational(1l, 2)



Forms of Imports

Imports come in several forms:

import week3.Rational // imports just Rational

import week3.{Rational, Hello} // imports both Rational and Hello

import week3._ // imports everything in package week3
The first two forms are called named imports.

The last form is called a wildcard import.

You can import from either a package or an object.



Automatic Imports

Some entities are automatically imported in any Scala program.
These are:
» All members of package scala

» All members of package java.lang

> All members of the singleton object scala.Predef.

Here are the fully qualified names of some types and functions
which you have seen so far:

Int scala.Int

Boolean scala.Boolean

Object java.lang.Object
require scala.Predef.require

assert scala.Predef.assert



Scaladoc

You can explore the standard Scala library using the scaladoc web
pages.
You can start at

www.scala-lang.org/api/current


http://www.scala-lang.org/api/current

Traits

In Java, as well as in Scala, a class can only have one superclass.

But what if a class has several natural supertypes to which it
conforms or from which it wants to inherit code?

Here, you could use traits.

A trait is declared like an abstract class, just with trait instead of
abstract class.

trait Planar {
def height: Int
def width: Int
def surface = height * width

S IM&Zz I.M-(LQJ;JM ({4


ppinto


Traits (2)

Classes, objects and traits can inherit from at most one class but
arbitrary many traits.

Example:
class Square extends Shape with Planar with Movable ...

Traits resemble interfaces in Java, but are more powerful because
they can contains fields and concrete methods.

On the other hand, traits cannot have (value) parameters, only
classes can.



Scala’s Class Hierarchy

scala.AnyVal

scala.AnyRef
javalang.Object)

scala.ScalaObject It

... (other Java classes). ..

... (other Scala classes). ..

S

scala.Null

scala.Nothing


ppinto


Top Types

At the top of the type hierarchy we find:

Any the base type of all types
Methods: ‘=="', 'I=", 'equals’, ‘hashCode, ‘toString’
AnyRef The base type of all reference types;

Alias of ‘java.lang.Object’

AnyVal The base type of all primitive types.



The Nothing Type

Nothing is at the bottom of Scala's type hierarchy. It is a subtype of
every other type.

There is no value of type Nothing.

Why is that useful?

» To signal abnormal termination

» As an element type of empty collections (see next session)

Set I\Ja{(m/_a]


ppinto


Exceptions

Scala's exception handling is similar to Java's.
The expression

throw Exc

aborts evaluation with the exception Exc.

The type of this expression is Nothing.



The Null Type

Every reference class type also has null as a value.
The type of null is Null.
Null is a subtype of every class that inherits from Object; it is

incompatible with subtypes of Anyval.

val x = null // x: Null
val y: String = null // y: String
val z: Int = null // error: type mismatch



Exercise

What is the type of
if (true) 1 else false

Int
Boolean
AnyVal
Object
Any

O O O O o



