
Symbolic String Verification: Combining String
Analysis and Size Analysis!

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra

Department of Computer Science
University of California, Santa Barbara, CA, USA
{yuf,bultan,ibarra}@cs.ucsb.edu

Abstract. We present an automata-based approach for symbolic verification of
systems with unbounded string and integer variables. Particularly, we are inter-
ested in automatically discovering the relationships among the string and integer
variables. The lengths of the strings in a regular language form a semilinear set.
We present a novel construction for length automata that accept the unary or bi-
nary representations of the lengths of the strings in a regular language. These
length automata can be integrated with an arithmetic automaton that recognizes
the valuations of the integer variables at a program point. We propose a static
analysis technique that uses these automata in a forward fixpoint computation
with widening and is able to catch relationships among the lengths of the string
variables and the values of the integer variables. This composite string and in-
teger analysis enables us to verify properties that cannot be verified using string
analysis or size analysis alone.

1 Introduction

Static analysis of strings in programs have been an active research area with the goal
of finding and eliminating security vulnerabilities caused by misuse of string variables.
There have been two separate branches of research in this area: 1) String analysis that
focuses on statically identifying all possible values of a string expression at a program
point in order to eliminate vulnerabilities such as SQL injection and cross-site scripting
(XSS) attacks [1, 4, 14, 16], and 2) Size analysis that focuses on statically identify-
ing all possible lengths of a string expression at a program point in order to eliminate
buffer overflow errors [5, 7, 12]. In this paper we present an automata based composite
symbolic verification technique that combines these two analyses with the goal of im-
proving the precision of both. We use a forward fixpoint computation to compute the
possible values of string and integer variables and to discover the relationships among
the lengths of the string variables and integer variables.

Similar to prior size analysis techniques [5, 7, 12] we associate each string variable
with an auxiliary integer variable that represents its length. At each program point, we
symbolically compute all possible values of all integer variables (including the aux-
iliary variables), as well as all possible values of all string variables. The reachable
values of all integer variables are over-approximated as a Presburger arithmetic (linear
! This work is supported by NSF grants CCF-0614002 and CCF-0716095.

2

arithmetic) formula and symbolically encoded as arithmetic automata [2,13]. Similar to
some prior string analysis techniques [1,16], the values that string variables can take are
over-approximated as regular languages and symbolically encoded as string automata.
Our composite analysis is as a forward fixpoint computation with widening on these
arithmetic and string automata.

There are two challenges we need to overcome to connect the information contained
in the string automata and the arithmetic automata (hence, improving the precision of
both) during our composite analysis: 1) Given a string automaton, we need to derive
the arithmetic automaton that accepts the length of the language accepted by the string
automaton, and 2) Given an arithmetic automaton, we need to restrict a string automaton
so that the length of the language is accepted by the arithmetic automaton.

To tackle the first challenge, we present techniques for constructing a length au-
tomata for a given regular language. It is known that the length of the language accepted
by a DFA forms a semilinear set. Given an arbitrary DFA, we are able to construct DFAs
that accept either unary or binary representation of the length of its accepted words. The
unary automaton can be used to identify the coefficients of the semilinear set, while the
binary automaton can be composed with other arithmetic automata on integer variables
to enforce or check length constraints.

To tackle the second challenge, we identify the boundary of the lengths of string
variables from the arithmetic automaton. Precisely, we compute the lower and upper
bound of the values of the string lengths accepted by the arithmetic automaton. We
prove that, given a one-track arithmetic automaton, the lower bound forms a shortest
path to an accepting state while the upper bound (if it exists) forms the longest loop-free
path. Both can be computed in linear complexity to the size of the arithmetic automaton.
We can restrict the target string automaton by intersecting the string automaton that
accepts arbitrary strings within this boundary.

Finally, the performance of our analysis relies on efficient automata manipulation.
We implement our analysis using a symbolic automata representation (MBDD repre-
sentation from the MONA automata package) and leverage efficient manipulations on
MBDDs, e.g., determinization and minimization.

Motivating Examples Below, we present two motivating examples to demonstrate the
advantages of the composite string and size analysis technique proposed in this paper.
Consider a PHP segment that secures an identified vulnerable point [16] at line 218 in
trans.php, distributed with MyEasyMarket-4.1.

1: <?php $www = $_GET["www"];
2: $l_otherinfo = "URL";
3: $www = ereg_replace("[ˆA-Za-z0-9 .\-@://]","",$www);
4: if(strlen($www)<$limit)
5: echo "<td>" . $l_otherinfo . ": " . $www . "</td>"; ?>

Without proper sanitization (lines 3 and 4) of the user-controlled variable $www,
an attacker can inject the string <scriptsrc=http://evil.com/attack.js> and
perform a XSS attack at line 5. Above code prevents such attacks by: (1) removing
abnormal characters from $www at line 3, and (2) limiting the length of $www at line 4.
Our analysis shows that this code segment is free from attacks by showing that at line 5

3

(1) the length of the string $www is less than the allowed limit, and (2) under that limit
the string variable $www cannot contain a value that matches the attack pattern. Note
that if one performs solely size analysis, without knowing the contents of $www, the
length of $www can not be determined precisely after line 3. On the other hand, if one
performs solely string analysis, the branch condition at line 4 must be ignored. Both of
these approximations may lead to false alarms.

Now, consider a standard strlen routine in C that returns the length of a given
string by traversing each character until hitting the end character, i.e., ’\0’. This kind
of standard string routines are widely used in legacy C systems, e.g., Apache, Samba,
Sendmail, and WuFTP.

unsinged int strlen(char *s){
1: char *ptr = s;
2: unsigned int cnt =0;
3: while(*ptr != ’\0’){
4: ++ptr;
5: ++cnt;
6: }
7: return cnt; }

Let *s.length denote the size of the string pointed by s. An essential property of
this routine is that at line 7, cnt = *s.length, which can be used as the summary of
this routine and significantly alleviates size analysis overhead [5, 15], however, none
of the size analysis tools prove this property before using it. Our composite analysis is
capable of proving this property. We first construct an assertion (arithmetic) automaton
that accepts the values that satisfy cnt = *s.length. We then conduct our composite
analysis by computing the forward fixpoint with widening. Upon reaching the fixpoint,
at line 7, (1) the arithmetic automaton actually catches the relation that *s.length =

*ptr.length + cnt, and (2) the string automaton of *ptr only accepts {ε}. We prove
the property by showing that the intersection of the language of (1) and the length of
the language of (2) is included in the language of the assertion automaton.

In addition to earlier work on string analysis [1,4,14,16] and size analysis [5,7,12]
that motivated our work, there has been some recent work on analyzing string and inte-
ger variables together during symbolic execution [6,11,15]. Unlike our approach, these
are unsound techniques targeted towards testing and they do not try to compute an over-
approximation of the reachable states via widening. Hence, they cannot prove proper-
ties of above program segments. Compared to [8, 9] that use abstract interpretation for
reasoning relational properties among the contents of symbolic intervals of arrays, our
analysis traverses concrete values of string and integer variables using automata and
addresses language properties.

This paper is organized as follows. We present the length automata construction
in Section 2. We present our composite analysis technique that integrates string and
arithmetic analyses in Section 3. We present our experiments with our prototype tool in
verifying small C routines, buffer-overflow benchmarks and PHP web applications in
Section 4. We conclude the paper in Section 5.

4

2 Length Automata Construction

Given a string automatonM , we want to construct a DFAMb (over a binary alphabet)
such thatL(Mb) is the set of binary representations of the lengths of the words accepted
byM . We tackle this problem in two steps. We first construct a DFAMu (over a unary
alphabet) such thatL(Mu) is the set of unary representations of the lengths of the words
accepted byM . It is known that this set is a semilinear set. We identify the formula that
represents the semilinear set from Mu. We then construct Mb from the formula, such
that w ∈ L(Mb) if and only if the binary value ofw satisfies the formula. I.e., the unary
representation of the binary value of w is in L(Mu).

A DFAM is a tuple 〈Q, q0, Σ, δ, F 〉whereQ is a finite set of states, q0 is the initial
state, Σ is a finite set of symbols. F : Q → {−, +} is a mapping function from a state
to its status. Given a state q ∈ Q, q is an accepting state if F (q) = +. δ : Q × Σ → Q
is the transition function. The cardinality of a finite set A is denoted as $A. The set of
arbitrary words over a finite alphabetΣ is denoted asΣ∗. The length of a wordw ∈ Σ∗

is denoted as |w|. A state q ofM is a sink state if ∀α ∈ Σ, δ(q, α) = q and F (q) = −.
In the following sections, we assume that for all unspecified pairs (q, α), δ(q, α) goes
to a sink state. In the constructions below, we also ignore the transitions that lead to a
sink state.

A string automaton M is a DFA that consists of a tuple of 〈Q, q0, Bk, δ, F 〉. M
accepts a set of words, where each symbol is encoded as a k-bit string.

Length Constraints on String Automata We are interested in characterizing lengths
of the accepted words. We characterize these lengths as a set of natural numbers by a
length constraint. Formally speaking, the length constraint of a given string automaton
M is a formula f over a variable x, such that f [c/x] evaluates to true if and only if there
exists a word w, such that w ∈ L(M) and c = |w|.
Property 1: For any DFAM , {|w| | w ∈ L(M)} forms a semilinear set.
Property 2: For any DFAM , fM is in the form that

∨
i x = ci ∨

∨
j ∃k.x = aj +

bj × k, where aj , bj and ci are constants. fM can be written as
∨

i x = ci ∨
∨

j ∃k.x =
C + rj + R × k, such that ci, rj , C, R are constants, and ∀i, ci < C, and ∀j, rj < R.
We say that a semilinear set in this form is well-formed.

In the following, we give the algorithm to construct the automata that accept unary
or binary representation of the length of the language accepted by a given string au-
tomata. This construction shows that the length constraint of a DFA is a well formed
semilinear set, and hence gives a constructive proof of Property 1 and Property 2.

From String Automata to Unary Length Automata It is known that the unary rep-
resentation of the values of a semilinear set can be uniquely identified by a unary au-
tomaton. In the following, we first show how to construct an automaton Mu (over a
unary alphabet) from a given string automatonM , such that L(Mu) is the set of unary
representations of {|w| | w ∈ L(M)}. We sayMu is the unary length automaton ofM .

Given a string automatonM = 〈Q, q0, Bk, δ, F 〉, a naive construction of the unary
length automaton is Mu = 〈Q, q0, B1, δ′, F 〉, where δ′(q, 1) = q′ if ∃α, δ(q, α) = q′.
However,Mu constructed this way will be an NFA. The MBDD representations that we

5

use cannot encode NFAs. Instead, we use a construction which combines the projection
and determinization steps as follows.

Given a string automatonM = 〈Q, q0, Bk, δ, F 〉, we first construct an intermediate
automatonM ′ = 〈Q, q0, Bk+1, δ′, F 〉, where

– ∀q, q′ ∈ Q, and both are not sink states, δ′

(q, α1) = q′, if δ(q, α) = q′.

M ′ is a DFA that accepts the same words asM except that each symbol in the word
is appended with ‘1’.Mu can then be constructed fromM ′ by projecting the first k bits
away. This projection is done by iterative determinization and minimization. During
determinization, the subset construction is applied on the fly.

From Unary Length Automata to Semilinear Set: Here we describe how to identify
the well formed formula of a semilinear set from a unary automaton.
Property 3: A finite deterministic unary automatonM = 〈Q, q0, B0, δ, F 〉 can be

in two forms: a linear list of states that starts from the initial state with finite length $Q,
or a linear list of states that starts from the initial state with finite length,C, and ends in
a cycle with finite length,R, where C + R = $Q (i.e., a lasso).

Given a deterministic unary automaton,Q can be labeled such that

– $Q = n + 1.
– ∀0 ≤ i < n, δ(qi, 1) = qi+1.

Cycle Case: If ∃0 ≤ m < n, δ(qn, 1) = qm, the well-formed formula of a unary
automaton is

∨
i x = ci ∨

∨
j ∃k.x = C + rj + R × k, where

– C = m, R = n − m.
– ∀i, ∃qt, t < m, F (qt) = +, ci = t.
– ∀j, ∃qt, t ≥ m, F (qt) = +, rj = t − m.

NoCycle Case:Otherwise, the well-formed formula of a unary automaton is
∨

i x =
ci, where ∀i, ∃qt, t ≤ n, F (qt) = +, ci = t.

From Semilinear Set to Binary Length Automata: We propose a novel construction
to derive a DFA M such that L(M) is equal to the set of binary representations (from
the least significant bit) of a well-formed semilinear set. We say M is a binary length
automaton of the string automaton, the length of whose accepted words forms the semi-
linear set.

Assume that we are given a well-formed semilinear set
∨

i x = ci ∨
∨

j ∃k.x =
C +rj +R×k. LetN bemax(C, R). A DFAM that accepts the binary representation
of the given semilinear set can be constructed as a tuple 〈Q, q0, Σ, δ, F 〉, where:

– We assume that there exists a sink state qsink ∈ Q, s.t.,F (qsink) = −, δ(qsink, 0) =
qsink and δ(qsink, 1) = qsink , and all transitions that are ignored in this construc-
tion are going to qsink .

– Other than the sink state, each state q ∈ Q is a tuple (t, v, b), where t ∈ {val,remt,
remf}, v ∈ {0, . . . , N}, and b ∈ {⊥}∪{1, . . . , N}. q.t is the type of state q, which
indicates the meaning of the value of q.v and q.b. While q.t = val, q.v is equal to

6

the value of the binary word accepted from the initial state to the current state, and
q.b is equal to the binary value of the previous bit in the word. We assume 2 ⊥= 1.
While q.t = remt or remf , q.v is equal to the remainder of which the dividend is
the value of the binary word accepted from the initial state to the current state and
the divisor is R; q.b is the remainder of which the dividend is the binary value of
the previous bit in the accepted word and the divisor isR. q.t = remt indicates the
value of the binary word accepted from the initial state to the current state is greater
or equal to C; q.t = remf indicates the value is less than C.

– q0 is (val, 0,⊥).
– Σ = {0, 1}, i.e., B1.
– δ(q, 1) = q′ if and only if one of the following condition holds:

• q.t = val, q.v + 2q.b ≥ C, q′.t = remt, q′.v = (q.v + 2q.b) mod R,
q′.b = (2q.b) mod R.

• q.t = val, q.v + 2q.b < C, q′.t = val, q′.v = q.v + 2q.b, q′.b = 2q.b.
• q.t = remt, q′.t = remt, q′.v = (q.v+2q.b) mod R, q′.b = (2q.b) mod R.
• q.t = remf , q′.t = remt, q′.v = (q.v+2q.b) mod R, q′.b = (2q.b) mod R.

– δ(q, 0) = q′ if and only if one of the following condition holds:
• q.t = val, q.v + 2q.b ≥ C, q′.t = remf , q′.v = q.v mod R, q′.b = (2q.b)

mod R.
• q.t = val, q.v + 2q.b < C, q′.t = val, q′.v = q.v, q′.b = 2q.b.
• q.t = remt, q′.t = remt, q′.v = q.v, q′.b = (2q.b) mod R.
• q.t = remf , q′.t = remf , q′.v = q.v, q′.b = (2q.b) mod R.

– F (q) = +, for all q ∈ {q | q.t = val, ∃i, q.v = ci} ∪ {q | q.t = remt, ∃j, q.v =
(C + rj) mod R}; F (q) = −, o.w.

By definition, $Q isO(N2). Precisely, in our construction, the number of states that
q.t = val is bounded by C. The number of states that q.t = remt is bounded by R2

and the number of states that q.t = remf is bounded by C × R. On the other hand, we
have observed that after minimization, $Q is often reduced to N .

An Incremental Algorithm Below we give an incremental algorithm to construct a
Binary Length Automaton (BLA)M . The construction is achieved by calling the pro-
cedure CONSTRUCT BLA . The input is given as a well-formed semilinear formula,∨

0≤i≤n x = ci ∨
∨

0≤j≤m ∃k.x = C + rj + R × k. At line 3, we first build Qb, the
set of binary states that will be reached by calling the procedure ADD BSTATE. A bi-
nary state is actually the value of the tuple (t, v, b) as described in the previous section.
Each binary state is further associated with an index, a true branch and a false branch,
which are used to construct the state graph. Briefly, ADD BSTATE is a recursive func-
tion which incrementally adds the reached binary state if it has never been explored.
Initially, the binary state is (val, 0,⊥). Note that ADD BSTATE is guaranteed to ter-
minate since the number of binary states are bounded. Upon termination, all reached
binary states will have been added toQb. For each binary state in Qb, as line 4 to 9, we
iteratively generate a state q and set its transition relation and accepting status, which
are used to construct the final automaton at line 10.

We have implemented the above algorithms using the MONA DFA package. Mini-
mal unary and binary length automata for a regular language are shown Figure 1 where
the set recognized by these automata are {7 + 5k | k ≥ 0}.

7

Algorithm 1 ADD BSTATE(Q, C, R, t, v, b)
1: if ∃q = (t, v, b) ∈ Q then
2: return q.index;
3: else
4: Create q = (t, v, b);
5: q.index = $Q;
6: q.true = −1;
7: q.false = −1;
8: Add q to Q;
9: if t == val ∧ (v + 2 × b ≥C) then
10: q.true =ADD BSTATE(Q, C, R, remt, (v + 2 × b)%R, (2 × b)%R);
11: q.false =ADD BSTATE(Q, C, R, remf , v%R, (2 × b)%R);
12: else if t == val ∧ (v + 2 × b < C) then
13: q.true =ADD BSTATE(Q, C, R, val, v + 2 × b, 2 × b);
14: q.false =ADD BSTATE(Q, C, R, val, v, 2 × b);
15: else if t == remt then
16: q.true =ADD BSTATE(Q, C, R, remt, (v + 2 × b)%R, (2 × b)%R);
17: q.false =ADD BSTATE(Q, C, R, remt, v%R, (2 × b)%R);
18: else if t == remf then
19: q.true =ADD BSTATE(Q, C, R, remt, (v + 2 × b)%R, (2 × b)%R);
20: q.false =ADD BSTATE(Q, C, R, remf , v%R, (2 × b)%R);
21: end if
22: return q.index;
23: end if

Algorithm 2 CONSTRUCT BLA(C, R, C = {c1, c2, . . . cn}, R = {r1, r2, . . . rm})
1: Qb = ∅;
2: Q = ∅;
3: init =ADD BSTATE(Qb, C, R, val, 0,⊥);
4: for each qb ∈ Qb do
5: Add q = qq.index to Q;
6: δ(q, 1) = (qb.true 0= −1?qqb.true : qsink);
7: δ(q, 0) = (qb.false 0= −1?qqb.false : qsink);
8: F (q) = ((qb.t == 0 ∧ ∃c ∈ C.qb.v == c) ∨(qb.t == 1 ∧ ∃r ∈ R.qb.v ==

(r+C)%R) :′ +′?′−′);
9: end for
10: ConstructM = 〈Q ∪ {qsink}, qinit, B1, δ, F 〉;

8

(a) Unary (b) Binary

Fig. 1. The Length Automata of (baaab)+ab

3 Composite Verification

We first introduce a simple imperative language (the syntax is similar to the one used
in [15]) as our target language. This language consists of a set of labeled statements
l : stat. Labels correspond to instruction addresses.We use s to denote a string variable,
i to denote an integer variable, and c to denote a constant. Each s ∈ S is associated
with one auxiliary integer variable, denoted as s.length. Let S denote the set of string
variables and I denote the set of integer variables, and IL denote the set of auxiliary
variables. A statement can be one of the following:

– A termination statement halt or abort.
– A string assignment statement s := strexp, where strexp is a string expression
that can be one of the following:
• input(i) which returns an arbitrary string value up to the length equal to the
value of i.

• a string variable s ∈ S.
• a regular expression regexp over S.
• prefix(s, i) which returns the prefix of s up to the first c characters where c
is equal to the value of i.

• suffix(s, i) which returns the the suffix of s starting from the cth character,
where c is equal to the value of i.

• concat(s1, s2) that returns the concatenation of the value of s1 and the value
of s2.

• replace(s1, s2, s3) that returns the result of the following actions: (1) scan
the value of s1 and find the substrings that match to the value of s2, and (2)
replace the matched substrings with the value of s3.

– An integer assignment statement i := intexp, where intexp is an integer expres-
sion in the form

∑
t ct ∗ it that returns a value of the linear function

∑
t ct ∗ it,

where each variable it ∈ I ∪ IL.
– A conditional statement if (bexp) goto l′, where bexp is a binary expression
(defined below). l′ is a program label which indicates the label of the next statement
when bexp evaluates to true.

– An assertion statement assert(
∧

bexp). An assertion holds if
∧

bexp evaluates
to true. A program is correct if all assertions hold on all executions.

9

A bexp is either a string or an integer formula defined as follows:

– A string formula can be in two forms: (1) s ∈ regexp, or (2) s[c1, c2] ∈ regexp,
which specifies that the value of s or the value of the substring (from the cth

1 to cth
2

character) of s is within a regular language. s 0∈ regexp is an abbreviation of s ∈
regexp

′, where regexp
′ is the complement set of regexp. s = c is an abbreviation

of s ∈ {c} and s 0= c is an abbreviation of s 0∈ {c}, where c is a constant string.
– An integer formula can be in the form:

∑
t ct ∗ it ∼ c, where it ∈ I ∪ IL and

∼∈ {=, <,≤,≥, >}.

We assume that for each l : stmt, l + 1 is a valid label if stmt is not a termination
statement. For each conditional statement if (bexp) goto l′, l′ is a valid label.

Modeling the C Example To analyze normalC programs, one can consider each deref-
erence of a pointer, e.g., ∗p, as a string variable. A sequence value from the address
pointed by the pointer is a string value of the string variable. The pointer arithmetic
operation, e.g., p1 := p2 + i, can be considered as a string suffix statement that assigns
the suffix of the dereference of p2 to the dereference of p1. The previous example can
be rewritten using this simple language as follows:

strlen(s1){
1: cnt := 0;
2: s2:=s1;
3: if(s2=’\0’) goto 7;
4: s2:=suffix(s2, 1);
5: cnt := cnt +1;
6: if(s2 != ’\0’) goto 4;
7: assert(s1.length = cnt);
8: halt; }

3.1 Verification Framework

Assume that S = {s1, . . . , sm} and I = {i1, . . . , in} denote the set of string and integer
variables in our target program, respectively. In our analysis, each string variable sk,
1 ≤ k ≤ m, is associated with an auxiliary integer variable in+k as its length sk.length.
Hence, we also have the set of auxiliary integer variables IL = {in+1, . . . in+m}. A
state for each program label consists of a string-automata vector α = 〈α1, . . . , αm〉
and an n + m-track arithmetic automaton a.

Each string variable sk is associated with the string automaton αk in α, which ac-
cepts an over approximation of the set of all possible values that sk can take at the
corresponding program label. Each track of the arithmetic automaton a is a binary en-
coding starting from the least significant bit of the value of an integer variable (the first
n tracks) or the value of the length of a string variable (the lastm tracks).

A word accepted by the arithmetic automaton corresponds to a valid valuation for
the integer variables and the lengths of string variables at the corresponding program
point during the execution of the program. The arithmetic automaton accepts an over
approximation of the set of possible words at the corresponding program label. Each

10

word w is an assignment of the integer variables and the lengths of the string variables;
and each track of w is actually the value that i ∈ I ∪ IL can take at the corresponding
program label. We use w[k] to denote the kth track of the word w. For 1 ≤ k ≤ n, w[k]
is the value of the integer variable ik. For n + 1 ≤ k ≤ n + m, w[k] is the length of the
string variable sk. We say a string w is the value of a string variable sk if w ∈ L(αk),
and ∃w′ ∈ L(a) such that w′[k] is equal to the binary encoding of |w| starting from the
least significant bit.

Forward Fixpoint Computation Our analysis is based on a standard forward fixpoint
computation onα and a for all program labels. For simplicity, we use ν[l] to denoteα[l]
and a[l], where α[l] is the string-automaton vector and a[l] is the arithmetic automaton
at the program label l. The algorithm is a standard work-queue algorithm as shown in
table 3.

For sequential operations (string/integer assignments), we are continuously com-
puting the post image of ν[l] against l : stmt, and join the result to ν[l + 1] where l + 1
is the label of the next statement. For branch statement l : if(bexp) goto l′, if the
intersection of the language of ν[l] and bexp is not an empty set, we add the result to
ν[l′]. If the intersection of the language of ν[l] and the complement set of bexp is not
an empty set, we add the result to ν[l + 1]. For checking statement l : assert(φ), if
the language of ν[l] is not included in φ, we raise an alarm.

Upon joining the results, we check whether a fixpoint of that program point is
reached. If it is not, we update ν at that program point and push its labeled statement
into the queue. Since we target infinite state systems, the fixpoint computation may not
terminate. We incorporate an automata widening operator, denoted as ∇A, proposed
by Bartzis and Bultan in [3] to accelerate the fixed point computation. ν∇ν′ is imple-
mented as α1∇Aα′

1, . . ., αm∇Aα′
m [16] and a∇Aa′ [3].

Finally, we detail how to compute post and restrict computations, i.e., post(ν, stmt)
and ν ∧ bexp, in the following paragraphs.

Basic Operations Before we detail the algorithms of post and restrict computations, we
first define some notations and basic operations to simplify our presentation.We use a to
denote the arithmetic automaton, and ak to denote the one-track arithmetic automaton
that accepts the values of the kth track of the arithmetic automatona. We use α to denote
a string automaton and α to denote a vector of string automata. αk is the kth string
automaton ofα. bla(α) returns the binary length automaton of the string automatonα.
The binary length automaton can be considered as an one-track arithmetic automaton.
We use αc, where c is an integer constant, to denote the string automaton which accepts
arbitrary words having length equal to c. That is L(αc) = {w | w ∈ Σ∗, |w| = c}. This
notation is also extended to a range [c1, c2], where c1, c2 are integer constants. We say
that α[c1,c2] is the string automaton that accepts {w | w ∈ Σ∗, c1 ≤ |w| ≤ c2}.

– Extraction: a !k, returns an one-track arithmetic automaton ak so thatw ∈ L(ak) if
∃w′ ∈ L(a) and w′[k] = w. ak is constructed by projecting away all tracks except
the kth track of the arithmetic automaton a.

– Projection: a "k, returns a new arithmetic automaton a′ which accepts {w|w′ ∈
L(a), ∀1 ≤ t ≤ m + n, t 0= k, w′[t] = w[t]}. a′ is constructed by projecting away
the track k of the arithmetic automaton a.

11

Algorithm 3 COMPOSITEANALYSIS(l0)
1: Init(ν);
2: queueWQ;
3: WQ.enqueue(l0 : stmt0);
4: whileWQ 0= NULL do
5: e :=WQ.dequeue(); Let e be l : stmt;
6: if stmt is sequential operation then
7: tmp := post(ν[l], stmt);
8: tmp := (tmp ∪ ν[l + 1])∇ν[l + 1];
9: if tmp 0⊆ ν[l + 1] then
10: ν[l + 1] := tmp;
11: WQ.enqueue(l + 1);
12: end if
13: end if
14: if stmt is if bexp goto l′ then
15: if CheckIntersection(ν[l], bexp) then
16: tmp := ν[l] ∧ bexp;
17: tmp := (tmp ∪ ν[l′])∇ν[l′];
18: if tmp 0⊆ ν[l′] then
19: ν[l′] := tmp;
20: WQ.enqueue(l′);
21: end if
22: end if
23: if CheckIntersection(ν[l],¬bexp) then
24: tmp := ν[l] ∧ ¬bexp;
25: tmp := (tmp ∪ ν[l + 1])∇ν[l + 1];
26: if tmp 0⊆ ν[l + 1] then
27: ν[l + 1] := tmp;
28: WQ.enqueue(l + 1);
29: end if
30: end if
31: end if
32: if stmt is assert(φ) then
33: if ¬ CheckInclusion(ν[l], φ) then
34: Assertion violated!
35: end if
36: end if
37: end while

12

– Composition: a◦αk, returns a new arithmetic automaton a′ so thatL(a′) = {w |w ∈
L(a), w[k] ∈ L(bla(αk))}. a′ is constructed by intersecting a with an arithmetic
automaton that the track k is accepted by the binary length automaton of the string
automaton αk, and other tracks are unrestricted. This composition restricts L(a) to
a smaller set where the length of sk (the value of the track k) is accepted by the
binary length automaton of αk.

– Boundary: min(ak) returns the lower bound of the set of integer values whose
binary encodings from the least significant bit are accepted by the one-track au-
tomaton ak. max(ak) returns the upper bound.

Post Image Recall that there arem string variables and n integer variables. Given stmt
and the state ν that consists of α = 〈α1, . . . , αm〉 and the arithmetic automaton a, we
want to compute α

′ = 〈α′
1, . . . , α

′
m〉 and a′ as the result of the post image against

stmt. We assume that the automata that are not specified remain the same. Let stmt be
one of the following:

– sk := input(ip). α′
k := α[c1,c2], where c1 = min(ap) and c2 = max(ap).

a′ := CONSTRUCT(a, in+k := ip).
– sk1

:= sk2
. α′

k1
:= αk2

. a′ := CONSTRUCT(a, in+k1
:= in+k2

).
– sk := regex. α′

k := CONSTRUCT(regexp). a′ := a "n+k ◦α′
k.

– sk1
:= prefix(sk2

, ip). α′
k1

:= PREFIX(αk2
, [c1, c2]), where c1 = min(ap) and

c2 = max(ap). a′ := CONSTRUCT(a, in+k1
:= ip)∧CONSTRUCT(in+k2

−ip ≥ 0).
– sk1

:= suffix(sk2
, ip). α′

k1
:= SUFFIX(αk2

, [c1, c2]), where c1 = min(ap) and
c2 = max(ap). a′ := CONSTRUCT(a, in+k1

:= ip)∧CONSTRUCT(in+k2
−ip ≥ 0).

– sk := strcat(sk1
, sk2

). α′
k := CONCAT(αk1

, αk2
). a′ := CONSTRUCT(a, in+k :=

in+k1
+ in+k2

).
– sk := replace(sk1

, sk2
, sk3

). α′
k := REPLACE(αk1

, αk2
, αk3

). a′ := a "n+k

∧atmp, where atmp accepts {w | w[k] ∈ L(bla(α′
k))}.

– ip := intexp. a′ := CONSTRUCT(a, ip := intexp).

Restriction Here we describe the result of ν ∧ bexp, where ν is the state consists of α
and a. Let bexp be one of the following:

– sk ∈ regexp. α′
k = αk ∧ CONSTRUCT(regexp). a′ = a ◦ α′

k.
– sk[c1, c2] ∈ regexp. α′

k = αk ∧ αtmp, where αtmp is constructed by
CONCAT(CONCAT(α[c1,c2], CONSTRUCT(regexp)), α∗). a′ = a ◦ α′

k.
–

∑
t ct ∗ it ∼ c. ∀t > n.α′

t = αt ∧ α[c1,c2], where c1 = min(a′ !t) and c2 =
max(a′ !t). a′ = a ∧ CONSTRUCT(

∑
t ct ∗ it ∼ c).

3.2 Implementation

Automaton Construction In this section, we describe how to construct the correspond-
ing arithmetic and string automata used in our composite analysis. The constructions of
arithmetic automata including CONSTRUCT(

∑
t ct ∗ it ∼ c) and CONSTRUCT(a, i :=∑

t ct ∗ it) are detailed in [2]. The latter returns an arithmetic automaton which ac-
cepts the result of the post image computation on a against the integer assignment i :=

13

∑
t ct ∗ it + c. This construction is implemented by quantifier elimination and variable

renaming, i.e., (∃i, Φ(a)∧ i′ =
∑

t ct ∗ it)[I ′/I]. For some special cases, the time com-
plexity of this construction is linear to the size of a [2]. The constructions of string au-
tomata including CONSTRUCT(regexp), CONCAT(αk1

, αk2
), and REPLACE(αk1

, αk2
, αk3

)
have been detailed in [16]. We describe the implementation of PREFIX(α, [c1, c2]) and
the implementation of SUFFIX(α, [c1, c2]) below.

Prefix. Formally speaking, α′ is a prefix-DFA of α regarding to the range [c1, c2], if
L(α′) = {w | w ∈ Σ[c1,c2], ∃w′, ww′ ∈ L(α)}. Given α = 〈Q, q0, Σ, δ, F 〉 and
[c1, c2], we first construct α′ = 〈Q, q0, Σ, δ, F ′〉, where ∀q ∈ Q, F ′(q) =′ +′. α′

accepts the prefix of L(α). The next step is restricting its length to the range [c1, c2].
PREFIX(α, [c1, c2]) returns the the result of the intersection of α′ and α[c1,c2], which is
exactly the prefix-DFA of α regarding to the range [c1, c2].

Suffix. Formally speaking, α′ is a suffix-DFA of α regarding to the range [c1, c2],
if L(α′) = {w | ∃w′ ∈ Σ[c1,c2], w′w ∈ L(α)}. We first introduce the function
REACH(α, [c1, c2]). REACH(α, [c1, c2]) returns the set of all [c1, c2]-reachable states.
We say a state is [c1, c2]-reachable if it is reachable from the initial state by k steps
and c1 ≤ k ≤ c2. Given α = 〈Q, q0, Σ, δ, F 〉 and [c1, c2], we first compute R =
REACH(α, [c1, c2]) via a breadth-first search. We then construct the following finite au-
tomaton α′ = 〈Q′, q′0, Σ, δ

′

, F ′〉, where

– Q′ = Q ∪ {q′0}
– ∀q, q′ ∈ Q, δ

′

(q, α) = q′, if δ(q, α) = q′.
– ∀q ∈ R, q′ ∈ Q, δ

′

(q′0, α) = q′, if δ(q, α) = q′.
– F

′

(q0) =′ +′, if ∃q ∈ R, F (q) =′ +′.
– ∀q ∈ Q, F

′

(q) = F (q).

Note that α′ constructed by the above construction may be a nondeterministic fi-
nite automaton. We add auxiliary bits to resolve nondeterminism as proposed in [16].
SUFFIX(α, [c1, c2]) returns the result of the minimization and determinization of α′.

Boundary Below we describe how to identify the boundary of a one-track arithmetic
automaton, which accepts the binary encodings of a set of integer values from the least
significant bit.
Property 4: For an one-track minimized DFA a = 〈Q, q0, B1, δ, F 〉: ∀q, q′ ∈ Q, if

δ(q, 0) = q′, then F (q) = F (q′).
Property 4 states that transitions labelled by 0 cannot change accepting status, which

holds due to the fact that by definition, the arithmetic automaton accepts a word and any
number of 0 in its higher significant bits. It follows that for any accepted integer value
(except 0), the word from the least significant bit up to the most non-zero significant
bit of its binary encoding forms a unique path (ended by 1) from the initial state to
an accepting state. Furthermore, an accepted non-zero minimal integer value forms the
shortest path from the initial state to an accepting state. On the other hand, if there exists
an accepted non-zero maximal integer value, the maximal value forms the longest loop-
free path from the initial state to an accepting state. Note that if there exists an accepted

14

path containing a loop, a accepts an infinite set and the maximal value does not exist.
In this case, we use inf to denote the maximal value.

For min(a) and max(a), we have implemented two functions MIN(a) and MAX(a).
Let ms be the length of the shortest path that ends with 1 and ml be the length of the
longest loop-free path that ends with 1. Bothms andml can be determined by a breadth
first search up to $Q steps. In our implementation, we first check whether a accepts any
non-zero integer value. If this is the case, MIN(a) returns 2ms−1, which is a lower
bound for the shortest path. If there exists a path containing a loop, MAX(a) returns inf.
Otherwise MAX(a) returns 2ml+1 − 1, which is an upper bound for the longest path.
Note that our implementation is a conservative approximation. These bounds can be
tightened by tracing the values along paths.

4 Experiments

We experimented with our composite analysis tool on a number of test cases extracted
from C string library, buffer overflow benchmarks [10] and web vulnerability bench-
marks [16]. These test cases are rather small but involve pointer arithmetic, string con-
tent constraints, length constraints, loops, and replacement operations. We manually
convert them to our simple imperative language.

For int strlen(char *s), we verify the invariant that the return value is equal
to the length of the input string. For char *strrchr(char *s, int c), we verify
whether the language accepted by the return string is included in {cx | x ∈ Σ∗} ∪ {ε}
upon reaching the fixpoint. For buffer overflow benchmarks, we check whether the
identified memory may overflow its buffer upon reaching the fixpoint for both buggy
(bad) and modified (ok) cases. For web vulnerability benchmarks, we check whether
the identified sensitive function may take any attack string as its input before (bad)
and after (ok) inserting limit constraints and sanitization routines. If it does not, the
sensitive function is SQL attack free with respect to the attack patternΣ∗<scriptΣ∗.
Limit constraints are written as new statements that limit the length of string variables
using a $limit variable. Table 1 shows that our composite analysis works well in
these test cases in terms of both accuracy and performance. As a final remark, for web
vulnerability benchmarks, one may restrict limit constraints, e.g., set $limit less than
7, to prevent the specified attacks without adding/modifying sanitization routines. In
this case, pure string analysis [16] will raise false alarms.

Test case (bad/ok) Result Time (s) Memory (kb)
int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T 0.014/0.018 216/252
samba (CVE-2007-0453) F/T 0.015/0.021 218/252
MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210) F/T 0.021/0.022 496/662
BloggIT 1.0 (admin.php:27) F/T 0.719/0.721 5857/7067

Table 1. Preliminary experimental results. T: buffer overflow free or SQL attack free

15

5 Conclusion
We presented an automata-based approach for symbolic verification of infinite-state
systems with unbounded string and integer variables. Our approach combines string and
size analyses and is able to verify properties that cannot be verified with either analysis
alone. We demonstrated the effectiveness of our approach on several examples.

References
1. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna.
Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applica-
tions. In Proceedings of the Symposium on Security and Privacy, 2008.

2. Constantinos Bartzis and Tevfik Bultan. Efficient symbolic representations for arithmetic
constraints in verification. Int. J. Found. Comput. Sci., 14(4):605–624, 2003.

3. Constantinos Bartzis and Tevfik Bultan. Widening arithmetic automata. In Proceedings of
the 16th International Conference on Computer Aided Verification, pages 321–333, 2004.

4. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise analysis of
string expressions. In Proc. 10th International Static Analysis Symposium, SAS ’03, volume
2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

5. Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv: towards a realistic tool for statically
detecting all buffer overflows in c. SIGPLAN Not., 38(5):155–167, 2003.

6. Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai Qian, and Lixin Tao. A static analysis
framework for detecting sql injection vulnerabilities. In COMPSAC ’07: Proceedings of
the 31st Annual International Computer Software and Applications Conference - Vol. 1-
(COMPSAC 2007), pages 87–96, Washington, DC, USA, 2007. IEEE Computer Society.

7. Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David Vitek. Buffer
overrun detection using linear programming and static analysis. In Proceedings of the 10th
ACM Conference on Computer and Communications Security, pages 345–354, 2003.

8. Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract interpreters to quanti-
fied logical domains. In 35th ACM Symposium on Principles of Programming Languages,
pages 235–246. ACM, January 2008.

9. Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple pro-
grams. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation, pages 339–348, 2008.

10. Kelvin Ku, Thomas E. Hart, Marsha Chechik, and David Lie. A buffer overflow benchmark
for software model checkers. In ASE ’07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pages 389–392, 2007.

11. Daryl Shannon, Sukant Hajra, Alison Lee, Daiqian Zhan, and Sarfraz Khurshid. Abstracting
symbolic execution with string analysis. In TAICPART-MUTATION ’07: Proceedings of the
Testing: Academic and Industrial Conference Practice and Research Techniques - MUTA-
TION, pages 13–22, Washington, DC, USA, 2007. IEEE Computer Society.

12. David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In In Network and Distributed System
Security Symposium, pages 3–17, 2000.

13. Pierre Wolper and Bernard Boigelot. On the construction of automata from linear arithmetic
constraints. In TACAS, pages 1–19, 2000.

14. Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting lan-
guages. In USENIX-SS’06: Proceedings of the 15th conference on USENIX Security Sympo-
sium, pages 13–13, Berkeley, CA, USA, 2006. USENIX Association.

15. Ru-Gang Xu, Patrice Godefroid, and Rupak Majumdar. Testing for buffer overflows with
length abstraction. In ISSTA ’08: Proceedings of the ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. ACM, 2008.

16. Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra. Symbolic string verification:
An automata-based approach. In 15th International SPIN Workshop on Model Checking of
Software, 2008.

