BDD-based Safety-Analysis of Concurrent Software
with Pointer Data Structures
using Graph Automorphism Symmetry Reduction”

Farn Wang!
Dept. of Electrical Engineering, National Taiwan University
Taipei, Taiwan 106, R.O.C., farn@cc.ee.ntu.edu.tw

Karsten Schmidt?
Dept. of Computer Science, Humboldt University of Berlin, Germany

Fang Yu, Geng-Dian Huang, Bow-Yaw Wang
Inst. of Info. Science, Academia Sinica, Taipei, Taiwan, R.O.C.

Abstract

Dynamic data-structures with pointer links are heavily used in real-world software
and results in extremely difficult verification problems. Currently, there is no practi-
cal framework for the efficient verification of such systems. We investigated symmetry
reduction techniques for the verification of software systems with C-like indirect refer-
ence chains like x->y->z->w. We formally defined the model of software with pointer
data structures and developed symbolic algorithms to manipulate conditions and assign-
ments with indirect reference chains using BDD technology. We relied on two techniques,
inactive variable elimination and process-symmetry reduction in the data-structure con-
figuration to reduce time and memory complexity. We used binary permutation for
efficiency but we also identified the possibility of anomaly of false image reachability.
We implemented the techniques in tool Red 5.0 and compare performance with Mur¢
and SMC against several benchmarks.

Keywords: symbolic model checking, pointers, data structure, address manipulation, sym-

metry reduction, experiments

*A preliminary report of this work is to appear in the proceedings of FORTE’2002, in LNCS, Springer-
Verlag.

tThis work is partially supported by NSC, Taiwan, ROC under grants NSC 90-2213-E-001-006, NSC 90-
2213-E-001-035, and by the Broadband network protocol verification project of the Institute of Applied Science
& Engineering Research, Academia Sinica, 2001.

tSupported by DARPA/ITOP within the MoBIES project.

1 Introduction

The execution of real-world software may lead to the construction of complex and dynamic
networks of data structures through pointers. Maintenance of correct linking through such
pointers is not only cumbersome but also error-prone. Currently, although formal verification
has the promise of automating the verification tasks in industrial projects, there is no practical
framework that enables the formal verification of complex software with dynamic pointer links.

We investigate symmetry reduction techniques for the verification of software systems with
C-like indirect reference chains. Such a chain takes the form z1->x9->...->z,. In C notation,
if x,, is contained within a data structure of type T, then z,_; is of type T (type pointer to
T), and for all 1 < i < n, x; points to a structure with a field x;;; that points to something
next in the chain. For example, we may have the following two structure type declarations

for parsing trees in a C-program.

struct exp_type {
int op;
struct atom_type *atom;
struct exp_type *1lhs, *rhs;
3
struct atom_type {
char *name ;

+;

If we declare a variable e of type *exp_type pointing to the parsing tree for = + y, then we
can write an indirect reference chain like e->1hs->atom->name to reference to the string of
“¢. [labelrl:atoml It is our goal to use BDD-based algorithms and symmetry-reduction
techniques to enhance the verification performance for such systems.

Verification of networks with linear topologies like rings and buses has been widely stud-
ied. In real-world software, arbitrary and dynamic network configuration is, however, often

constructed using pointers. ~ We focus on the computational model with shared-memory

concurrency involving two kinds of variables, global and local. A process has its own copy
of each local variable and can directly access every process’ copy of it. An action like
“r1=>x9=>...->x, = 3;” can stretch through a network and change the local memory of
a peer process in the network. Such indirect references are not only very common in prac-
tice, but also extremely important in both hardware and software engineering. Most CPUs
now support hardware indirect referencing to facilitate virtual memory management. This
hardware indirect referencing mechanism is transparent to software. Dynamic data structures
like linear lists, trees, and graphs are constructed with pointers and used intensively in most
nontrivial software.

In real-world software, an indirect reference chain may traverse through structures of various
types. To lay a solid and elegant groundwork for this study, we shall assume that there is only
one structure type, the process structure type. Without loss of generality, many structure
types can be packed to one structure type. For example, we may combine the previously

mentioned two structure type declarations into the following one.

struct process_type {
int exp_op;
struct atom_type *exp_atom;
struct exp_type xexp_lhs, *exp_rhs;
char *atom_name;

+;

Thus from now on in this manuscript, a pointer’s value not only points to a structure but can
also be viewed as the identifier of the process of the structure. This assumption helps us to
focus on the verification algorithms, instead of the multitude of data-types.

In example 1, we have a locking algorithm[23] which uses pointers (to process structures)

to maintain a queue for critical section mutual exclusion.

Example 1 : MCS (Mellor-Crummy & Scott’s) locking algorithm. This algorithm|[23]

is an example of a protocol in which a global waiting queue of processes is explicitly used to

next->locked = TRUE;

next !=NULL

locked = FALSE; locked —— TRUE

prev->next = P;

locked == FALSE

Figure 1: MCS locking algorithm

ensure mutually exclusive access to the critical section in a concurrent system. In figure 1, the
MCS locking algorithm for a process is drawn as a finite-state automaton. We would like the
system to have at most one process in modes six to nine (called critical section). The queue
is constructed with one global pointer L (to the tail of the queue), and two local pointers of
each process: next and prev (pointing to the successor and predecessor processes of the local
process in the queue respectively). P stands for a special symbol for the structure address of
the current process. Each process has a local Boolean variable called locked which is set
to true when the process is permitted to enter the critical section by its predecessor in the
queue.

The transitions of the algorithm are represented by arrows. Each transition is associated
with an action. Take the transition from mode four to five as an example. Its action is
prev->next = P;. The expression prev->next denotes the local pointer next of the process
structure referred to by the local pointer prev of the current process. Since the current process
may update its local pointer prev, the same expression prev->next may refer to a different
next pointer at different moments. Similarly, for the transition from mode nine to zero, the
expression next->locked refers to the local pointer locked of the process pointed to by next
of the current process.

We want to guarantee that at any moment, at most one process is in the critical section. ||

Due to their dynamic nature, software with pointer data structures have been known to
be extremely difficult to maintain and debug. Any experienced software engineer will agree
that bugs caused by the side-effects of pointer aliasing are extremely difficult to detect and
remove. Such bugs, whose effect usually does not emerge until long after a data structure is
corrupted through an aliasing reference, are very difficult to trace to their sources.

The technique of symbolic model-checking manipulates logic predicates describing state-
spaces. Since the technique can usually handle large sets of states in an abstract and concise
way, it can achieve high efficiency in verification. In recent decades, the Binary Decision
Diagram (BDD) [3, 6] has become a prime industry technology for symbolic manipulation. In
this paper, we have the following accomplishments.

e We define a formal model for concurrent software with pointer data structures for rig-
orous research on solving the verification problem. Note that the framework allows all
processes to share the same automaton template but have their own local variables.
This is extremely important in identifying process-symmetry in a convincing way. Most
other model checkers [4, 5, 18, 32] allow each process to be described by its own au-
tomaton, which usually creates difficulty in identifying symmetric behaviors among the
process automata efficiently. (Note that asymmetric systems can also be modeled in our
framework with processes running mutually disjointed parts of the program.)

e We have developed techniques for analyzing pointer conditions and assignments using
BDD-like data structures. Algorithms for both forward and backward analysis have
been developed and implemented. Both have been tuned for verification performance.
Special care is taken to allow recurrent assignments, like y—>x = 3y->x + 2; where the
left-hand-side may also occur in the right-hand-side.

e We have adapted two reduction techniques for model checking such systems.

— Reduction by inactive variables eliminations. This helps the construction of concise
state-space representation through the elimination of variable valuations that do
not change system behavior [5, 18, 29, 30, 32]. Due to the implicit reading of
pointers in the indirection of operand references, the adaptation cannot be done by

syntactic analysis.

— Reduction by process-symmetry. The idea of symmetry reduction[9, 15, 25, 29, 32]
is to represent symmetric states by a single state. We shall follow the approach
of process-symmetry in [15, 29, 32| since process represents a typical basic unit
for behavioral equivalence in symmetry. In general, to compute the full symmetry
equivalence classes is expensive with factorial worst-case complexity. For efficiency,
we use binary permutation of process identifiers to transform data structures to
their automorphic ones with process re-indexing. How to design a symbolic predi-
cate to detect the necessary condition for permutation is also discussed.

e We have implemented our modeling and verification techniques for pointer data-structure
systems in our model-checker Red version 5.0, which is availabel for free at
http://www.cc.ee.ntu.edu.tw/~ farn/red/
The implementation not only supports pointer data structures but also complex arith-
metics on process identifiers.
e We report experiments on several benchmarks to show the usefulness of our techniques
and compare our method’s performance to that of SMC[12] and Murg[11, 20].

In section 2, we discuss the related work briefly. In section 3, we define the formal frame-
work of this research. In section 4, we present an algorithm that integrates safety-analysis
software with various reduction techniques. In section 5, we present an algorithm that ma-
nipulates symbolic predicates and assignment statements using BDD-like data structures. In
section 6, we discuss our reduction techniques. In section 7, we discuss our implementations

and experiments. Section 8 gives the conclusion.

2 Related Work

The classic framework of model checking problem was first proposed by Clark and Emerson
in [8] using finite-state automata for model descriptions. While we are investigating the
verification of concurrent software, parameterized systems, in which many processes run the
same piece of program, attract our attention. The verification of parameterized systems with
unknown number of processes|2, 10, 13, 20, 21, 26, 27] may result in undecidability. Instead,

we are more interested in verification of systems with given number of processes. In such a

framework, it is important to reduce the verification complexity with respect to the number
of processes.

In [12, 14, 15], a group-theoretic approach is used to reduce the state space for symmetric
processes. In [20], a new data type is introduced for state-space reduction to exploit data
symmetry. Using graph isomorphism, a symmetry reduction algorithm is proposed in [24].
But it was unclear whether the explicit-state reduction algorithm in [24] could be computed
symbolically.

In general, it can be expensive to calculate the full equvivalence class of process symmetry
with its factorial complexity. Facing this intrinsic challenge, researchers generally have to
settle for abstraction of equivalence classes [12, 20]. In practice, for each verification task,
we may need specific abstraction techniques for optimal performance. In the past, people
have not focused on the development of such abstraction techniques for specific types of sys-
tems. In comparison, our GASR technique is specifically designed for abstraction of symmetry
reduction in pointer data-structure systems.

To our knowledge, people have only implemented explicit-state algorithms for symmetry
reduction [12, 20]. In 2000 and 2002, Wang experimented to use BDD-like data structure to
implement symmetry reduction for timed automata[29, 31].

We also use binary permutations on process identifiers to transform states to their auto-
morphic representatives in a sorting-like framework. Such an idea has previously been used
in [29, 32, 31].

Other than symmetry reduction, many reduction techniques can also be found in literature.
In partial-order reduction [16, 19, 22], sequences of independent transitions are represented
by their representative. For internal transitions, internal action hiding [17, 18] merges them
and thus reduce the number of states and transitions as well. The abstraction technique [7]
tries to build an abstract model for the original model. The abstract model may disregard
some of the behavior of the original, but it still has the necessary computations to verify
specifications. However, it is unclear whether these reduction techniques are applicable to
pointer data structures due to the complexity of pointer analysis.

Finally, in the last few years, people have also worked on the verification problems of

parameterized systems with unknown number of processes. Such verification problems are in
general undecidable and rely on various abstraction and widening techniques|2, 10, 13, 20, 21,

26, 27| to converge the state-space fixpoint evaluation.

3 Concurrent Algorithms and the Safety Analysis Prob-
lem

We consider concurrent algorithms with local data structures attached to each process for
convenience of presentation and discussion. The address of a data structure can be viewed as
the identity of the corresponding process. If p is the address of a process’s data structure, we
shall also name the process as p by convention.

Our model and techniques can be easily adapted to model and verify data symmetry instead
of process symmetry. The idea is to declare a dummy process for each piece of allocated
structure. Such dummy processes do not have corresponding transitions. The other executing
processes can access, through pointers, the local data-fields (actually local variables) of those
dummy processes.

Two types of variables can be declared. The first is the type of discrete variables of pre-
declared finite integer value ranges. For each declared variable z, 1b(x) and ub(x) denote
its lower-bound and upper-bound respectively. Such variables can be used in formulae and
assignments in arithmetic expressions and indirect operands. For convenience, we also assign
symbolic macro names to integer values. Traditionally, FALSE is interpreted as 0 while TRUE
as 1. The second type of variables are pointers (address variables) which point to processes
(data structures). The values of pointers range from zero (NULL) to the number of processes.
In example 1, L is used as a pointer to the tail of a queue. We also support arbitrary address
arithmetics. A special constant pointer symbol is NULL, which in C’s tradition is equal to zero.
Or in the same notations as of discrete variables, Ib(x) = NULL and ub(x) is the number of
processes for all declared pointers x.

Variables which are declared to be global are accessible to all processes. Local variables of a
process can only be accessed by its corresponding process directly. A process must use indirect

reference chains of pointers to access local variables of peer processes. A name can be used

to represent the respective local variables of different processes. For instance, in example 1,

different processes access different variables which are all locally called locked.

3.1 Syntax of Algorithm Description

Let us say that a concurrent algorithm S is a tuple (G4, GP, L4, L? | A(P)) where G? and L? are
respectively the sets of global and local discrete variables, GP and LP are respectively the sets
of global and local pointers, and A(P) is the process program template, with process identifier
symbol P.

Given a set X% of global and local discrete variables and a set X? of global and local pointers,
a local state predicate n of X% and X? can be used to describe the triggering condition of state

transitions and has the following syntax.

nu= e~ e | o lm Vi
€= Cc|NULL | P |z |y=->€e|z[p] | ylp]->€| €1 P e

where ~e {“<=" “<” “==" =" “>7 “>="1is an inequality operator in C’s notations,
c € N'— {0}, p is an integer from 1 to the number of processes, + € XU X?, y € X?, and
® e {+,—, %/}

Here the notations y->¢ and y[p]->¢ for indirect references should be self-explaining to
C-programmers. In the expression of y—>¢, y is either a local or global pointer variable that
points to a structure and e starts with a data-field in that structure type. If y is a local pointer,
then it is interpreted as the one for the executing process. In the expression of y[p]->¢, we
specifically refer to the local pointer y of process p.

Parenthesis can be used for disambiguation. Traditional shorthands are €1 =5 = —(e; = €3),
mAne = =((—n)V(—=n2)), and g, = 19 = (1) Vne. Thus a process may operate on conditions
of global and local variables, and also on local variables of peer processes via pointers. We let
B(X? X?) be the set of all local state predicates constructed on the discrete variable set X ¢
and the pointer set XP.

In our concurrent algorithm, once the triggering condition is satisfied by global and local

variables of a process, the process may execute a finite sequence of actions of the form:

Y1=2Y2=> ... =2Yp =T = €

Let T(X4, XP) be the set of all finite sequences of actions constructed with X? and X?.
Given a concurrent algorithm S = (G¢, GP, L LP, A(P)), A(P) is the program template,
with identifier symbol P, for all processes. Program template A(P) has a syntax similar to
that of finite-state automata. A(P) is a tuple (Q, Qy, E, 7, 7) with the following restrictions:
e () is a finite set of operation modes.
e (Qy C (@ is the set of initial operation modes.
e £ C (@ x (@ is the set of transitions between operation modes.
o 7:F+— B(GYU LY GP U LP) is a mapping that defines the triggering condition of each
transition.
o 7: E— T(GYULY GPULP) is a mapping that defines the action sequence performed
upon occurrence of a transition.
We require that there is a variable mode € L? that records the current operation mode of the
corresponding process. When drawing A(P) as an automaton, as in figure 1, we omit the

description of mode values in the triggering conditions and action sequences for simplicity.

3.2 System Computation

Given a system of M processes, we assume the processes are indexed with integers from one
to M. Given a concurrent algorithm S, S™ denotes the implementation of S by processes

one through M. A state v of S™ is a mapping from
{NULL, 1,...,M} x (N UG*UGP U {L,NULL, P} U L% U L?)

such that
e v(NULL,z) =L (memory fault) for all z € N and all variables z.
e forall1 <p<M,v(p,L)=L;v(p,P)=p;and v(p,c) =cif c € N;
e forall 1 <p < M, v(p,z) is the value of = at state v, or more precisely,
o for all z € G*U LY, v(p,z) € [Ib(x),ub(x)]; and
o for all z € GP U LP, v(p,z) € {NULL} U {1,..., M} such that for all 1 < p’ < M,

v(p,x) =v(p, z).

10

Given a state v, a process 1 < p < M, and a process predicate n € B(G4 U L GP U LP), we
define the mapping of p satisfies n at v to {TRUE, FALSE, 1 } as follows.!
e v(p,y->€) = v(v(p,y),e) if p # NULL.
e v(p,ylc]->€) = v(e,y=>¢) if 1 < ¢ < M; otherwise, v(p, y[c]->€) =L .
e v(p,erDe) = Lifd="/Av(pe)=0.
(P,

e v(peg Be) = v(pe) @ v(pe) if either & € {+,—,%} or & ="/ Av(p,ez) # 0.

Integer-division is assumed, that is z/y is defined as Er Hx/yH
e v(pegDe) = Lifeg =1 ore=1.

i V(pa €1~ 62) = V(pa 61) ~ V(pa 62)
e “I~¢€” equals L, and “e ~1” equals L.

e The negation of the satisfaction mapping is defined as
v(p,n) | FALSE | L | TRUE
v(p,—m) | TRUE | L | FALSE

e The disjunction of the satisfaction mapping is defined as
v(p,m V 1p) || FALSE | L | TRUE

FALSE FALSE | L | TRUE
L S I I
TRUE TRUE | L | TRUE
Given an action « of S, the new global state obtained by applying y,->...->y,—>x :=€;,
with n > 0, to p at v, written next(p, v, y1=>...->y,~>z :=¢;), is defined as follows.

e When v(p,y1->...->y,~>x) #L and v(p,e) #L, next(p,v,y1=>...=>y,~>r = ¢;) is
exactly v except next(p,v,y1=> ... >y,=>7 := ¢;) (V(p, y1=> ... =>Y,), 1) = v(p, €).
e When either v(p,y1—>... >y,~>x) =L or v(p,€) =L, next(p,v,y1=>... >y,~>x :=¢;)
is undefined.
Note that the semantics are defined to allow for recurrence of a variable in both the left-
hand-side and right-hand-side of an assignment. Given an action sequence a; ..., € T(Gd U
L% GP U LP), we let next(p,v,aqjay...a,) = next(next(p,v,a1),p,as...). An initial
state vy of an implementation S™ must satisfy A1<p<m Vo(p,mode) = 0. Although there is
no initial constraints in our framework, the processes can still set its variables’ initial values

through the first transition from mode 0. We assume that the system runs with interleaving

1'We confess that this is a little symbol overloading of v() since now the second arguments of v are predicates
instead of variables. But for the convenience of presentation, we think it is a natural extension since each
predicate should have a value in this three-value logic of {TRUE, FALSE, 1}.

11

semantics in the granularity of transitions. That is, at any moment, at most one process can
execute a transition. Execution of a transition is atomic.
A computation of an implementation S™ is a (finite or infinite) sequence p = vy ... V... ...
of states such that for all £ > 0,
e 1, is an initial state of S™; and
e for each vy with k£ > 0, either vy = v or there isa p € {1,..., M} and a transition

from ¢ to ¢’ such that vx_1(p,7(q,q")) = TRUE and next(p, vy_1,7(q,q")) = vy is defined.

3.3 Safety Analysis Problem

To write a specification for the interaction among processes in a concurrent system, we need

to define global predicates with the following syntax.

pu= P~y | 0| P1V e
¢ = c|NULL |y | z[p] | z2=>€ | w[p]->€ | {1 © 1,

where ce N,y e G¢UGP, x € L4UILP, 2 €GP, w € LP,and 1 < p < M.
Given a state v and a global predicate ¢, we define the valuation of v on ¢, written v(¢),
in the following inductive way.?
e v(y ~1hy) = v(ih) ~ v(1hy) € {TRUE, FALSE}
o v(z[p]) = v(p,x)
o V() = ~v(9)
o v(d1V o) =v(d1) V v(e2)
The rest is the same as the corresponding rules for local state predicates.
A computation p = vovy ... Vg of SM violates safety property ¢ if and only if there
is a k > 0 such that either v is undefined or vi(p, #) # TRUE for some 1 < p < M. The
safety analysis problem instance SAP(S, M, ¢) is to determine if for all computations p of S™

starting from some initial states, p does not violate safety property ¢.

Example 2 : Consider the MCS locking algorithm in example 1. The critical section
consists of modes six through nine. Thus the safety analysis problem for mutual exclusive
access to the critical sections of two processes can be formulated as SAP(S, 2, =(6 < mode[1] <

9 A6 < mode[2] <9)). [

2Again, we here overload the meaning of v() since now v(¢) has only one parameter when ¢ is global.

12

4 Framework for Safety Analysis and Reduction

The goal of the framework is to explore and construct a representation of the reachable state-
space and analyze if the automaton ever violates the safety property. Our general algorithmic

framework for symbolic safety analysis is shown below.

SAP(S, M, ¢) {
reachable := A\;<,<\mode[p] = 0; /* the initial state-predicate */
next := TRUE;
while(next # FALSE) {
next := FALSE;

Sequentially for each 1 < p < M and for each transition (q,¢’), do {

new := indirect_condition(reachable, p,7(q,q')); (1)
new := indirect_assignment(new,p, 7(q,q')); (2)
new := reduce(new); /* application of reduction techniques */ (3)

next := next V (new A —reachable);

}

reachable := reachable V next;

}

if (reachable A\ ¢ # FALSE) return “unsafe”; else return “safe”;

The procedure iterates through the outer loop until reachable becomes a fix-point. At line (1),
indirect_condition(D,p,n) returns a global predicate in BDD representing the subspace of
D in which n is true of process p. At line (2), indirect_assignment (D, p,7(q,q')) calculates a
global predicate in BDD representing the result after applying action sequence 7(q, ¢') to states
in subspace represented by D. Symbolic implementations of procedure indirect_condition()
and indirect_assignment() will be discussed in section 5. At line (3), reduce() simplifies
reachable state-space representations with various reduction techniques.

;From its appearance, procedure SAP() looks straightforward. The real challenge comes

13

from the fact that in practice, the representation sizes of reachable state-spaces of any rea-
sonably interesting software implementations are usually tremendous. In sections 6, we shall

present two techniques to reduce the complexity of state space representations.

5 Manipulation of Predicates with Indirections

In our presentation of symbolic algorithms using BDD, we shall assume typical Boolean opera-
tions, such as conjunctions and negations, are already defined. Details of such BDD operations

can be found in [3, 6].

5.1 Symbolic Evaluation of Conditions with Indirect Operands

In a pointer data-structure system, users may write a predicate with indirect reference chains
of arbitrary lengths. For example, we may have a pointer data-structure system with the

following declarations.

global pointer L;
local pointer parent, leftchild, rightchild;

local discrete count: 0..5;

All these variables are encoded by a finite number of bits in a BDD-like data structure. This is
possible because their value ranges are finite. Specifically, 1b(count) = 0, and ub(count) = 5.
Suppose a state-space representation D in a BDD-like data structure is given. We would

like to compute the maximal subspace representation D' of D where
parent|[l]->count — 2 % leftchild[2]->rightchild->count < L->count

is true. The condition says that the difference of the count of the first process’s parent
(parent[l]->count) and twice the count of the right child of the second process’s left child
(2xleftchild[2]->rightchild->count) is less than the count of process L (L->count). Since
there is no restriction on the length of indirections, we need a flexible algorithm to construct

such a D'. Our simplified algorithm is the following function indirect_condition(), which

14

in turn invokes functions indirect _ref() and indirect_arith().

indirect_condition(D,p,n) {
Without loss of generality, rewrite 1 into the form e ~ ¢ where ¢ is a constant
Construct D, := indirect_arith(p,€);

return D A var_eliminate (D, A VALUE ~ c, VALUE);

Procedure var_eliminate(D,x) filters x out of D. For a local discrete variable x[p],
var_eliminate(D,z[p]) = Vyemp@u@i(P A z[p] == wv). For a local pointer z[p],
var_eliminate(D, z[p]) = V,eqnurrn1,..mp (D A z[p] == v).

Procedure indirect_condition() is simplified with the omission of codes to deal with prob-
lems like divide-by-zero and imprecision caused by integer division. In our implementation,
the algorithm is more involved and takes care of many special cases. To focus on the algo-
rithms, we only simplify the presentation. The algorithm uses auxiliary variables, VALUE and
DPI (for Destination Process Identifier). VALUE has the value of an arithmetic expression. DPI
stores the destination process identifier of the indirection.

Function indirect ref(p, 1,1;->...->1;) constructs the condition that the value of [;=>. .. ->I;

at process p equals the process identifier recorded in variable DPI.

indirect_ref(p, i, [;=>lo=>...=>l;) {
if i > k, return(DPI == p);
else if [; is a local pointer [;[j] with specific process reference j, then
return V< pen(li[j] == f A indirect_ref(f,i+1,11->...->l}));
else if [; is a local pointer [; with no specific process reference, then
return Vi< pen(li[p] == f A indirect_ref(f,i+1,[;=>...=>l}));
else if [; is a global pointer g;, then

return Vi< ren(9i == f A indirect_ref(f,i+1,0,->...->[));

15

Function indirect_arith(p,€) uses the auxiliary variable VALUE to symbolically record the
value of expression € at process p. It returns the predicate asserting that VALUE equals the

value of expression € for process p.

indirect_arith(p,e€) {
R := FALSE;
if € is [1=>lo=> ... =>[—>x with k > 0, then {
H :=indirect_ref(p, 1,1;->l=>...=>l});
for j:==1 to M, 1b(x) < v < ub(x), do
R:= RV (H ANvar_eliminate(DPI == j A x[j] == v A VALUE == v, DPI));
}
else if € is ¢, then
R := RV (VALUE == c¢);
else if € is z[i] with local variable z and specific process reference i, then
for 1b(z) < v <ub(z), do R := RV (x[i] == v A VALUE == v);
else if € is local variable x with no specific process reference, then
for 1b(z) < v < ub(z), do R := RV (z[p] == v A VALUE == v);
else if € is a global variable z, then
for 1b(z) < v < ub(z), do R := RV (x == v A VALUE == v);
else if € is €; @ €3 where @ € {+, —, %, /}, then {
Ry := indirect_arith(p, €);
R, := indirect_arith(p, €);
for every possible combination of values vy, vy of variable VALUE, do {
H, := var_eliminate(R; A VALUE == vy, VALUE);
H, := var_eliminate (R, A VALUE == vy, VALUE);
R:= RV (Hy A Hy ANVALUE == v; @ v3); (1)

b3

return R;

16

As an example, let us execute the just-mentioned procedures with n = [->[->x > [->z + 3
on a state-space described by D = ({[1] == 2) A (I[2] == 2) A (z[1] == 4) A (z]2] == 3). We
first rewrite n to [->[->x — [->x > 3. Suppose the current process identifier p = 1. Further,

let 1b(x) = 3 and ub(x) = 4. Then
indirect_ref(p,1,1) = (1[1] == 1 ADPI == 1) V (1[1] == 2 ADPI == 2).

—=1Az[1] == 3 AVALUE == 3
—=1Az[l] == 4 A VALUE ==
[

Hence indirect arith(p,1->x) 1])
1])
1) == 2 A 2[2] == 3 A VALUE == 3)
1])
)

<

== 2 A z[2] == 4 AVALUE ==
Similarly, since indirect_ref(p,1,1- = ([[1]==1AI[1]] ==1ADPI ==1)
V ({1} ==1AI[l]] == 2 ADPI == 2)
V ({1} ==2AI[]2] ==1ADPI == 1)
V. ({[1] ==2AI[2] == 2 ADPI == 2)

we have indirect_arith(p,1->1->x) = ([[1]==1Al[l] == 1A z[l] == 3 AVALUE == 3)
vV (l[1] ==1AI[1l] == 1A z[l] == 4 AVALUE == 4)
VvV (I[1] == 1 Al[1] == 2 A z[2] == 3 A VALUE == 3)
V. (l[1] ==1AI[[1] == 2 A z[2] == 4 A VALUE == 4)
VvV (I[1] == 2 Al]2] == 1 A z[1] == 3 A VALUE == 3)
vV (l[1] ==2 A2 == 1 A z[l] == 4 AVALUE == 4)
vV (l[1] == 2 Al[2] == 2 A x[2] == 3 AVALUE == 3)
Vo (l[1] ==2AI[[2] == 2 A x[2] == 4 AVALUE == 4)
Thus, indirect_arith(p,1,1->1->x — 1->x)

= (I[1] ==1Al[1] == 1 A z[l] == 3 AVALUE == 0)

vV (l[1] ==1AI[1l] == 1 A x[l] == 4 AVALUE == 0)

vV (l[1] == 1AI[1l] == 2 A z[l] == 3 A z[2] == 3 AVALUE == 0)

VvV ([l ==1AI[1] ==2 A z[l] == 4 A z[2] == 3 AVALUE == —1)

VvV ([l ==1Al[1] ==2 A z[l] == 3 A z[2] == 4 AVALUE == 1)

vV (l[1] == 1AI[1l] == 2 Az[l] == 4 AN z[2] == 4 AVALUE == 0)

vV (l[1] ==2AI]2] == 1 Az[l] == 3 A z[2] == 3 AVALUE == 0)

vV (l[1] ==2AI]2] == 1 Az[l] == 3 A z[2] == 4 AVALUE == —1)

vV ([l ==2AI1]2] == 1A z[l] == 4 A z[2] == 3 AVALUE == 1)

vV ([l ==2Al1]2] ==1Az[l] == 4 A z[2] == 4 AVALUE == 0)

vV (I[1] == 2 Al]2] == 2 A z[2] == 3 AVALUE == 0)

vV (l[1] == 2 Al[2] == 2 A z[2] == 4 A VALUE == 0)

I =
To evaluate an expression like €; @ €o, the values recorded in the VALUE variable respectively in
the symbolic predicates of €; and €, are pairwisely compared and corresponding state-predicate

conjuncted, as in line (1) in procedure indirect_arith().

17

5.2 Symbolic Assignments with Indirect Operands

Given a state-space predicate D and an assignment statement w := ¢€;, one may think its

symbolic postcondition in process p would be
indirect_condition(var_eliminate(D,w),p,w == €)

But this fails in two ways. First, there can be indirections in w. Second, the destination of w
can occur in € in a recurrence assignment. In fact, such recurrence assignment is very common
and indispensable in practice.

Our algorithm solves the recurrence assignment problem by auxiliary variable VALUE as a
temporary recorder for the expression value. The destination variables are eliminated from
the symbolic predicate by procedure var_eliminate() before being assigned by procedure

condition_effect(). Our algorithm is given as follows.

indirect_assignment (D, p,w :=¢;) {
Construct D, := D A indirect_arith(e, p);
if wis l1=>ly=>...=>l;=>z with k& > 0, then {
Let R := FALSE;
Construct D, := D, A indirect_ref(p, 1,l1->ly=>...=>l});
for j:=1to M, do {
Let H := var_eliminate(var_eliminate(D. A DPI == j, DPI), x[j]); (2)
Let H := condition effect(z[j],~, H);
Let R:= RV H;
)
else if wy is x[i] with local variable z with specific process reference i, then
Let R := condition_effect(xz[i|, ~,var_eliminate(D,,z[i])); (3)
else if wy is local variable x with no specific process reference, then
Let R := condition_effect(z[p|, ~,var_eliminate(D,, z[p])); (4)
else if wy is a global variable x, then
Let R := condition_effect(x,~, var_eliminate(D,,z)); (5)

return R;

18

}

condition_effect(z,~, D) {
R := FALSE;
for every possible value v of variable VALUE, do
R:=RV (xr ~ v Avar_eliminate(D A VALUE == v, VALUE));

return R A 1b(z) < z < ub(z);

6 Reduction Techniques

We rely on two reduction techniques to alleviate the state-space explosion problem. They are

respectively discussed in the following two subsections.

6.1 Inactive Local Variable Elimination

The idea is that from some states, some variables will not be used until they are written
again. Such variables are called inactive in such states and their values can be forgotten
without affecting the behavior of the software implementation. Similar techniques have been
used heavily in tools like Spin[18], UPPAALI5], SGM[32], and Red[29, 30]. But for systems
with pointers, it is important to note that pointers used for indirect referencing are also
implicitly read in the execution of the corresponding action. With this caution in mind, we
develop a fixed-point procedure to derive an over-approximation local state predicate that
describes the states in which a local variable is active. Once we find that a variable is inactive
in all states described by a BDD, we can

e replace the values of those inactive local discrete variables in a state with zeros; and

e replace the values of those inactive local pointers in a state with NULLs;
With such replacements, we expect to greatly cut down the complexity of our reachable state
space representations.

However, it can be difficult to determine the exact description of a state set in which a

local variable is inactive. In fact, we shall aim at constructing a local state predicate for

19

an over-approximation of the active condition. Given a local discrete variable z, the local
state predicate will be in B(G4 U L? — {x},GP U L?). For a local pointer z, it will be in
B(GYU LY, GP U L? — {x}). That is, the over-approximation is described in terms of the
variables, except x[p], directly observable by the local process p. Then a lower approximation
of the corresponding inactive condition of x[p] is obtained by negating the just-obtained over-
approximation of the active condition.

A local variable z[p] is possibly read by process p’ in assignment w = ¢; iff either

e an indirect reference like y;=>...->y,,~>y occurs in w, p = p', and = = y;; or

e an indirect reference like y;=>...=>y,,=>y occurs in w and = € {ys,...,yn}; or
e an indirect reference like y;=>...->y,, occurs in €, p = p/, and x = y;; or

e an indirect reference like y;=>...=>y,, occurs in € and = € {y,...,Ym}-

Given a local variable x[p], an over-approximation of its active condition is constructed in two
steps. First, we construct a base approximation from the triggering conditions and actions of

all transitions in the algorithm as follows.

base_oapprox_active(z)
let 7, := FALSE;
for each transition (¢, ¢') in A(P),
if x is possibly read in actions in 7 (¢, ¢'),
then 7, := 1, V (mode == ¢ A var_eliminate(7(q,q'), z)).
else {
break 7(q,¢') into DNF A; V Ay V...V Ag;
for each A;, if = appears in A;, then 7, := 7, V (mode == ¢ A var_eliminate(A;, z)).

b}

return 7,;

We need the following concept. A transition is disrupting to local variable x iff it assigns
a value to x which is not computed from z in the transition. For example, a transition with

assignment sequence x = 3;y = x; is disrupting for both x and y. For another example, a

20

transition with assignment sequence x = y;y = x + 3; is disrupting for x but not for y. A
disrupting transition for a variable x marks an event that the value of x before the event does
not affect the behavior of the system from the event on.

In the second step, from the base approximation, we calculate an over-approximation of the
backward weakest precondition through each transition until a least fix-point is reached. This

is done in the following procedure.

oapprox_active(z) {
1, = base_oapprox_active(x);n., := FALSE;
while(n, # 1) {
My = Tl
for each transition (g, ¢’) that is non-disrupting to x in A(P), {
let ! :=n’, vV 6, where ¢ is an over-approximation of
the weakest precondition of 1, before applying (¢, ¢'). (6)

b}

return 7,.

The function oapprox_active,(s) computes the predicate that x can be read in some actions
along a path from state s before some of its disrupting transitions takes place. The over-
approximation technique that we use in statement (6) discards (i.e., existentially quantifies)
any local variables of peer processes. It can be proven that the over-approximation local state
predicate is indeed independent of x. By applying our technique to the MCS algorithm in
figure 1, we find that

activeiockeda = 4 <=mode <=5
activeyery = mode == 1V (2 <=mode <=4 A prev!=P)V mode >=5
activeprey, = 1 <=mode <=4

It shows that local variable 1ocked, for example, will not be read and thus affect the system
behaviors outside local modes 4 and 5. The elimination of values of 1locked when it becomes

inactive makes the state-space representation more concise and compact.

21

6.2 Graph automorphism symmetry reduction (GASR)

We follow the reduction framework in [15] to permute process identifiers to take advantage of
the symmetry among processes running different copies of the same program. Our idea is to
use the pointing-to relations of the global and local pointers to define a precedence relation
among processes in a state, then permute the processes according to the precedence relation.
We view the pointer data structure as a directed graph. Each global pointer and each process
is viewed as a node while the pointing-to relation is viewed as arcs from nodes to nodes.
Thus the symmetry reduction for pointer data structures has the flavor of graph isomorphism
problem with node renaming, which is not yet known to be in PTIME. Intuitively, we want

to keep as few data structures, which are isomorphic, as possible.
Efficient binary permutation

There are two challenges here. The first is to design an efficient symmetry reduction strategy.
For m processes, we have m! different permutations and obviously we do not want to try
them all to find the best permutation. Our technique is to use binary permutations, which
permute two processes each time, to compose full permutation. In theory, we know that
all permutations can be constructed with a sequence of binary permutations. This is to
say that bubble-sort works for any sequence. However, binary permutations can create some
data-structure configurations which are not reachable. For example, we may have M = 3,
such that the local pointers next of the processes initially form the following static clockwise
cycle in figure 2(a). If we choose to use the image cycle after binary permutation o = (132) as
the representative, then the representative state in the equivalence class will be the counter-
clockwise cycle shown in figure 2(b). But the problem is that the chosen counter-clockwise
cycle image may never be reachable from an initial state if the cycle is a static one. We call
this problem the anomaly of image false reachability. Although this is a possible cause for
imprecision, we choose to live with it knowing that graph isomorphism problem can be too

complex to solve.

22

next next next
3

next next next
D1 <—| D2 | p3 |
ol ol

(b) after permutation

Figure 2: Anomaly of image false reachability

How to handle the anomaly ?

For convenience, we use oy, to represent the binary permutation which only switches the
position of p; and p;. The following lemma helps identify the “symmetry” in program, initial

state predicate, and goal state predicate.

LEMMA 1 Assume a reduced transition system that contains one member per equivalence
class of states w.r.t. the group of binary permutations . If

e all 0 € X satisfy o(p) = p on all process identifier p that are mentioned anywhere in

the program, and

e if v is an initial state then so is o(v),
then the set of all states that are equivalent to states in the reduced transition system is exactly
the set of reachable states of the transition system. If ¥ satisfies additionally that for all
o € ¥ and all states v, v satisfies the goal condition iff ov (the application of permutation o
to v) does, then the reduced set of states intersects with the goal condition if and only if the

original transition system does. I

That is, under these conditions we can replace the original transition system with the
reduced one for solving a safety analysis problem without any loss in precision caused by the
anomaly of image false reachability.

The just-mentioned method for detecting symmetry can be efficiently performed by exam-

ining the syntax of the program, initial state predicate, and goal state predicate. There is a

23

way to find a larger ¥ also having binary permutations o, as generating set, but covering
cases where p;, p;, or both do appear in the formula. We can construct, for some process p;
and another process p;, a BDD of the initial condition two times—where the second BDD has
the variables corresponding to process p; change places with the variables corresponding to
pj. We can use the uniqueness of reduced ordered BDD to check whether this exchange of
roles between p; and p; leads to the same initial condition. If this is the case then oy, leaves

the initial condition invariant.
Symmetry reduction as sorting

In particular, set X is closed under composition and inversion. Moreover, such a group ¥ has a
well-structured generating set—the set of all binary permutations oy, where p; # p;, neither
p; nor p; are among the “forbidden” process identifiers, o,,, (i) = pj, op,p; (Pj) = pi, and
Op.p; (D) = pi for all other p,. This means that every member of this ¥ can be represented
as a sequence of exchanging two process identifiers. Using this fact, a state can be stepwise
transformed by applying binary permutations until some kind of “lexicographically” smallest
state is achieved.

With binary permutation, we have to construct a predicate reverse(i, j) in BDD, for each
1 < i < j < m which characterizes those data-structure configurations in which processes @
and j have to be permuted. For the efficient computation of symmetry group, reverse() may
actually lead to an over-approximation of the symmetry group 3. Once predicate reverse(i, j)
is ready for each 1 <1 < 5 < M, the following procedure implements our GASR. Given a
o € 3, the following procedure uses reverse() to iteratively permute o to a “normalized”

image in Y.

reduce_symmetry(n) {
Sequentially for i :=1 to M — 1, do
Sequentially for j := i+ 1 to M,
let n := (n — reverse(i,j)) V permute(n A reverse(i,j), i, j);

return 7);

24

Here permute(n, 1, j) is obtained from 7 by
e switching the values of z[i] and z[j] for every local variable z; and
e changes the value 7 to j, or vice versa, of all pointer variables.
permute(n,i,j) is actually a binary transposition on process i and j.
Since this process resembles conventional sorting procedures, it yields a unique, minimal
member of the equivalence class of the original state in polynomial time. Thus, this procedure

can be used to efficiently solve the problem of how to construct automorphic representatives.
Criterion for binary permutation

The second challenge is to design a criterion to determine when we need to permute two
process identifiers. In other words, how do we design predicate reverse() 7 Our technique is
to define an artificial distinct significance to each global and local pointer. For example, in the
MCS algorithm, in our significance scale, the process pointed to by L is much more significant
than the others. Thus the process pointed to by L should precede all other processes after
the permutation. Basically, we assign the significance to global pointers according to their
declaration order. The same is true among local pointers. Suppose local pointer next is
declared before prev in MCS algorithm. Thus if neither process i or j is pointed to by L
and process #’s local pointer next points to process j, then we know process ¢ cannot be
preceded by process j after the permutation. We have to consider the pointing-to relation
of local pointer prev to decide the precedence between two processes only when we cannot
decide their precedence with L and next. In figure 3, we have drawn the four-process network
constructed by the MCS algorithm respectively before and after our permutation in figure 1.
After the permutation, the network nodes are reordered in a linear sequence according to the
queue formation.

Note that in our implementation, predicate reverse(i,j) does not use information on in-
direction paths of length > 1 between processes i and j. This is for the complexity of the
BDD for reverse(i, 7). In our experiment, if we consider indirection path lengths > 1 in the

construction of reverse(i, j), the sizes of BDDs become too big to represent and manipulate

25

before permutation L after permutation
prev . . prev
4 -~ L
next next

Figure 3: permutation of process identifiers

efficiently. When reverse(i,j) are FALSE, it only means we have no rule to break the tie

between processes i and j. Procedure reduce_symmetry() does not break any ties either.

7 Implementation and Experiments

We implemented our techniques in a symbolic verification tool called Red[29, 30], which
supports verification of timed automata [1] with a new BDD-like data structure for dense-time
state-space representation. The reduction by inactive variable elimination is automatic since
in almost all previous work, it has been shown to be indispensible for verification performance.
Instead, our focus in the experiment is on symmetry reduction and our BDD implementation.
The symmetry reduction for pointer data structure is invoked by option “Sp.” We compared
the performance of Red, both with and without the symmetry reduction technique, with that
of SMCJ[12] and Mur¢[20] running in various options. Since neither SMC nor Mur¢ supports
pointers, we use arrays to encode the pointers instead.

There are six benchmarks in our experiments. In the following, we describe each benchmark
and report its experiment in a subsection. Together, in table 1, we list the sizes of the
benchmarks. The last three benchmarks are all extracted from the classic textbook Operating
System Concepts by Silberschatz, Galvin, Gagne[28]. Due to the popularity of this textbook,
we believe these three benchmarks objectively help in proving the value of our techniques.

All the experiments were carried out on a Pentium 4 2.1GHz/256MB PC running cygwin.
All data related to Red are collected with forward analysis (option -f). In each entry of
the rows, the CPU times and memory consumptions (in kilobytes) are shown. The memory
complexity for Red is collected only for BDDs and their management.

The verification algorithm of Mur¢ 3.1 is breadth first search with various symmetry algo-

rithms including exhaustive canonicalization(-sym1), heuristic fast canonicalization(-sym?2),

26

Sizes of process modes | transitions | global global | local | local
program template A(P) p’ters disc. | p’ters | disc.
MCS locking algorithm 10 15 1 0 2 | 1:0,1]
Leader election 2 3 1 0 1 0
Doubly linked cycle 2 5t 1 0 2 0
Bounded buffer 10 26 6 3:[0,10],1:[0,5] 2 | 1:[0,1]
Reader-writer 14 36 4 2:[0,15],1:[0,r] 2 | 1:0,1]
Critical region 19 47 6 | 2:[0,m],3:[0,m+1] 2 | 1:[0,1]

For discrete variables, h : [, j] means h variables with value range [i, j].
r: # readers; m: # processes;

Table 1: Sizes of the benchmarks

heuristic small memory normalization with permutation trial limit 10(-sym3) and heuristic
fast normalization(-sym4). The memory allocated for the hash table and state queue is 202
Mbytes. The benchmarks run without deadlock detection and all data are composed of both
compile and execution time.

For SMC, we tried various combinations of its built-in symmetry reduction heuristics. SMC
option -s{num) is the symmetry option. If the value of (num) is even, only process symmetry
is employed. Otherwise, both process symmetry and state symmetry are employed. The

higher the value, the more sophisticated is the equivalence checking algorithm employed.

7.1 MCS locking algorithm

This is the MCS locking algorithm shown in example 1[23]. We want to verify that at most
one process can be in the critical section at all times. The result of the experiment is shown
in table 2. We can see that our tool is able to verify the system of ten processes. Both SMC

and Mur¢ have difficulties for systems with more than five processes.

7.2 Leader election with dynamic forest configurations

A version of this algorithm is used in the IEEE 1394 Firewire protocol. This benchmark
is unique in that the network configurations are forests instead linear lists. We choose this
benchmark to observe how our techniques perform against nonlinear dynamic network con-

figurations. In this benchmark, each process has a local pointer parent which is set to NULL

27

[Tools |Optiong] 3 4 5 6 7 g 9 10]

red -fSp 0.309 2.149 11414 64.435461.71s2933.40815137.08571676.519
25K 68K 168 460k 1311k 3894 11107 31226k
-f 3.375 47.77491095.77916393.275 Out of Memory
121K 504k 3937k 28995
SMC -sl 145.04 Not Available
C/D

-s2 596.4s >17h|
13472kUnfinishe
-s3 600.3 >17h|
13477kUnfinishe
-s4 |[1601.85 20252.63
13460k C/D
-s5 |[1624.08 >17h|

13457klUnfinishe
-s6 |[1600.3s >17h
13459kUnfinishe
-s7 |[1620.8s >17h|
13457kUnfinishe
Murphi -sym1 || 3.934 28.51¢Interna Not Available

-sym2 || 2.77g 25.408 Error
-sym3 || 2.775 25.37¢
-sym4 || 2.89s 25.30s

Table 2: MCS Locking Algorithm

initially. Processes send random requests to become a child of another process until pointer
parent is set to the parent process’s identifier. A process responds to a request by writing
its identifier to a global pointer respond_id. The requesting process then updates its local
pointer parent according to the content of respond_id. A group of symmetric processes thus
form a dynamic forest structure by the pointer parent. Our task is to check that there exists
at least one root in the forest at any time. The result of the experiment is shown in table 3.
Our technique is able to verify a system with nine processes in under one second. With its
best reduction scheme, SMC is able to finish the task in 590.0 seconds. As for Mur¢, an internal
error occurs for the eight-process system. But for the seven-process system, Mur¢ uses more

than 40 seconds for the verification.

7.3 Doubly linked cycle insertion and deletion

The third benchmark is the insertion and deletion algorithms for a dynamic double-link cycle.

It is adapted from our source program for Red. The cycle consists of a set of symmetric

28

Mool POptiond] 3 4§ 8§ 7§ 9 10
red -fSp |0.0150.0180.0280.01s 0.02sf 0.025 0.04s 0.05s
7k 13k 23k 36kl 54 77k 108K 145k
-f 10.0450.0690.2241.20510.115 94.6051055.349 Out of
15k 51k{192ki803k|4022k] 20785k 110974kl Memoryj
SMC -sl 0.39 0.59 0.39 0.7¢f 4.84 62.75 2096.45 Not
1kl 7kl 34k193k|1224k] 8444k 68240kAvailablg
-s2 0.25 0.2 0.43 2.4s/ 42.751097.2934511.25
1kl 7k 29K135k 681k 3707kl 21799k
-s3 0.29 0.29 0.4g 2.3 29.55 944.1516335.13
1kl 7k 28k134kl 567k 3451kl 14964k
-s4 0.29 045 0.49 1.45 9.29 73.79 619.0g
1kl 6k 19k 62k 196k 604kl 1857k
-sH 0.35 0.3¢ 0.45 1.3 8.9 70.49 591.05
1kl 6k 19k 62k 195k 602k| 1851k
-s6 0.39 0.3¢ 0.59 1.45 9.1§ 73.3g 621.0g
1kl 6k 19k 62k 196k 604kl 1857k
-s7 0.25 0.3¢ 0.45 1.3 8.8 70.79 592.6
1kl 6k 19k 62k 195k 602k] 1851k
Murphi| -sym1 |2.6992.4352.4993.79s46.00s[nternal Not Available
-sym2 |2.6852.5052.4953.58341.865 Error
-sym3 [[2.69s2.3752.5253.58s41.865
-sym4 [[2.71s2.5052.5793.57s42.20s

Table 3: Leader Election Algorithm

processes connected by two local pointers next and prev. Each process tries to insert and
delete itself from the cycle randomly. A global pointer L points to the tail of the cycle. If the
cycle is empty, pointer L is equal to NULL. In the experiment, we would verify that pointer L is
not NULL when a process thinks itself is in the cycle. The result of the experiment is shown in
table 4. Our tool is able to verify the system with ten processes in 10 seconds. In contrast,
all tests on SMC run out of time (over 17 hours), while Mur¢ produces an internal error for the

nine-process system.

7.4 Bounded buffer algorithm

A group of producers generate goods and put them in the bounded buffer. When the buffer
is full, producers are put in the waiting queue and stop generating messages. Consumers, on
the other hand, take goods from the bounded buffer. If the buffer is empty, they will be put
in the waiting queue. Our goal is to verify that the bounded buffer can never overflow. The

performance data of experiment is in table 5. Our tool scales much better than peer tools

29

Mool Optiond] 3 4§ 6 4§ 9 10
red -fSp [0.0390.1140.305 0.665 1.429 2.808 5.20s 9.23s
66k|200ki471kl 953k 1746k2983k 4861k 7634k
-f 10.0790.2690.919 5.008 56.799 Out of Memory
51k|213k|948k4996kB0712kK
SMC No termination
Murphi -sym1 |2.5392.6352.39s| 2.40s| 3.51s14.94s[nterna Not
-sym2 [[2.6282.6192.37s 2.379 3.25511.98¢ Error%vailable
-sym3 |2.6292.6152.37s 2.375 3.22511.975
-sym4 [2.5952.6052.38s 2.495 3.2512.515

Table 4: Doubly Linked Cycle Operations
w.r.t. concurrency complexity.

7.5 Reader-writer algorithm

This experiment models groups of readers and writers trying to access a shared object. Several
readers can read the same object simultaneously. But only one writer accesses an object
exclusively. In our benchmark, we model the variant called the first reader-writers problem
where no reader will be kept waiting unless a writer has obtained permission to use the shared
object. We want to check whether the shared object will be read and written at the same
time. The performance data of experiment is in table 6. Again, our tool scales much better

than peer tools w.r.t. concurrency complexity.

7.6 Conditional critical region

Our last experiment models a high-level synchronization construct called conditional criti-
cal region. Suppose variable v is to be shared by several processes. The programmer can
use the following construct to access v exclusively: “region v when B do S”, where B is a
Boolean expression and S is a (compound) statement. In our model, each process repeatedly
executes the above region statement with nondeterministic Boolean condition B. And the
safety property checks the mutual exclusiveness of the critical region S. The performance
data of experiment is in table 7. And again, our tool scales much better than peer tools w.r.t.

concurrency complexity.

30

[Tools |Optiong| 3] 4 5 6 7 g 9 10} 11] 12 13
red -fSp |[1.849 6.939 26.48s 65.629 254.07y 417.639 1059.9851538.85943151.5954321.8447777.07
121k 210k 391k 622k 1018k 1195k 1750k 1939k 2688k 2918k 3884k
-f |4.22931.159246.4391451.2155622.91519924.8068785.24s Out of Memory
143k 502kl 1398k 4323kl 11623k 30836kl 85984
SMC -sl Osf 2s 185 2019 Out of Memory
109k 833kl 5647k 45008k
-s2 0Os 29 239 260
109k 833kl 5648k 45008k
-s3 0Os 29 23s 264
109k 833kl 5647k 45008K
-s4 0Os 29 26s 289
109k 833kl 5648k 45008k
-sb 0s 33 27s 290
109k 833kl 5647k 45008K
-s6 0Os 29 258 279
109k 833kl 5648k 45008K
-s7 0Os 29 27s 299
109k 833kl 5674k 45008k
Murphil -sym1 ||3.129 3.068 3.329 5.85g 21.57s 150.959 Internal Not Available
-sym2 |3.14g 3.03¢ 3.895 5.63¢ 20.02g 140.57¢ Erron
-sym3 ||3.09g 3.008 3.81s 5.539 20.04s 140.57
-sym4 |3.12g 3.108 3.91s 5.58¢ 20.165 141.514

Table 5: Bounded Buffer Problem

7.7 Discussion of the experiments

The first three benchmarks represent three types of dynamic data structures: a double-linked

queue, a forest and a double-linked cycle. Each may contain an arbitrary number of symmetric

processes. For this three, our tool performs better with respect to concurrency complexity.

The remaining benchmarks use semaphores to solve the synchronization problem. For each
semaphore, a doubly linked queue is used to record the blocked processes.
process is removed from the queue For these three, our tool does not perform as well as SMC

or Mur¢ in small systems. However, our reduction technique is able to verify systems with

Each blocked

many processes successfully. In contrast, we either run out of memory (for SMC) or encounter

internal errors (for Mur¢) in large systems. This may suggest our technique is more scalabel

than those deployed in the other tools.

31

[Tools |Optiong| 3] 4 5 6 7 g 9 10} 11] 12 13

red -fSp |[1.259 2.904 23.734 42.71s 276.57¢ 440.489 1898.1652547.0857696.0089732.03523941.329
220k 244kl 321k 415 896k 996 2000k 2119k 3898kl 4037k] 6962k
£ 18.995915.118250.4151034.9458187.32521179.905106175.88 Out of Memory
220k 244k 1106k 2454k 9932k 22906k| 71049
SMC -sl 0Os 1g 265 238 Out of Memory

96k 626k 6602k 49549k
-s2 0s 2s 31s 304
96k 626kl 6602k 49550k
-s3 Os 29 31s 219
96kl 626kl 6602k 49549k
-s4 0Os 29 33s 311
96k 626k 6602k 49550k
-sH 0Os 2s 358 331
96kl 626kl 6602k 49549k
-s6 Os 29 325 302
96kl 626kl 6602k 49550k
-s7 0Os 2s 34s 318
96k 626kl 6602k 49549k
Murphil -sym1 |3.359 3.084 3.628 5.379 44.769 287.149 Internal Not Available
-sym2 [13.389 3.084 3.58s 5.229 42.249 276.76s Error
-sym3 [3.20 2.965 3.57s 5.178 42.239 274.04s
-sym4 [3.345 3.038 3.62s 5.238 42.179 276.14s

Table 6: Reader-Writer Problem

8 Conclusion

Data structures with pointers are important abstract devices in software engineering to con-
struct complex and dynamic networks. In this work, we have proposed a formal framework for
investigating the issues in model-checking such systems. We have developed symbolic manipu-
lation routine for BDD-like data structures to calculate the pointer-references in a state-space.
Two reduction techniques are then adapted to such systems. And our experiments have also
shown that GASR is an indispensable technique in controlling the complexity of such software
systems.

As we have pointed out, full symmetry equivalence classes can be expensive to compute
with their factorial complexity. In the future, it will be interesting to see whether we can

devise other abstraction techniques for symmetry reduction of software systems.

32

[Tools [Optiong] 3 4 5 6 7
red -fSp || 40.149 751.14g 5428.41s23197.71475229.255
10224k 11065k 11941k 12833k 15618k
-f |[142.3454640.21866400.229 Out of Memory
10224k 11065k 63655k
SMC No termination
Murphi -sym1 || 4.00s 7.029 49.759 Interna Not
-sym2 || 4.00sf 6.789 46.09s ErrorjAvailablg
-sym3 || 4.01§ 6.759 46.01g
-sym4 || 3.97¢ 6.808 46.00s

Table 7: Conditional Region Construct
References

[1] R. Alur, C. Courcoubetis, D.L. Dill. Model Checking in Dense Real-Time, Information
and Computation 104, pp.2-34 (1993).

2] M.C. Browne, E.M. Clarke, O. Grumberg. Reasoning about networks with many finite
processes. 5th ACM PODC, p.240-248, 1986.

3] J.R. Burch, E.M. Clarke, K.L.. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model Check-
ing: 10%° States and Beyond, IEEE LICS, 1990.

[4] M. Bozga, C. Daws. O. Maler. Kronos: A model-checking tool for real-time systems. 10th
CAV, June/July 1998, LNCS 1427, Springer-Verlag.

[5] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool Suite for
Automatic Verification of Real-Time Systems. Hybrid Control System Symposium, 1996,
LNCS, Springer-Verlag.

(6] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans.
Comput., C-35(8), 1986.

(7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the

4th Annual Symposium on Principles of Programming Languages. ACM Press, 1977.

33

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-Time Temporal Logic, Proceedings of Workshop on Logic of Programs, Lecture

Notes in Computer Science 131, Springer-Verlag, 1981.

E. Clarke, R. Enders, T. Filkorn, S. Jha. Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design 9, 77-104, 1996.

E.M. Clarke, O. Grumberg, S. Jha. Verifying parameterized networks using abstraction
and regular languages. In Proc. 6th International Conference on Concurrency Theory,

p-395-407, August 1995.
D.L. Dill. The Murphi Verification System. CAV 1996, LNCS, Springer-Verlag.

A.P. Sistla, V. Gyuris, E.A. Emerson. SMC: A Symmetry-based Model Checker for Ver-
ification of Safety and Liveness Properties. TOSEM 9(2): Pages 133-166

E.A. Emerson, K.S. Namjoshi. Reasoning about rings. 22th ACM POPL, 1995.

E.A. Emerson, A.P. Sistla. Symmetry and Model Checking. Formal Methods in System
Design: An International Journal, Vol 9(1), pp 105-131. August, 1996.

E.A. Emerson, A.P. Sistla. Utilizing Symmetry when Model-Checking under Fairness
Assumptions: An Automata-Theoretic Approach. ACM TOPLAS, Vol. 19, Nr. 4, July
1997, pp. 617-638.

P. Godefroid. Using partial orders to improve automatic verification methods, Proc. of

Computer Aided Verification Workshop. 1990.

G. Holzmann, P. Godefroid, D. Pirottin. Coverage Preserving Reduction Strategies for
Reachability Analysis. 12th Int’l Symposium on Protocol Specification, Testing, and Ver-
ification (PSTV), Lake Buena Vista, Florida, North-Holland, June 1992.

G.J. Holzmann. The Spin Model Checker, IEEE Trans. on Software Engineering, Vol. 23,
No. 5, May 1997, pp. 279-295.

34

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

G.J. Holzmann, D. Peled. An Improvement in Formal Verification, Proc. of the 1994
FORTE Conference, Bern, Switzerland.

C.N. Ip, D.L. Dill. Better Verification through Symmetry. FMSD 9(1/2):41-75, 1996.

R.P. Kurshan, K. McMillan. A structural induction theorem for processes. 8th ACM
PODC, p.239-248, 1989.

S. Katz, D.A. Peled. Verification of distributed programs using representative interleaving

sequences. Distributed Computing (6), pp 107-120. 1992.

J.M. Mellor-Crummey, M.L. Scott. “Algorithms for Scalabel Synchronization on Shared-
Memory Multiprocessors.” ACM Transactions on Computer Systems, Vol. 9, No.1, Feb.
1991, pp.21-65.

Robby, M.B. Dwyer, J. Hatcliff, R. losif. Space-Reduction Strategies for Model Checking

Dynamic Software. Electronic Notes in Theoretical Computer Science 89(3), 2003.

K. Schmidt. How to calculate symmetries of Petri nets. Acta Informatica 36, 545-590,

2000.

A.P. Sistla, S.M. German. Reasoning about systems with many processes. JACM, 30:675-
735, 1992.

A.P. Sistla. Parameterized verification of linear networks using automata as invariants.

CAV’97, LNCS, p.412-423, Springer-VERIlag, 1997.

A. Silberschatz, P.B. Galvin, G. Gagne. Operating System Concepts. Jhon Wiley & Sons,
Inc. 2003.

F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time Software
Systems. TACAS’2000, LNCS 1785, Springer-Verlag.

F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-Restriction
Diagram, I[FIP FORTE, August 2001, Cheju Island, Korea.

35

[31] F. Wang. Symmetric Model-Checking of Concurrent Timed Automata with Clock-
Restriction Diagram. RTCSA’2002.

[32] F. Wang, P.-A. Hsiung. Efficient and User-Friendly Verification. IEEE Transactions on
Computers, Jan. 2002, Vol. 51, Nr.1, ISSN 0018-9340, pp. 61-83. Preliminary materials
also appears in proceedings of IEEE HASE’98, RTCSA’98, and TFIP FORTE’99.

36

