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Abstract— We introduce the symbolic simulation function im-
plemented in our model-checker/simulator RED 4.0 for dense-
time concurrent systems. By representing and manipulating state-
spaces as logic predicates, the technique of symbolic simulation
can lead to high performance by encoding even a dense amount of
traces in traditional simulation into one symbolic trace. Symbolic
simulation adds the dimension of width to a trace of state-spaces.
By controlling the width of traces, we have a much better chance
to find bugs using fewer traces.

Our main contribution is the design of symbolic simulation
function in RED 4.0 for dense-time concurrent systems. In our
tool, users can strongly control the width of traces and the
generation of traces. We discuss how to generate traces using
various policies, how to manipulate the state-predicate, and
how to manage the trace trees. Moreover, we design a C-like
language whose programs can be mechanically translated into
the optimized communicating timed automata(CTA). Engineers
can also put down comment-line assertions as specifications in
their verification tasks. Finally, experiments using our simulator
to verify the Bluetooth baseband protocol justify the usefulness
of our tool.

Keywords: assertions, specification, state-based, event-driven,
model-checking, verification

I. INTRODUCTION

Traditional simulation[10], [16], [21] uses memory to record
the variable values in a state along a trace and makes it possible
for engineers to visualize the behaviors of the system design
even before the hardware prototypes are put into reality. For
many decades, simulation has been the major tool for engi-
neers to successfully guarantee the quality of system designs
in early cycles of system development. But for new system
designs, such as System-on-a-Chip (SOC) which has tens of
millions of gates, there will not be enough time and manpower
to run enough simulation traces of the system designs. The
verification complexity incurred by system designs in the next
few years will simply overwhelm the capability of traditional
simulation technology.

Model-checking technology[14], [2] has promised to math-
ematically prove the correctness of system design. The de-
velopment of symbolic model-checking technology[13], [7]
has brought the complete verification of many non-real-time
industrial projects into reality. The symbolic manipulation
techniques do not record the exact values of variables ex-
plicitly. Instead, sets of states are succinctly represented and
manipulated as logic constraints on variable values. Such suc-
cinctness not only saves the memory space in representation
but also allows us to construct the representation of a huge
(or even dense) set of states in a few symbolic manipulation
steps.

However, even with such powerful techniques of symbolic
manipulation, the verification task of real-time concurrent sys-
tems still demands tremendous resources beyond the reach of
current technology. The reachable state-space representations
in TCTL model-checking[2] tasks usually demand complexity
exponential to the input system description sizes. Usually,
verification tasks blow up the memory usage before finishing
with answers.

In a sense, traditional simulation and model-checking rep-
resent two extremes in the spectrum. Traditional simulation is
efficient because you only have to record the current state, but
the number of traces to cover full functionality of a system is
usually forbiddingly high. On the other hand, model-checking
can achieve functional completeness in verification but usually
requires a huge amount of computing resources. Thus it will
be profitable to develop a technique that balances these two
extremes.

Symbolic simulation [34] was originally introduced and
proven valuable for the verification of integrated circuits.
While traditional simulation runs along a trace of precise state
recordings, symbolic simulation runs along a trace of symbolic
constraints, representing (convex or concave) spaces of current
states. Metaphorically, traditional simulation is a probe while
the new symbolic simulation technique is a searchlight that can



monitor multiple state-traces at the same time. With the proper
searchlight caliber, we have much better chance of discovering
the imminent risks and potential threats in an immense sky.

We have implemented a symbolic simulator for dense-
time concurrent systems using GUI (Graphical User-
Interface) and adequate facilities to generate and man-
age the traces. The simulator is now part of RED
4.0 (http://cc.ee.ntu.edu.tw/˜farn/), a model-
checker/simulator for real-time systems. The tool also has
advanced capability of neumerical coverage estimation and is
useful in evaluating the progress of verification tasks. More
details can be found in [46]. In developing the symbolic
simulator, we encountered the following challenges and op-
portunities.

The model adopted for real-time concurrent systems

In simulation, we construct a mathematical model for a
system design (and the environment) using computer programs
and observe how the model behaves in the virtual world. The
semantics of the model effects how efficiently we can model
the system/environment interaction and how efficiently we can
compute the traces.

Symbolic simulation has achived much success in the veri-
fication of VLSI circuits, which are usually synchronous. We
plan to extend the ability to the area of real-time concurrent
systems, like communication protocols, embedded software,
etc. For such systems, there exists no global clock so the syn-
chronous discrete-time model can lead to imprecise simulation.
In a real-world real-time concurrent system, each hardware
module may have its own clock. The new SOC can have multi-
clocks in the same chip. Based on all these considerations,
we adopt the well-accepted timed automata[3] as our system
model that have multiple dense-time clocks.

The input language of RED 4.0 allows the description
of a timed automaton as a set of process automata that
communicate with each other through synchronizers (called,
input/output events through channels in [24]) and global
variables. Users may use binary synchronizers to construct
legitimate global transitions (to be explained in section III)
from process transitions. RED also allows users to control the
searchlight caliber to better monitor a user-given goal (or risk)
condition along traces.

Constructing and managing traces

Traces can be constructed randomly or according to a policy.
Random traces are computed with random number generators
so as to avoid the bias of designers and verification engineers.
Many people do not feel confident with a design until it
has been verified with random traces. Directed traces are
constructed with built-in or user-given policies. They can help
guide simulators to program lines that are suspected of having
bugs or whose functions need to be closely monitored. With
directed traces, our simulator can more efficiently construct
the traces that are of interest to verification engineers.

Symbolic simulation actually adds one more dimension to
the issue of random vs. directed traces. Since we use complex
logic constraints to represent state-spaces, we actually build

traces of state-spaces, instead of a single precise state. That
is, this method constructs many traces (even a dense amount
of them) simultaneously. Symbolic simulation thus adds the
dimension of width to a trace of state-spaces. In section V,
we shall discuss how to control the width of traces using the
options provided by our simulator.

Blending our symbolic simulator into industrial development
cycles

Since engineers are trained to write programs in traditional
programming languages, such as C, C++ and Verilog, it is
important that system designs are described in a format similar
to these programming languages. Thus, we define a new
language, called Timed C (TC) that has C-like syntax and
OVL (Open Verification Library) assertions [9], [29], that
serves as an intermediate language from C programs to formal
descriptions. TC is designed to bridge the gap between the
engineering world and the verification research community. It
supports most of the programming constructs in traditional
C, such as sequences, while-loops, and switch-statements.
It also provides syntax constructs to abstract unimportant
details for mechanical translation to Communicating Timed
Automata (CTA) [33], [37], [38], [39]. Moreover, we have
added new constructs to make it easy to describe event-
driven behaviors like timeouts. TC is designed for efficient
mechanical translation from C-programs into formal models
of embedded systems.

OVL is a new initiative in the VLSI industry whose purpose
is to unify commercial EDA (Electronic Design Automation)
tools. It provides a set of predefined specification modules
instantiated as assertion monitors. It is supported by EDA
companies and was donated to Accellera (an electronic indus-
try standards organization) in anticipation of making OVL an
industry standard. With OVL, engineers can write assertions as
comment lines in their HDL (Hardware Description Language
[6], [32]) programs. OVL was originally designed for the
assertions of VLSI circuits, which are highly synchronous
discrete-time systems. In our work, we extend OVL assertions
to a dense-time model and hence our symbolic simulator
provides users inserting assertions as comment lines within
TC programs.

We have also implemented an efficient optimized compiler
to generate the corresponding CTA and TCTL formula of TC
programs that have OVL assertions[47]. Such an extension will
allow embedded system engineers to take advantage of verifi-
cation technology with minimum effort in their development
cycles.

Organizations of this paper

In the following sections, we first review some related
work (section II), describe our system models (section III),
and give a brief overview of what we have achieved in our
implementations (section IV). Then we delve into more details
of our achievements (sections V, VI). Before experimenting
with the industrial project, we illustrate our input language
TC with a small example(section VII). We report our experi-
ments with our implementations and the Bluetooth baseband
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protocol (section VIII). We were able to verify that under some
parameter-settings, the protocol guarantee that one device will
eventually discover the frequency of its peer device. The
experiment is also interesting since we have not heard of any
similar result on the full model-checking of the protocol.

II. PREVIOUS WORK

Symbolic Trajectory Evaluation(STE)[34], or called sym-
bolic simulation, is the main alternative to symbolic model
checking[7], in formal hardware verification. STE can be
considered a hybrid approach based on symbolic simulation
and model checking algorithms and can verify assertions,
which express safety properties.

STATEMATE[22] is a tool set with a heavy graphical
orientation and powerful simulation capability. Users specify
systems from three points of view: structural, functional,
and behavioral. Three graphical languages, includes module-
charts, activity-charts, and state-charts, are supported for the
three views. The STATEMATE provides simulation control
language(SCL) to enable user to program the simulation.
Breakpoints can also be incorporate into the programs in SCL.
It may cause the simulation to stop and take certain actions.
Moreover, the simulation trace is recorded in trace database,
and can be inspected later. The users may view a trace as a
discrete animation of state-charts.

The MT-Sim[10] provides simulation platform for the Mod-
echart toolset(MT)[16], which is a collection of integrated
tools for specifying and analyzing real-time systems. MT-Sim
is a flexible, extensible simulation environment. It supports
user-defined viewers, full user participation via event injection,
and assertion checking which can invoke user-defined handlers
upon assertion violation.

In[21], IOA language and IOA toolset, based on IO automa-
ton, are proposed for designing and analyzing the distributed
systems. The toolset can express designs at different levels
of abstraction, generate source code automatically, simulate
automata, and interface to existing theorem provers. The IOA
simulator solves the nondeterminism in IOA language by
user-defined determinator specification, random-number gen-
erator, and querying the user. IOA simulator provides paired
simulation to check the simulation relationship between two
automata. It simulates an automaton normally and executes
another automaton according to user-defined step correspon-
dence. It is useful in developing systems using levels of
abstraction. In [10], [16], [21], [22], traditional simulation is
adopted, so the traces do not have the dimension of width.

UPPAAL[30] is an integrated tool environment for mod-
eling, validation and verification of dense-time systems. It is
composed of the system editor, the simulator, and the verifier.
The behavior of simulated systems can be observed via the
simulator, which can display the systems in many level of de-
tails. Besides, the simulator can load diagnostic trace generated
by the verifier for further inspection. One technical difference
between RED and UPPAAL is that RED uses a BDD-like
data-structure, called CRD (Clock-Restriction Diagram)[37],
[38], [39], [40], for the representation of dense-time state-
space while UPPAAL uses the traditional DBM (Difference-
Bounded Matrix)[17]. A CRD can represent disjunction and

conjunction while a DBM can only represent a conjunction.
As a result, the traces do not have the dimension of width in
UPPAAL. On the other hand, CRD is more convenient and
flexible in manipulating the ”width” of simulation traces with
this advantage. Also in previous experiments[37], [38], [40],
CRD has shown better performance than DBM w.r.t. several
benchmarks of dense-time concurrent systems.

III. COMMUNICATING TIMED AUTOMATA(CTA)

A communicating timed automaton (CTA)[33], [37], [38],
[39] is a set of finite-state automata, called process au-
tomata(PA), equipped with a finite set of clocks, which can
hold nonnegative real-values, and synchronization channels. At
any moment, each process automata can stay in only one mode
(or control location). In its operation, one of the transitions can
be triggered when the corresponding triggering condition is
satisfied. Upon being triggered, the automaton instantaneously
transits from one mode to another and resets some clocks to
zero. In between transitions, all clocks increase their readings
at a uniform rate. Process automata can communicate with one
another through binary synchronizations. One of the earliest
devices of such synchronizations are the input-output symbol
pairs through a channel, in process algebra[24]. Similar syn-
chronization devices have been used in the input languages
to HyTech[4], IO Automata[28], UPPAAL[11], Kronos[18],
VERIFAST[43], SGM[25], [41], [42], and RED[35], [36],
[37], [38], [39].

For convenience, given a set Q of modes and a set X of
clocks, we use B(Q, X) as the set of all Boolean combinations
of inequalities of the forms mode = q and x− x′ ∼ c, where
mode is a special auxiliary variable, q ∈ Q, x, x′ ∈ X ∪ {0},
“∼” is one of ≤, <, =, >,≥, and c is an integer constant.

Definition 1: process automata A process automaton A is
given as a tuple 〈X, E, Q, I, µ, T, λ, τ, π〉 with the following
restrictions. X is the set of clocks. E is the set of synchro-
nization channels. Q is the set of modes. I ∈ B(Q, X) is
the initial condition on clocks. µ : Q �→ B(∅, X) defines the
invariance condition of each mode. T ⊆ Q × Q is the set of
transitions. λ : (E × T ) �→ Z defines the message sent and
received at each process transition. When λ(e, t) < 0, it means
that process transition t will receive |λ(e, t)| events through
channel e. When λ(e, t) > 0, it means that process transition
t will send λ(e, t) events through channel e. τ : T �→ B(∅, X)
and π : T �→ 2X respectively defines the triggering condition
and the clock set to reset of each transition. ‖

Definition 2: CTA (Communicating Timed Automata)
A CTA of m processes is a tuple 〈E, A1, A2, . . . , Am〉,
where E is the set of synchronization channels and for each
1 ≤ p ≤ m, Ap = 〈Xp, E, Qp, Ip, µp, Tp, λp, τp, πp〉 is a
process automaton for process p.

A valuation of a set is a mapping from the set to another
set. Given an η ∈ B(Q, X) and a valuation ν of X , we say
ν satisfies η, in symbols ν |= η, iff it is the case that when
the variables in η are interpreted according to ν, η will be
evaluated true.

Definition 3: states Suppose we are given a CTA S =
〈E, A1, A2, . . . , Am〉 such that for each 1 ≤ p ≤ m, Ap =

3



〈Xp, E, Qp, Ip, µp, Tp, λp, τp, πp〉. A state ν of S is a valuation
of

⋃
1≤p≤m(Xp ∪ {modep}) such that

• ν(modep) ∈ Qp is the mode of process i in ν; and
• for each x ∈ ⋃

1≤1p≤m Xp, ν(x) ∈ R+ such that
R+ is the set of nonnegative real numbers and ν |=∧

1≤p≤m µp(ν(modep)). ‖
For any t ∈ R+, ν + t is a state identical to ν except that for
every clock x ∈ X , ν(x) + t = (ν + t)(x). Given X̄ ⊆ X ,
νX̄ is a new state identical to ν except that for every x ∈ X̄ ,
νX̄(x) = 0.

Now we have to define what a legitimate synchronization
combination is in order not to violate the widely accepted
interleaving semantics. A transition plan is a mapping from
process indices p, 1 ≤ p ≤ m, to elements in Tp∪{⊥}, where
⊥ means no transition (i.e., a process does not participate
in a synchronized transition). The concept of transition plan
represents which process transitions are to be synchronized in
the construction of an LG-transition.

A transition plan is synchronized iff each output event from
a process is received by exactly one unique corresponding
process with a matching input event. Formally speaking, in a
synchronized transition plan Φ, for each channel e, the number
of output events must match with that of input events. Or in
arithmetic,

∑
1≤p≤m;Φ(p) �=⊥ λ(e, Φ(p)) = 0.

Two synchronized transitions will not be allowed to occur
at the same instant if we cannot build the synchronization be-
tween them. The restriction is formally given in the following.
Given a transition plan Φ, a synchronization plan ΨΦ for Φ
represents how the output events of each process are to be
received by the corresponding input events of peer processes.
Formally speaking, ΨΦ is a mapping from {1, . . . , m}2×E to
N such that ΨΦ(p, p′, e) represents the number of event e sent
form process p to be received by process p ′. A synchronization
plan ΨΦ is consistent iff for all p and e ∈ E such that
1 ≤ p ≤ m and Φ(p) �=⊥, the following two conditions must
be true.

• ∑
1≤p′≤m;Φ(p′) �=⊥ ΨΦ(p, p′, e) = λ(Φ(p));

• ∑
1≤p≤m;Φ(p) �=⊥ ΨΦ(p′, p, e) = −λ(Φ(p));

A synchronized and consistent transition plan Φ is atomic iff
there exists a synchronization plan ΨΦ such that for each
two processes p, p′ such that Φ(p) �=⊥ and Φ(p′) �=⊥, the
following transitivity condition must be true: there exists a
sequence of p = p1, p2, . . . , pk = p′ such that for each 1 ≤
i < k, there is an ei ∈ E such that either ΨΦ(pi, pi+1, ei) > 0
or ΨΦ(pi+1, pi, ei) > 0. The atomicity condition requires that
each pair of meaningful process transitions in the synchro-
nization plan must be synchronized through a sequence of
input-output event pairs. A transition plan is called an IST-plan
(Interleaving Semantics Transition-plan) iff it has an atomic
synchronization plan.

Finally, a transition plan has a race condition iff two of its
process transitions have assignment to the same variables.

Definition 4: runs Suppose we are given a CTA S =
〈E, A1, A2, . . . , Am〉 such that for each 1 ≤ p ≤ m,
Ap = 〈Xp, E, Qp, Ip, µp, Tp, λp, τp, πp〉. A run is an infinite
sequence of state-time pair (ν0, t0)(ν1, t1) . . . (νk, tk) . . . . . .
such that ν0 |= Ip and t0t1 . . . tk . . . . . . is a monotonically

idle

busy collision
busy

idle

x:=0
!end
x<=5

!start ?start
?end

?start

busy

idle
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!end
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3 6

?collision ?collision

10 9

!collision !collision

Fig. 1. the model of bus-contending systems

increasing real-number (time) divergent sequence, and for all
k ≥ 0,

• for all t ∈ [0, tk+1 − tk], νk + t |=∧
1≤p≤m µ(νk(modep)); and

• either
− νk(modep) = νk+1(modep) and νk + (tk+1 − tk) =

νk+1; or
− there exists a race-free IST-plan Φ such that for all

1 ≤ p ≤ m,
∗ either νk(modep) = νk+1(modep) or

(νk(modep), νk+1(modep)) ∈ Tp and
∗ νk + (tk+1 − tk) |=∧

1≤p≤m;Φ(p) �=⊥ τp(νk(modep), νk+1(modep))
and

∗ (νk + (tk+1 − tk))concat1≤p≤m;Φ(p) �=⊥
πp(νk(modep), νk+1(modep)) = νk+1. Here
concat(γ1, . . . , γh) is the new sequence obtained
by concatenating sequences γ1, . . . , γh in order.

‖
We can define the TCTL model-checking problem of timed

automata as our verification framework. Here we adopt the
safety-analysis problem as our verification framework for
simplicity. A safety analysis problem instance, SA(A, η) in
notations, consists of a timed automaton A and a safety state-
predicate η ∈ B(Q, X). A is safe w.r.t. to η, in symbols
A |= η, iff for all runs (ν0, t0)(ν1, t1) . . . (νk, tk) . . . . . ., for
all k ≥ 0, and for all t ∈ [0, tk+1 − tk], νk + t |= η, i.e., the
safety requirement is guaranteed.

In figure 1, we have drawn three process automata, in a
bus-contending system. Two process automata are for senders
and one for the bus. The circles represent modes while
the arcs represent transitions, which may be labeled with
synchronization symbols (e.g., !start, ?end, !collision,
. . .), triggering conditions (e.g., x ≤ 5), and assignments (e.g.,
x := 0;). Each transition (arc) in the process automata is
called a process transition. For convenience, we have labeled
the process transitions with numbers. In the system, a sender
process may synchronize through channel start with the
bus to start sending signals on the bus. While one sender
is using the bus, the second sender may also synchronize
through channel start to start placing message on the bus
and corrupting the bus contents. When this happen, the bus
then signals bus collision to both of the senders.

We adopt the standard interleaving semantics, i.e., at any
instant, at most one legitimate global transition (LG-transition)
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can happen in the CTA. A process transition may not represent
an LG-transition and may not be executed by itself. Only
LG-transitions can be executed. Symbols start, end, and
collision, on the arcs, represent synchronization channels,
which serve as glue to combine process transitions into LG-
transitions. An exclamation (question) mark followed by a
channel name means an output (input) event through the
channel. For example, !start means a sending event through
channel start while ?start means a receiving event
through the same channel. Any input event through a channel
must match, at the same instant, with a unique output event
through the same channel. Thus, a process transition with an
output event must combine with another process transition (by
another process) with a corresponding input event to become
an LG-transition.

Thus the synchronizers in our input language are primarily
used to help users in decomposing their programs into modules
and to help the simulators to glue process transitions in
constructing LG-transitions. For example, in figure 1, process
transitions 1 and 7 can combine to be an LG-transition. Also
process transitions 3, 6, and 9 can make an LG-transition since
two output events matches two input events through channel
collision.

In the following, we illustrate how to reason in one step
of our simulator engine to construct the state-predicate of the
next-step. Intuitively, in one step, the system will progress in
time and then execute an LG-transition. For example, we may
have a current state-predicate

(p = 1 ∧ q = 2) ∨ (q = 4 ∧ 1 ≤ x < 3) (P)

and an LG-transition expressed as the following guarded
command:

(p = 1 ∧ x > 5) −→ x := 0; p := 3; (X)

which means

”when (p = 1 ∧ x > 5) is true with x as a clock,
reset x to zero and assign 3 to p.”

In a step of the simulation engine, we first calculate the new
state-predicate obtained from states in (P) by letting time
progress. This affects the constraint on clock x and yields

(p = 1 ∧ q = 2) ∨ (q = 4 ∧ 1 ≤ x) (P’)

Then we apply the LG-transitions, selected by the users, to
(P’) to obtain the state-predicate representing states after the
selected transitions. Suppose the only selected LG-transition
is (X). Then the state-predicate at the next-step is

p = 3 ∧ x = 0 ∧ (q = 2 ∨ q = 4)

Details can be found in [23].

IV. OVERVIEW OF OUR SIMULATOR

We have incorporated the idea in this report in our verifi-
cation tool, RED 4.0, a TCTL model-checker/simulator[35],
[36], [37], [38], [39]. The tool can be activated with the
following command in Unix environment:

$ red [options] InputFileName OutputFileName

The options are
• -Sp: symmetry reduction for pointer data-structure

systems[48]
• -Sg: Symmetry reduction for zones[20], [39],
• -c: Counter-example generation
• -s: Simulator mode with GUI

Without option -s, the tool serves as a high-performance
TCTL model-checker in backward analysis. When the sim-
ulation mode GUI is activated, we will see the window like
figure 2 popping up.

The GUI window is partitioned into four frames respectively
of trace trees (on the upper-left corner), current state-predicates
(on the bottom), command buttons (in the middle), and candi-
date process transitions (PT-frame, on the upper-right corner)
to be selected and already been selected.

Users can construct LG-transitions by selecting process
transitions step-by-step in the PT-frame. At each step, the
PT-frame displays all process transitions that can be fired at
the current state-predicate in the upper-half of the PT-frame.
After the selection of a process transition , our simulator is
intelligent enough to eliminate those process transitions not
synchronizable with those just-selected ones from the display
of PT-frame.

After the selection of many process transitions, the simulator
steps forward and computes the new current state-predicate
at the next step with the LG-transitions constructable from
the selected process transitions. If there are many process
transitions waiting to be selected at the time the simulator
steps forward, all those process transitions will be selected.
Since these process transitions may belong to different LG-
transitions, the new current state-predicate may represent the
result of execution of more than one LG-transitions. This
capability to manipulate a state-space represented in a complex
state-predicate in symbolic steps is indeed the strength of
symbolic simulation.

The architecture of our implementation is shown in figure 3.
We explain briefly its components in the following:

• TC compiler: The efficient compiler can parse the TC
programs and OVL assertions, and then mechanically
generate the optimized CTA and TCTL formulae.

• GUI (graphical user-interface): A user-friendly window
for easy access to the power of formal verification.

• RED symbolic simulation engine: This is actually the
timed-transition next-step state-predicate calculation rou-
tine in forward analysis. Symbolic algorithm for this next-
step state-predicate calculation routine is explained at the
end of last section and can also be found in [23].

• assertion monitoring: In the input language to the sim-
ulator, users can also specify a goal predicate for the
traces. This goal predicate can be a risk condition, which
the users want to make sure that it cannot happen. Or
it can be a liveness condition, which the users want to
see that it can happen. After each step of the simulation
engine, our RED 4.0 will check if the inter of the goal
predicate and the next-step state-predicate is nonempty.
If it is, the sequence of LG-transitions leading from the
initial state to this goal predicate can be displayed. Such a
capability is indispensable in helping the users debugging
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Fig. 2. the GUI of RED 4.0

their system designs.
• trace computation: This component uses user-guidance,
randomness, and various policies to select LG-transitions,
in the generation of traces by repetitive invoking the
RED symbolic simulation engine. More details is given
in section V.
• state manipulation: This includes facilities to inject
faults, to either relax or restrict the current state-space,
and to set symbolic breakpoints.
• trace tree management: (See the frame at the upper-
left corner.) This component is for the maintenance of
the trace tree structure and movement of current state
nodes in the tree. The simulator can step forward and
backward according to the plain interaction. After a few
times of these forward-backward steps, a tree of traces
is constructed and recorded in our simulator to represent
the whole history of the session. The node for the current
state-predicate is black while the others are white. Users
can also click on nodes in the trace tree and jump to a
specific current state-predicate. On the arcs, we also label
the set of pairs of processes and process transitions used
in the generation of the next state-predicate.
• RED symbolic TCTL model-checker: The high perfor-
mance backward analysis power of RED can be directly
activated to check if the system model satisfies the
assertion.

V. TRACE COMPUTATIONS

As mentioned in the introduction, symbolic simulation adds
one new dimension of trace ”width” , which reflects the
number of fired LG-transitions in each step in the construction
of traces. With Red 4.0, users may choose from various options

to construct traces with appropriate randomness, special search
policy, and enough width. The options are:

• plain interaction: With selection of process transitions
from the PT-frame and previous/next step commands,
users have total control on how to select process tran-
sitions to make LG-transitions in the construction of the
next-step state predicates along the current trace.

• random steps: The simulator could also randomly
choose an LG-transition in each step. Users can command
the autonomous execution of a given number of random
steps.

• game-based policy: We use the term ”game” here
because we envision the concurrent system operation as
a game. Those processes, which we want to verify, are
treated as players while the other processes are treated as
opponents. In the game, the players try to win (maintain
the specification property) under the worst (i.e., minimal)
assumption on their opponents.
A process is a player iff its local variables appear in the
goal state-predicate. Intuitively, the simulator constructs a
trace segment with all possible reactions of the players in
response to random behaviors of the opponents. With this
option, we can observe the behavior of players’ response
to opponents’ action. According to the well-observed
discipline of modular programming[31], the behavioral
correctness of a functional module should be based on
minimal assumption on the environment. If we view the
players as the functional module and the opponents as the
environment, then this game-based policy makes a lot of
sense.
It can be useful when we try to verify the design of
the player processes. In other words, at each step, the
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simulator is growing the trace with a width enough
for one process transition from each opponent and all
firable process transitions from players. Users can again
command the autonomous execution of a few steps with
this game-based policy.
• goal-oriented policy: This policy makes the simulator to
generate fast traces leading to the goal states. This can be
useful in debugging the system designs, when users have
observed some abnormal states. The users can specify the
abnormal states as the goal assertions.
RED 4.0 achieves this by defining the heuristic distance
estimation (HD-estimation) from one state to the other
(to be explained in the following). Then process transi-
tions which can the most significantly reduce the HD-
estimation from any states in the current state-predicate
to any states in the goal state-predicate will be selected
in the hope of a short trace to the goal states can be
constructed.
The HD-estimation from one (global) state s to another
s′ is defined as follows. Suppose we have m processes
and s(p) is the mode in process p’s automaton in state
s. Then HD-estimation from s to s′ is the sum, over all
processes p, of the shortest path distance from s(p) to
s′(p) in the graph (constructed with modes as nodes and
process transitions as arcs) of process p’s automaton. For
each porcess p, the shortest path distance is gained from
the backward breath-first algorithm.
For VLSI, usually people adopt the estimation of Hem-

ming distance, which measures the number of bit-
differences. But for dense-time concurrent systems, state-
predicates are loaded with clock constraints and Hem-
ming distance can be difficult to define in a meaningful
way.

VI. MANIPULATION OF CURRENT STATE-PREDICATE

Our simulator allows for the modification of the current
state-predicate before proceeding to the next-step. The fol-
lowing methods can be used to manipulate the current state-
predicate and affects the ”width” of traces.

• assign: The simulator allows users to assign a new
value to a state-variable. This can be used to change the
behavior of the systems and insert faults.

• eliminate: By this method, users can eliminate all
constraints w.r.t. a state-variable. This is equivalent to
broadening the width of the trace on the dimension of the
corresponding state-variable. We can observe the system
behavior with less assumption on state-variables.

• restrict: In opposition to elimination, users can type
in a new predicate and conjunct it with the current state-
predicate. With this capability, we can narrow the width
of the trace and focus on the interesting behaviors.

• abstract: As in the paragraph of game-based policy
in page 6, we view the behavior of the target system as
a game process and players, opponents can be identified.
According to this, the simulator provides three abstract
image functions to systematically abstract the current
state-predicate. This is also equivalent to systematically
broadening the width of the trace. The options for the
abstract image functions are:
− Game-abstraction: The game abstract image function

will eliminate the state information of the opponents
from its argument.

− Game-discrete-abstraction: This abstract image func-
tion will eliminate all clock constraints for the oppo-
nents in the state-predicate.

− Game-magnitude-abstraction: A clock constraint like
x − x′ ∼ c is called a magnitude constraint iff either
x or x′ is zero itself (i.e. the constraint is either x ∼ c
or −x′ ∼ c). This abstract image function will erase
all non-magnitude constraints of the opponents in the
state-predicate.

Note that some of these methods can significantly simplify
the representation of the current state-predicate. This also im-
plies that the time and space needed to calculate the next-step
state-predicates can be reduced. For example, we may have
clocks x1, x2 as local clocks of processes 1 and 2 respectively.
After applying the game-magnitude-abstraction image function
to x1 ≥ 4∧x2 ≥ 3∧ (x1−x2 ≤ −2∨x2−x1 ≤ −1), we get
x1 ≥ 4 ∧ x2 ≥ 3 and have changed a concave state-space
down to a convex state-space. This kind of transformation
usually can significantly reduce the time and space needed
for calculating the next-step state-predicates.

VII. TIMED C

Today, model-checkers for real-time systems base on math-
ematical models, such as CTA, Petri net, hybrid automata,
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etc [8], [11], [18], [25], [37], [38], [42], [44], [49]. Since
most programs for real-time systems are written imperative
programming laguages such as C, being able to automatically
translate C-programs into CTAs would make our symbolic
simulator more attractive for practical use. Our input language
Timed C(TC) serves as an intermediate language from C-
programs to CTAs. Moreover, in addition to providing this C-
like language for system description, an expressive method for
writing specifications should also be provided. In traditional
programming languages, assertions are inserted between code
lines to ensure asserted properties during run time. TC sup-
ports assertions derived from a basic subset of OVL assertions
in the form of comment lines. In the following sections, we
breifly describe TC constructs and OVL assertion semantics
using a simple example. Details regarding the automated
translation procedures are given in [47].

A. TC Constructs

The TC language adopts basic C-program constructs. A TC
program construct B could be:

• an atomic assignment: e.g.,y = 3;
• a sequence statement: e.g.,B1B2

• a while-loop statement: e.g.,while(x < 3)B
• an if-else statement: e.g.,if(x <
3)B1elseB2

• a switch-case statement:
e.g.,switch(y){case1 : B1 . . .}

However, the traditional program constructs in C-like lan-
guages do not capture all the elements in the modeling of real-
time concurrent systems. One deficiency is that there is no way
to tell at what time the next statement should be executed. In
other words, users cannot describe the deadlines, earliest start-
ing time of the next statement after the execution of the current
statement. Here we propose a new type of statement, the
interval statement, in the forms of ”[c, d];”, ”[c, d);”, ”(c, d);”,
”(c, d];”, where c ∈ N and d ∈ N ∪{∞} such that c ≤ d and
(c,∞], [c,∞] are not allowed. An interval statement, say [c, d],
is not executed but serves as a glue to bind the execution times
of its predecessor and successor statements. For example, a
statement sequence like B1[3, 5];B2 means that the time lap
from the execution of the last atomic statement in B1 to the
execution of the first statement in B2 is within [3, 5]. From
real-world C-programs, interval statements can be obtained by
abstracting out the execution time of blocks or sequences of
program statements. Accurate execution time can be obtained
with techniques of WCET[19] analysis. In many embedded
systems, a processor exclusively executes one process and
the execution time of a straight-line program segment can be
obtained by accumulating the execution time (from CPU data-
book) of the machine instructions in the segment.

Event-handling is an essential element in modeling lan-
guages for real-time systems. With different events observed,
the systems may have to take different actions. We design the
new construct of

switch event{
case〈ss1〉 : B1break;
case〈ss2〉 : B2break;
. . .
timeout[c, d] : Btbreak;
}

to capture this kind of system behaviors. ss1, ss2, . . . are
sequences of synchronization labels, like ?receive, !send,
etc. The construct means that the system will wait for any
of the event combinations of 〈ss1〉, 〈ss2〉, . . . to happen and
take the corresponding actions B1, B2, . . . respectively. But
the system will only wait for a period no longer than d time
units because of the timeout event which will happen between
c and d time units. Finally we also allow programmers to
use synchronizers in TC for the convenience of modeling of
concurrent behaviors and construction of LG-transitions. For
example, users can also write an atomic statement like ”<
?ack !finish >;”.

B. The railroad crossing example

The TC program in table I models a simple railroad crossing
system. The system consists of two processes: monitor and
gate controller, both executing infinite while-loops. In
the beginning, we declare two variables of enumerate type, as
in Pascal. The first value in the enumerated value set is the
initial value of the declared variables.

After sending out a synchronization signal
!TRAIN NEAR, train status will be assigned value
ATCROSSING in 100 to 300 time units. If in between two
statements there is no interval statements, it is equivalent to
the writing of interval [0,∞). Lines beginning with // are
comments, in which we can write OVL assertions. In this
program, there are two OVL assertions which are explained
in section VII-C.

C. OVL assertions

We allow four types of OVL assertions inserted in TC as
below.

//assert always(φ)
//assert never(φ)
//assert change#(I, f)ID(φ1, φ2)
//assert time#(I, f)ID(φ1, φ2)

Here φ, φ1, φ2 are Boolean predicates on variable values. I is
an interval.f is a special flag. ID is the name of the assertion.

We choose these four assertion types from OVL as ex-
amples because many other assertion types can be treated
with similar technique, which we use for these four types.
In the four assertion types, //assert always(φ) and
//assert never(φ) specify some properties at the current
state. The first type

//assert always(φ)

means that ”now φ must be true.” For example, in table I, the
second assertion in the while-loop of process monitor says that
”now the gate must be down.”

The second type
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enum {NOT_ATCROSSING, ATCROSSING} train_status;
enum {NOT_DOWN, DOWN} gate_status;

process monitor() {
while (1) {

//assert_change #([0,20], 1) A1(train_status == ATCROSSING, train_status == NOT_ATCROSSING)
<!TRAIN_NEAR>;
(100,300);
train_status = ATCROSSING;

//assert_always(gate_status == DOWN)
[5,10];
train_status = NOT_ATCROSSING;
[0,0];
<!TRAIN_LEAVE>;
[100,oo];

}
}

process gate_controller() {
while (1) {
<?TRAIN_NEAR>;
[20,50);
gate_status = DOWN;
<?TRAIN_LEAVE>;
[0,50];
gate_status = NOT_DOWN;

}
}

TABLE I

A TC PROGRAM OF THE RAILROAD CROSSING SYSTEM

//assert never(φ)

means that ”now φ must not be true.”
The other two assertion types specify some properties along

all computations from the current state. f is a flag specific to
assert change and assert time. When f = 0,

//assert change#(I, f)ID(φ1, φ2) (1)

means that from now on, along all traces, THE FIRST TIME
WHEN φ1 is true, from that φ1-state on, φ2 must change
value once within time in I. That is, every time this assertion
is encountered, it will only be used once, when φ1 is true, and
then discarded.

When f = 1, assertion (1) means that from now on,
along all traces, WHENEVER φ1 is true, φ2 must change
value once within time in I. That is, this assertion will
be assured once and for all. For example, in table I, the
first comment line in the while-loop of process monitor,
is an assert change, which says that when a train
is at the crossing (train status == ATCROSSING),
then Boolean value of predicate train status ==
NOT ATCROSSING must change within 0 to 20 time units.

We have to make a choice about how to interpret ”THE
FIRST TIME” in a dense-time multiclock system. OVL as-
sertions were originally defined to monitor events in VLSI
circuits with the assumption of a discrete-time global clock[9].
In synchronous circuits, an atomic event can happen at a clock
tick or sometimes can be conveniently interpreted as true in
the whole period between two clock ticks. We believe the
latter convenient interpretation is more suitable for this work
because in concurrent systems, it is not true that all processes
will change states at the tick of a ”global clock.” And this

period between two ticks can be interpreted as a state in a
state-transition system. According to this line of interpretation,
we shall interpret assertion (1) as

”from now on, along all traces, in THE FIRST
INTERVAL WITHIN WHICH φ1 is true,

from every state in that interval,
φ2 must change value once within time in I.

to better fit the need of dense-time concurrent systems. This
choice of interpretation may later be changed to fit all domains
of applications.

The last assertion

//assert time#(I, f)ID(φ1, φ2) (2)

is kind of the opposite to assert change. When f = 0,
it means that from now on, along all traces, in THE FIRST
INTERVAL WITHIN WHICH φ1 is true, from every state
in that interval, φ2 must not change value at any time in I.
Similarly, when f = 1, assertion (2) means that from now on,
along all traces, WHENEVER φ1 is true, φ2 must not change
value at any time in I.

VIII. EXPERIMENTS ON BLUETOOTH BASEBAND

PROTOCOL

In the following, we first give a brief introduction to
the Bluetooth baseband protocol[26]. Then we present our
model of baseband protocol in CTA in subsection VIII-B.
The model will be used in two ways:bug-inserted and bug-
free. We use two bug-inserted models in subsection VIII-C
and VIII-D respectively, and show how to quickly find the
bugs with symbolic traces of Red 4.0. In subsections VIII-
C, we also demonstrate how to generate traces to observe
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INQUIRY

Fig. 4. mode sequences of processes INQUIRY and INQUIRY SCAN in
baseband protocol

system behaviors step by step. Finally, in subsection VIII-
E, we use the bug-free model to report the performance in
complete verification of the Baseband protocol.

A. Bluetooth baseband protocol

Bluetooth is a specification for wireless communica-
tion protocols[26]. It operates in the unlicensed Industrial-
Scientific-Medical (ISM) band at 2.4 GHz. Since ISM band is
open to everyone, Bluetooth uses the frequency hopping spread
spectrum (FHSS) and time-division duplex (TDD) scheme to
cope with interferences. Bluetooth divides the band into 79
radio frequencies and hops between these frequencies. It is a
critical issue for Bluetooth devices to discover the frequencies
of other Bluetooth devices since FHSS and TDD scheme are
used.

A Bluetooth unit that wants to discover other Bluetooth
units enters an INQUIRY mode. A Bluetooth unit that allows
itself to be discovered, regularly enters the INQUIRY SCAN
mode to listen to inquiry messages. Figure 4 shows the
INQUIRY and INQUIRY SCAN procedures. All Bluetooth
units in INQUIRY and INQUIRY SCAN share the same
hopping sequence, which is 32 hops in length. The Bluetooth
unit in INQUIRY SCAN mode hops every 1.28 sec. Although
a Bluetooth unit in INQUIRY mode also uses the same inquiry
hopping sequence, it does not know which frequencies do re-
ceivers listen to. In order to solve this uncertainty, a Bluetooth
unit in INQUIRY mode hops at rate of 1600 hop/sec, and
transmits two packets on two different frequencies and then
listens for response messages on corresponding frequency.
Besides, the inquiry hopping sequence is divided into train
A and B of 16 frequencies and a single train is repeated for
Ninquiry (which is 256 in specification) times before a new
train is used. In an error-free environment, at least three train
switches must have taken place. Details can be found in [26];

B. The system model

Every Bluetooth unit has a system clock. When
the clock ticks, the Bluetooth unit updates its internal
timer and frequency. So in our model, there are two
clocks, tick clk scan and tick clk inq, for INQUIRY
SCAN(figure 5) and INQUIRY(figure 6) processes, respec-
tively. For convenience, we have labeled the process transitions
with numbers.

Every time unit, the processes loop through the modes to
update the variables. For the INQUIRY SCAN procedure,
there are two important variables, inqscanTimer and
mode scan. Variable inqscanTimer , which is a timer
updated in transitions 6 to 9, is used to determine when to
enter INQUIRY SCAN mode. Variable mode scan records
the current mode of the process performing the INQUIRY
SCAN procedure, and its value may be INQUIRY SCAN or
STANDBY.

For the INQUIRY procedure, when the value of variable
clkmod, in transitions 13 to 16, is less than 2, the process
transmits packets. Otherwise, it listens for response messages.
The process sends packets via synchronization channel in
transitions 19 and 20. If a packet is received successfully,
it means that the frequency, through which the packet is
received, is discovered and the process goes to SUCCESS
mode. Otherwise, in transitions 21 to 24, variables id sent,
train sent, and train switch are changed. Variable
id sent records the packets sent in current train; variable
train sent records the number of repeat of a single train;
variable train switch represents how many train switches
have taken place. After three train switches, the process goes
to TIMEOUT mode via transition 25.

Our task is to verify whether two Bluetooth units in comple-
mentary modes will hop to the same frequency before timeout,
so that the INQUIRY and INQUIRY SCAN procedures can
go on. One can think of a printer equipped with Bluetooth
in INQUIRY SCAN mode. When a notebook equipped with
Bluetooth has data to print, it will inquiry nearby printers.
We anticipate that the notebook can learn the existence of the
printer with the Bluetooth protocols.

C. Using ”width” of simulation traces for advantage

In this subsection, a bug is inserted in the INQUIRY SCAN
process in the model. We demonstrate how to properly control
the ”width” of symbolic traces to quickly discover the bug,
and manipulate the state-space predicate to pseudo-correct the
bug. In the end of the simulation, we use game-based policy
to automatically trace to our goal states.

We use the step sequence shown in the second row of
table II to experiment with RED and the Baseband protocol.
A pair like (p, x) in the row means that process p executes
transition x. When several of these process transition execution
pairs are stacked, it means that we select all these process
transitions to broaden the trace width of simulation.

In our scenario with notebook and printer, the printer
regularly enters the INQUIRY SCAN mode to listen to in-
quiry messages. The printer will periodically execute in mode
INQUIRY SCAN and mode STANDBY in sequence (See
the upper mode-sequence in figure 4). In the implementa-
tion of Baseband protocol, the alternation between these two
modes is controlled with counter inqscanTimer , which
increments at every clock tick. When inqscanTimer <
TwInqScan c (TwInqScan c is a macro constant defin-
ing the scan window size), the printer stays in mode IN-
QUIRY SCAN. At the time when inqscanTimer =
TwInqScan c, the printer changes to mode STANDBY.

10



success

tick_clk_scan<=1
update_fre_base_scan     or fre_scan!=fre_inq update_state_scan

tick_clk_scan==0

   when inqscanTimer_<TwInqScan_c−1 may inqscanTimer_++1;

2 3

5

679 8

4

1

   when ?signal_packet !signal_success mode_scan==INQUIRY_SCAN and fre_scan==fre_inq

   when ?signal_packet mode_scan!=INQUIRY_SCAN

   when inqscanTimer_==TwInqScan_c−1 may inqscanTimer_++1; mode_scan=CONNECTED;

   when  TwInqScan_c<inqscanTimer_+1 and inqscanTimer_<TinqScan_c may inqscanTimer_++1;

   when inqscanTimer_==TinqScan_c may inqscanTimer_=0; mode_scan=INQUIRY_SCAN; 

    fre_scan=fre_base_scan;

   when tick_clk_scan==1 and phase_clk_scan==PhaseChange_c and fre_base_scan<Max_Fre 
may tick_clk_scan=0; phase_clk_scan=0; fre_base_scan++1;

    may tick_clk_scan=0; phase_clk_scan=0; fre_base_scan=0;
   when tick_clk_scan==1 and phase_clk_scan==PhaseChange_c and fre_base_scan==Max_Fre 

   when tick_clk_scan==1 and phase_clk_scan!=PhaseChange_c
may tick_clk_scan=0; phase_clk_scan++1;

Fig. 5. INQUIRY SCAN

step 1 2 3 4 5 6 7 8
process transitions (I,13) (I,17) (IS,5) (IS,1) (IS,6) restrict assign game-based policy

(I,20) (IS,2) (IS,7)
(IS,3) (IS,8)

(IS, 9)
I : process INQUIRY; IS: process INQUIRY SCAN; (p, x): process p executing process transition x.

TABLE II

THE STEP-BY-STEP SIMULATION

When counter inqscanTimer increases to macro constant
TinqScan c (the time span between two consecutive inquiry
scans), it is reset to zero. We want to make sure that an
INQUIRY SCAN process will periodically execute in the two
modes of

inqscanTimer < TwInqScan c
∧ mode scan = INQUIRY SCAN

and

inqscanTimer ≥ TwInqScan c
∧ mode scan = STANDBY
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     may id_sent=0; train_sent++1;
     when id_sent==IDSent and train_sent<TrainSent

      offset=TRAIN_B;
      may id_sent=0; train_sent=0; train_switch++1;
      train_switch<TrainSwitch and offset==TRAIN_A
      when id_sent==IDSent and train_sent==TrainSent and

      when id_sent==IDSent and train_sent==TrainSent and

      offset=TRAIN_A;

      train_switch<TrainSwitch and offset==TRAIN_B
      may id_sent=0; train_sent=0; train_switch++1;

12

11

10

  when clkmod==2 may clkmod++1;

  when clkmod==3 may clkmod=0;

  when phase_clk_inq==PhaseChange_c and fre_base_inq<Max_Fre may phase_clk_inq=0;

  when phase_clk_inq!=PhaseChange_c may phase_clk_inq++1;

may phase_clk_inq=0;
when phase_clk_inq==PhaseChange_c and fre_base_inq==Max_Fre

13
14

Success

fre_inq=fre_base_inq+offset+id_sent;
when fre_inq<=Max_Fre may

19

20

when id_sent==IDSent and train_sent==TrainSent
and train_switch==TrainSwitch

    when id_sent<IDSent may id_sent++1;

update_fre_base_inq update_clkmod_inq

fre_mod_inq

send_inq
check_timeout_inq

15

16
 when clkmod==1 may clkmod++1;
fre_inq=fre_base_inq+offset+id_sent;

 when clkmod==0 may clkmod++1;
fre_inq=fre_base_inq+offset+id_sent;

17

18

fre_inq=fre_base_inq+offset+id_sent−4;
when fre_inq>Max_Fre may 

when !signal_packet ?signal_success true
      may id_sent++1;

when !signal_packet true may id_sent++1; 

Timeout

25

21

22

23

24

Fig. 6. INQUIRY

in sequence. Thus a risk condition saying that this sequence
is violated in the following.⎛

⎜⎜⎝
(

inqscanTimer < TwInqScan c
∧ mode scan �= INQUIRY SCAN

)

∨
(

inqscanTimer ≥ TwInqScan c
∧ mode scan �= STANDBY

)
⎞
⎟⎟⎠

When the notebook starts to inquiry, the printer may be in
mode INQUIRY SCAN or mode STANDBY. With traditional
simulation[10], [16], [21], [22], a precise initial state, such as

inqscanTimer = 0 ∧ mode scan = INQUIRY SCAN

must be chosen to start the simulation. And the chosen initial
state may either never reach the risk states or have a long way
to do it. But in RED 4.0, we can start our simulation from the
whole state-space represented by the following state-predicate.⎛

⎜⎜⎝
(

inqscanTimer < TwInqScan c
∧ mode scan = INQUIRY SCAN

)

∨
(

inqscanTimer ≥ TwInqScan c
∧ mode scan = STANDBY

)
⎞
⎟⎟⎠

By starting simulation with this big state-space, we are actually
using a great ”width” of the symbolic trace and should have
much better chance in detecting bugs.

By executing the first five steps in the sequence of table II,
we simulate the model step by step to observe if the system
acts according to our expectation. At the fifth step, we have
four executable process transitions, including transitions 6, 7,
8, and 9 (see the arc labels in figure 5 of process INQUIRY
SCAN. With RED 4.0, we can simulate all these possibilities
in a single step.

Now we want to demonstrate what we can do with the
discovery of bugs. After the fifth step, we reach a risk
state. Inspecting the trace, we find a bug in transition 7
(see figure 5). According to Bluetooth specification[26], when
counter inqscanTimer increments from TwInqScan c-1
to TwInqScan c, process INQUIRY SCAN should change
from mode INQUIRY SCAN to mode STANDBY. And transi-
tion 7 in figure 5 is supposed to model this mode change. The
bug is inserted by changing the triggering condition of process
transition 7 from inqscanTimer = TwInqScan c − 1
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to inqscanTimer = TwInqScan c. It means that the
printer enters mode STANDBY one tick too late and the
system reaches the risk state of

inqscanTimer = TwInqScan c ∧ mode scan =
INQUIRY SCAN

In order to pseudo-correct the bug, we want to test what will
happen if the mode change does not happen in time. To do
this what-if analysis, we first restrict our attention to the state-
predicate with inqscanTimer equals TwInqScan c.
We do this by keying state-predicate inqscanTimer =
TwInqScan c to restrict the current state-predicate.

Now the new current state-predicate satisfies

inqscanTimer < TwInqScan c
∧ mode scan = INQUIRY SCAN

We want to see whether by correcting the bug of the late
mode-change, we can indeed get the correct behavior (i.e. both
parties hop to the same frequency). We change the value of
mode scan from INQUIRY SCAN to STANDBY. Then we
generate traces automatically and see if we can see any faulty
behavior in the traces constructed with the game-based policy
(i.e., all process transitions for players (process INQUIRY
SCAN) and random transitions for opponents (process IN-
QUIRY)). In our experiment, RED 4.0 constructed a symbolic
trace leading to SUCCESS mode. This gives users confidence
that the both parties indeed can hop to the same frequency.

D. Fast debugging with goal-oriented policy

Here we show how to find bugs in our Baseband model with
our goal-oriented policy. The bug is inserted as follows. In
transitions 19 and 20, variable id-sent is now incremented
when a packet is sent. However, this increment is redundant
because variable id sent has already been incremented
with variables train sent and train switch together
in transitions 21 to 24. This bug would make id sent to
be incremented by 2 for each packet sent, and causes the
INQUIRY process timeout quickly.

We generate directed traces with our goal-oriented pol-
icy. The simulator selects transitions that minimize the HD-
estimation to the goal state. For example, transition 20 which
leads to TIMEOUT mode would be taken rather than transition
19 that leads to SUCCESS mode, since our goal state is
TIMEOUT mode which means the existence of a bug. In
our first trial, we generate a trace that reaches the TIMEOUT
mode, and fix the bug by observing the trace. It costs RED
4.0 8.21 seconds on an Pentium 1.7G MHz desktop with 256
MB memory to generate the directed trace. However, if we do
complete verification to generate a counter-example trace, it
costs RED 4.0 137.78 seconds.

With random traces, the time needed to find a bug depends
on how fast the random traces hit the bug. In our experiment,
we generate a random traces, but it does not reach the
TIMEOUT mode. Then we have to generate a new trace from
the step that may lead to the TIMEOUT mode. Repeating this
trial-and-error iterations for six times, we finally reaches the
TIMEOUT mode. Our experiment shows that the goal-oriented

policy is more efficient in debugging the model as compared
with random steps and complete verification.

E. Complete verification

Finally, we have finished simulating and debugging our
model, and gained confidence in the correctness of our system.
We can now proceed to the more expensive step of formal
model-checking to see whether two Bluetooth units in comple-
mentary modes will hop to the same frequency before timeout.
RED 4.0 uses 197 seconds on an Pentium 1.7G MHz desktop
with 256 MB memory to check this model.

IX. CONCLUSIO

This paper has described RED 4.0, a model-
checker/simulator based on BDD-like data-structure with
GUI for dense-time concurrent systems. Engineers can
describe their systems with a C-like language, TC, and insert
OVL assertions as comment lines. RED 4.0 can generate
symbolic traces with various policies, and manipulate the
state-predicate. By properly controlling the width of symbolic
traces, we have much better chances in observing what we are
interested. The usefulness of our techniques can be justified
by our report on experiment with the Bluetooth baseband
protocol.

Future work may proceed in several directions. Firstly,
we hope to derive new HD-estimation functions used in the
directed trace generation, and support customized automatic
trace generation policy. These would help users finding bugs
with fewer simulation traces. Secondly, the improvement of
TC is also important, since TC bridges our tool and industrial
systems. Finally, we plan to make our GUI more friendly
so that users can have easy access to the power of formal
verification.
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