
Verification in Networked Embedded Systems ∗

Fang Yu
Department of Computer Science

University of California, Los Angeles

August 31, 2006

1 Abstract

In this summer, we propose to automatically translate nesC to hybrid/timed automata,

which could be served as the first step to achieve Networked Embedded System verifica-

tion. Based on that, we may verify some ongoing projects such as classification. Some

verification issues, e.g., scalability, are also discussed.

2 Motivation

Compared to test or simulation, formal verification poses an attractive way by either

guaranteeing the correctness of the system or generating a counter example to indicate

the violation. However, due to state explosion, the power of formal verification is usually

restricted to trivial systems.

This project is motivated by two observations of Networked Embedded Systems: a) due

to limited physical resources, device’s behavior is simple and is implemented in elegant

codes, and b) usually all devices are the same, i.e., the system is highly symmetric. These

yield two advantages while adopting formal verification: a) a concise formal model may

be achieved and b)symmetry reduction may be applied. Both alleviate state explosion

problem. In this manner, large-scale system may be verifiable.

3 Networked Embedded System verification

There are two verification levels while considering networked embedded systems: unit

verification and system verification. For unit verification, we make sure that each indi-

vidual device works properly with the well-defined interface interacting the environment,

∗This is the draft for the summer research with Prof. Sarrafzadeh, Summer06



while in the system verification level, we focus on the correctness of the integrated system

under the correct individual behavior.

I think three issues arise here: a) Investigate standard/efficient mapping rules to hy-

brid/timed Automata for defined nesC statements, and b) Optimize the generated au-

tomata and c) Scale the system size.

4 Unit verification

To achieve unit verification, we need a) a formal model for each device and b) specifica-

tions for desired properties. Both should be generated formally and automatically. We

propose to construct a well-defined translator for some standard language of embedded

systems. We aim to automatically translate nesC [8] to Linear Hybrid Automata(LHA) [3]

or Timed Automata(TA) [1]. nesC is a specific programming language for networked em-

bedded systems, which incorporates component-oriented design, event-driven execution,

and concurrent model. Basically, nesC applications are built out of components with

well-defined, bidirectional interfaces.

A LHA is a finite-state automaton equipped with a finite set of dense system variables

which can hold real-values, while a TA could be viewed as a LHA but only equipped with

real-time clocks, which had been widely adopted to verify real-time systems in modern

model checkers [13,17,21].

Some issues here are a) how to determine/define the exact semantics of nesC and its

corresponding modules of timed automata, b) how to convert even-driven semantics to

real-time semantics, and c) how to represent interfaces/environments. The parts of these

issues had been addressed in [19], in which we translated timeC, a C-like language with

time statements, and OVL assertions to the input language of RED [17].

5 System verification

In this verification level, we focus on the integrated behavior correctness. Precisely, we

want to determine whether the integrated system behaves well under the assumption that

each device behaves well(as you expect).

To achieve system verification, we have to answer both questions first: a) how to

connect each device together, e.g., using communication channels(e.g., lossy channels)

and b)how to implement specific algorithms for your purpose in a distributed manner,

e.g., classification. Basically, all these should be implemented using nesC. In other words,

once we determine and implement the environment and algorithms in nesC, we should be

able to automatically generate the corresponding timed automata.

After constructing the timed automata, the next step is to discover the desired proper-

2



ties of the system. These specifications should be described in formal logics, e.g., temporal

computation tree logics(TCTLs).

One of the most important issue in networked embedded systems is reliability. Basically

we call in Fault tolerance verification. As Foad mentioned, assume we have fault tolerant

technique in a distributed embedded system that claims to tolerate loosing 1 (or more)

PE(Processing Elements, such as Mica2Dots). How can we specify the property and verify

the functionality? Can we describe it either as an explicit TCTL formula or as a set of

assertions inline in nesC codes? It remains unclear to achieve Fault tolerance verification

so far, but it appears to be an interesting issue.

With Timed automata and specifications, we can verify the system, i.e, whether the tar-

get system satisfies the desired properties. To achieve this, a couple of model checkers with

different data structure can be used e.g., RED(BDD-like) [17], xBMC(SAT-based) [21],

and UPPAAL(DBM) [13]. RED is a full symbolic TCTL model checker with plausible

performance. Hence, I tend to choose RED as our checker.

6 Scalability

To verify large systems, we first have to conquer the state explosion problem, i.e., the

searching space is exponential blow-up while increasing the size of the system. Being

capable of verifying small systems well, the remain challenge is how to scale our verification

result to large systems. Can we infer the correctness of a large system by verifying a

set of specific small/verifiable systems? Various reduction techniques, such as partial

order reduction and symmetry reduction, had been proposed to address this problem for

general cases. It appears to be attractive but remains unclear how these techniques affect

verification performance for networked embedded systems, a large but highly symmetric

environment.

Another approach is induction. Can we construct an induction proof such that after

proving the base (by verifying basic systems) and the induction step(induction on the

system size), the correctness of arbitrary large systems hold? It remains unclear how to

define the induction step and construct the induction proof. Some properties of verifi-

cation algorithms, such as termination, soundness and completeness may alos worth to

be further addressed. We call in Inductive verification. Induction technique had been

used to accelerate fixed point calculation in [20]. In [14], Namjoshi showed, for general

temporal properties, how to lift a deduction proof of an abstract program to the original

one. Similar techniques may be applied here.

Considering reduce the complexity, another idea is modularity. Recall that our target

software is embedded, distributed onto networks and structured into logical components

that interact asynchronously. Can we abstract the system, e.g., treating one thousand

3



nodes as one with a new interface, such that both systems have the same behavior with

respect to the desired properties? We do not necessary abstract systems. The key point

here is looking systems in different levels, such that in each level we focus on specific

properties and hence are able to ignore the details in lower levels. An idea is model-

ings devices in different levels such that we can do unit verification and then achieve

system verification. Some variation here is adjusting each unit size and investigating the

relationship between units and the system(could be treated as a large unit). Thus, we

might construct an induction proof based on the unit size. We call in Modularity verifica-

tion. Alur et al. first proposed the idea of modularity in [4]. They further realized their

ideas in the model checker MOCHA for discrete system verification. Broy [5] introduce

a comprehensive mathematical model for composed systems, its essential views and their

relationships Models of data, states, interfaces, functionality, hierarchical composed sys-

tems, and processes are considered. Some issues in abstraction and refinement, as well as

forms of composition and modularity, had been addressed.

7 TinyOS

• ADCC.nc

• Logger.nc

• ServiceSchedulerM.nc

• ADCM.nc

• LoggerM.nc

• SimpleTime.nc

• AMPromiscuous.nc

• LogicalTime.nc

• SimpleTimeM.nc

• AMStandard.nc

• Main.nc

• TimeUtilC.nc

• BufferedLog.nc

• NoCRCPacket.nc

4



• TimerC.nc

• ByteEEPROMAllocate.nc

• NoLeds.nc

• TimerM.nc

• CRCPacket.nc

• PacketSink.nc

• UART.nc

• Checkpoint.nc

• PotC.nc

• UARTComm.nc

• ClockC.nc

• PotM.nc

• UARTFramedPacket.nc

• CrcFilter.nc

• RadioCRCPacket.nc

• UARTM.nc

• FramerAckM.nc

• RadioNoCRCPacket.nc

• UARTNoCRCPacket.nc

• FramerM.nc

• RandomLFSR.nc

• Voltage.nc

• GenericComm.nc

• RealMain.nc

• VoltageM.nc

5



• GenericCommPromiscuous.nc

• Reset.h

• WatchDogC.nc

• I2CPacketC.nc

• ResetC.nc

• sched.c

• I2CPacketM.nc

• SecDedRadioByteSignal.nc

• LedsC.nc

• ServiceSchedulerC.nc

8 Application

In the last section, we target the possible applications for networked embedded systems.

8.1 Power Analysis

One essential requirement for sensor networks is the reliability of applications since sensors

are planned to deploy into the area once and unattended for a period of time without

maintenance. An interesting focus is the lifetime of the sensor network. In some sense, the

lifetime for a hardware configuration reflects the period from the beginning till it out of

charge. Since concurrent interactions between tinyOS components may make the behavior

of applications hard to predict, it appears to be attractive to adopt formal verification to

support power analysis.

In a sensor network, the data being sensed must be transmitted to base station so

that the end-user can access the data. To conserve power, the data is usually being

relayed multiple times towards destination. Coleri and Ergen [6] performed the power

analysis of one node as a function of the distance from the base station. They first

estimated energy consumptions of the instruction set in tinyOS, and then modelled each

component as a Linear Hybrid Automaton (LHA), such that each component records its

power consumption during the computation. The distance is served as a parameter of

LHA to adjust the marginal rate of cost. The assumption behind Coleri’s model is that

the nodes closer to the base station will relay more packets compared to the far away one.

While they assume the flow of a node has an opposite relation to the distance between

6



the node and base station, in real sensor networks, the flow usually depends on its routing

algorithm. In particular, researchers have proposed many routing algorithms to minimize

the power consumption of either the entire system or each node, in a sense to extend the

lifetime as long as possible.

Considering these energy-aware algorithms, we extend Coleri’s work to perform the

power analysis of one node as a function of its flow. Roozbeh et al. [11] proposed an

ε-optimal multi-hop routing technique such that given the network topology with a set of

sources and destinations, the optimal flow, with respect to load balance among nodes, can

be calculated in a centralized manner. They reduce the problem to the min-cost problem,

and hence achieve polynomial time complexity by solving linear programming.

Incorporating Roozbeh’s work, we can serve the optimal flow as the input configuration

for each node, and verify whether a given hardware configuration is sufficient to match the

workload. In other words, we aim to check whether all nodes have sufficient resources to

support the calculated optimal flow. If the answer is no, a counter example is generated

to depict how a node fails even for this optimal balanced flow, i.e., the possible best load

distribution/the best lifetime of a node. On the other hand, since all nodes are identical,

the bottleneck of the flow can be identified easily. Instead of checking all nodes, we may

assert that once the node with the heaviest load can take the work, the system will not

crash.

We summarize our ideas as below.

• Given a directed graph G = (V, E),S = (s, q, t)|s ∈ V, q ∈ N , we first calculate the

ε-optimal flow f .

• Let fM = max{f(i)|i ∈ V } denote the max flow into a node. Assume each node is

implemented by a nesC program P . We then generate the hybrid system such that

the corresponding LHA A could be verified against the risk property, ”the node is

out of charge before finishing the workload.”

In the following week, I will focus on how to generate the hybrid system given the nesC

program and the required flow.

8.2 Security Protocol Analysis

Authenticated broadcast for severely resource-constrained environments. [15]

8.3 Classification

Foad suggests one of his ongoing projects: classification. Assume given the classification

algorithm on real time data which is implemented in a distributed fashion on PE. Can we

verify its correctness, as well as its reliability?

7



There are three different components needed to be implemented in nesC: a) Software

in PE, b) Networking protocols and communication c) Overall Algorithm. Regarding

communication, we can pick a well known communication protocol, e.g., [9] for the prob-

lem. Classification algorithms can potentially be: tracking objects, image classification,

environmental data processing (temperature, humidity...) physiological data classification

(ECGK).

Furthermore, it is also interesting to categorize these algorithms and have a model for

each category. I interpret this idea as finding some common characters for algorithms in

the same class and implement them in the same way. If this is the case, we might say a

model can represent a set of algorithms, and the correctness of this model can infer the

correctness of all algorithms in this set.

9 Discussion

Alur et al [3] present a model checking procedure and its implementation for the auto-

matic verification of embedded systems. Systems are represented by Hybrid Automata

-machines with finite control and real-valued variables modelling continuous environment

parameters such as time, pressure, and temperature. System properties are specified in a

real-time temporal logic and verified by symbolic computation. This is exactly the proce-

dure we are going to adopt in this project. While their works address embedded systems,

we extend their techniques to networked embedded systems.

The first challenge is to formalize the semantics of standard languages which are used

to implement networked embedded systems.

Volgyesi et al. [16] presented a modelling environment targeting tinyOS. They propose

Hierarchical Interface Automata(HIA) as the formalism to capture the temporal and type

aspects of interfaces and support the composition and verification of components. They

further use the explicit model checker:SPIN to check composability of components based

on their interface models, and also verify whether the implementation of a component

matches its formal model. However, as they mentioned, their approach suffers from scal-

ability and might be limited to verify entire sensor networks. To address this problem,

considering the nature of networked embedded systems, we propose to determine auto-

morphisms and apply symmetry reduction to reduce the complexity of model checking.

The basic idea is to reduce model checking over the original structure M to a smaller quo-

tient structure M’, where symmetric states are identified. More precisely, the symmetry

of M is reflected in the group of permutations of process indices defining graph automor-

phisms of M. [7]. Symmetry takes advantage of the permutations on the components of

a state which provoke the same executions for a specific property. Since we particularly

focus on those systems composed of many isomorphic processes, we may be able to gain

8



significant, even exponential, savings in the complexity of model checking.

Despite the scalability, it is also unclear how to analyze continuous behavior in HIA.

One interesting research direction is extending HIA to hybrid systems, e.g., constructing

Hierarchical Hybrid Automata and developing model checkers to verify them. To my best

knowledge, most modern hybrid model checkers, e.g., Trex [2], HyTech [10], and RED [18],

seldom address this feature.

Opposite to general purpose, some researchers focus on verifying specific applications.

Coleri and Ergen [6] do power analysis of sensor network by modelling tinyOS as hybrid

automata with HyTech [10]. With respect to power analysis, an overview of the tinyOS

hybrid automata model is proposed, as well as the semantics of the components and the

network. Basically, each component in tinyOS is abstract to an automaton containing

three states: actual, energy, and wait, such that during the computation, the power

consumption of each component is accumulated. They generate a trace with Hybrid for

each node to estimate its power consumption. They further simulate muti-hop forwarding

in a hierarchy-tree structure network and conclude the relation of distance and lifetime

of the sensor nodes. Compared to automatically translate nesC to hybrid automata

syntactically, they target the semantics of some specific application and model the system

on that purpose.

10 Summary

Finally, for these two months, we aim to target an application which could be implemented

in nesC and build the translator which could automatically translate the previous system

into LHAs, such that some well-known model checker, e.g., RED, can be used to verify

the target system.

References

[1] R. Alur, “Timed Automata.” In Proc. of CAV’99, LNCS 1633, pp. 8-22, Springer,

1999.

[2] A. Annichini, A. Bouajjani, and M. Sighireanu, TReX: A Tool for Reachability Analy-

sis of Complex Systems, In Proc. of the 13th Intl Conf. Computer Aided Verification,

pp. 368-372, 2001.

[3] R. Alur, T. A. Henzinger, P.-H. Ho, Automatic Symbolic Verification of Embedded

Systems. In Proc. of Real Time Systems Symposium. IEEE Computer Society Press,

1993.

9



[4] R. Alur, T. A. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA:

Modularity in model checking. In Proc. of the Tenth Int. Conference on Computer

Aided Verification, LNCS 1427, pages 521-525. Springer-Verlag, 1998.

[5] M. Broy, Modular hierarchies of models for embedded systems, Formal methods and

models for system design: a system level perspective, pages 3-32, 2004.

[6] S. Coleri, M. Ergen, Verification and Power Analysis of an Event-Based System

(TinyOS) and Sensor Network with Hybrid Automata. SCI Orlando, July, 2002.

[7] E. A. Emerson and A. P. Sistla, Symmetry and model checking, In Proc. of the

International Conference on Computer Aided Verification (CAV93), LNCS 697, pp.

463-478, Elounda, Greece, 1993.

[8] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, and D. Culler, The nesC Language:

A Holistic Approach to Networked Embedded Systems. In Proc. of Programming

Language Design and Implementation (PLDI) 2003, June 2003.

[9] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, Energy-Efficient Com-

munication Protocol for Wireless Microsensor Networks, In Proc. of the 33rd Annual

Hawaii International Conference on System Sciences(HICSS), pp. 3005-3014, Jan.

2000

[10] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi, HyTech: A Model Checker for Hybrid

Systems, Software Tools for Technology Transfer, vol 1, pp. 110-122, 1997.

[11] Roozbeh Jafari, Foad Dabiri, Majid Sarrafzadeh, ε-Optimal Minimal-Skew Battery

Lifetime Routing in Distributed Embedded Systems, In Proc. of the Journal of Low

Power Electronics (JOLPE), vol 1, no. 2, pp 97-107, September 2005.

[12] R. P. Kurshan, V. Levin, M. Minea, D. Peled and H. Yenigun, Static Partial Or-

der Reduction, In Proc. of Tools and Algorithms for Construction and Analysis of

Syatems(TACAS), LNCS 1384, pp. 345-357, Lisbon, 1998.

[13] K. G. Larsen, P. Pettersson, and Y. Wang, UPPAAL in a Nutshell, In Int. Journal

on Software Tools for Technology Transfer 1(1-2), pp. 134-152, 1998.

[14] Kedar Namjoshi, Lifting Temporal Proofs Through Abstractions, In Proc. of the

Fourth International Conference on Verification, Model Checking and Abstract In-

terpretation (VMCAI03), New York, January 9-11, 2003.

[15] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar, SPINS:Security Protocols

for Sensor Networks, In Proc. of Mobile Computing and Networking, Italy, 2001.

10



[16] P. Volgyesi a, M. Maroti b, S. Dora b, E. Osses b and A. Ledeczi Software Composi-

tion and Verification for Sensor Networks. Science of Computer Programming, Vol.

56 , Issue 1-2, pages 191 -210, April 2005.

[17] F. Wang, Efficient Verification of Timed Automata with BDD-like Data-Structures.

VMCAI’03, LNCS 2575, Springer-Verlag, 2003.

[18] F. Wang, Symbolic Parametric Safety Analysis of Linear Hybrid Systems with BDD-

like Data-Structures. In Proc. of the Sixteenth Int. Conference on Computer Aided

Verification (CAV04), LNCS 3114, Springer-Verlag; Boston, USA, July 2004.

[19] F. Wang and F. Yu, OVL Assertion Checking of Embedded Software with Dense-

Time Semantics, In Proc. of the 9th International Conference on Real-Time and

Embedded Computing Systems and Applications (RTCSA 2003), LNCS 2968, Feb-

ruary 2003.

[20] F. Yu and B.-Y. Wang, Towarded Unbounded Model Checking for Region Automata,

In Proc. of the 2nd International Symposium on Automated Technology for Verifi-

cation and Analysis (ATVA 2004), LNCS 3299, pages 20-33, Taipei, Taiwan, Oct

2004.

[21] F. Yu and B.-Y. Wang, SAT-based Model Checking for Region Automata, Submitted

to the International Journal of Foundations of Computer Science (IJFCS), 2006.

11


