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ABSTRACT

We propose a new SAT-based model checking algorithm to solve the reachability
problem of real-time systems. In our algorithm, the behavior of region automata is
encoded as Boolean formulas, and hence any SAT solver can be used to explore the
region graph efficiently. Although our SAT-based algorithm performs better than other
algorithms in flaw detection, it is less effective in proving properties. To overcome
the problem, we incorporate a complete inductive method in our algorithm to improve
the performance when the property is satisfied. We implement both algorithms in a
tool called xBMC and report experimental results. The experiments show that the
combination of efficient encoding and inductive methods offers an effective and practical
method for the analysis of timing behavior.

Keywords: formal verification, model checking, region automata, real-time System, sat-
isfiability.

1. Introduction

Verification of real-world software systems mandates the ability of handling a
large number of system variables. In symbolic model checking, sets of states are en-
coded as binary decision diagrams (BDD’s). System behavior can then be explored
by various BDD computation. The technique is known to be useful in many case
studies. But the size of BDD may grow significantly as the number of variables
increases, systems with a large number of variables are therefore hard to verify
by conventional BDD-based model checking algorithms. On the other hand, the
memory consumption of Boolean satisfiability (SAT) solvers are less sensitive to
the number of variables. SAT-based techniques therefore offer viable alternatives
in recent years [7, 10]. A recent comparison [3] of the two techniques suggests that
BDD-based algorithms require more space, but SAT-based algorithms take more
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time. Recent development in SAT solvers [16] also improve the performance of
SAT-based techniques.

However, the advantages of SAT-based algorithms are less clear in the analysis
of timing behavior which is essential in embedded systems and protocol implemen-
tations. One difficulty in applying SAT-based techniques is the modeling of timing
behavior. Göllü et al. [11] proposed discretizations of dense time automata and
showed that a discretized trajectory traverses the same sequence of regions as its
original dense-time trajectory.

Our contribution in this paper are three folds. Firstly, we encode the implicit
simulation of region exploration algorithm in Boolean formulas and apply SAT-
based bounded model checking techniques to the analysis of timed automata. We
not only characterize regions as discrete interpretations, but also precisely encode
these interpretations as Boolean formulas. To eliminate discretization side effects
such as those mentioned by Göllü et al. [11], we suggest using an exceptional succes-
sor formula that prevents discrete distortion in timing behavior. We prove that the
satisfiability of these Boolean formulas is equivalent to solving the forward reacha-
bility problem of dense-time systems.

Secondly, we incorporate an inductive method in our bounded model checking
algorithm. Since bounded model checking is not efficient in proving the correct-
ness of systems, heuristics such as induction have been proposed to circumvent the
drawback. The basic idea of inductive method is to prove safety properties for all
steps by assuming them in the previous steps. The induction technique has been
known in literature [7, 18, 23], but none of them considers timing behavior.

By applying a loop-free inductive method, we enhance our bounded reachability
analysis algorithm of region automata with induciton. When the inductive method
is effective, it guarantees the given safety property and terminates the algorithm
immediately. Compared with other encodings of timing behavior [3, 15, 19, 21, 22],
the discretization of region automata allows us to deploy the inductive method
rather straightforwardly. Different from conventional model checking algorithms
for real-time systems [9, 14, 25], we leverage SAT solver’s capability and induc-
tive method’s effectiveness in the analysis of timing behavior. Subsequently, we
believe that our combined algorithm provides a plausible solution to alleviate state
explosion, especially for those systems with many state variables.

Lastly, we implement our new algorithm in a verification tool and report ex-
perimental results. Our experimental results suggest that our tool, xBMC, is more
scalable for bug hunting than both conventional (Kronos [9], Uppaal [14], RED [25])
and bounded (SAL [18]) model checkers by being able to verify Fischer’s protocol
up to 22 processes. In another experiment, we verify the correctness of the client
authentication protocol, Cornell Single Sign-on Services(CorSSO) [12]. Our results
show that xBMC can construct a proof in a handful of inductive steps. Hence, it
offers a practical solution to both correctness guarantee and bug hunting in our
experiments.

The rest of this paper is organized as follows. In Section 2 we briefly describe
timed automata having both discrete and clock variables. In Section 3 we describe
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how to encode the behavior of region automata as Boolean formulas. Reachability
analysis is given in Section 4, and experimental results are summarized in Section 5.
After discussing related works in Section 6, we conclude in Section 7.

2. Timed Automata

We consider real-time systems that contain discrete variables and clocks. Dis-
crete variables can be updated by the system. Each clock has a real value and
increases at a uniform rate. Initially, each clock is set to zero, and can be reset at
any time. Resetting clocks, like update variables, does not induce any cost in the ab-
straction. Hence, an update or a reset can occur between any two non-simultaneous
actions. Such a real-time system can be modelled as a timed automata proposed
in [1]. Formally speaking, a timed automata is a tuple of 〈D, X,A, I, E〉, where:

• D is a finite set of discrete variables. Each d ∈ D has a predefined finite
domain denoted by dom (d);

• X is a finite set of clock variables;
• A is an action set with each τ ∈ A consisting of a finite series of assignments

to discrete variables;
• I specifies an initial condition; and
• E ⊆ Φ(D, X)×A×2X is a finite set of edges. An edge e : 〈ϕ, τ, λ〉 ∈ E consists

of ϕ ∈ Φ(D,X) a triggering condition which specifies when the transition can
be fired, τ ∈ A the action that updates the values of discrete variables, and
λ ⊆ X the set of reset clocks.

For a set D of discrete variables and a set X of clock variables, the set of
constraints Φ (D,X) contains constraints ϕ defined by ϕ := ff |d = q|x/c|¬ϕ|ϕ1∨ϕ2,
where d ∈ D and q ∈ dom (d), x ∈ X, / ∈ {<,=,≤}, and c ∈ N is a non-negative
integer. We use the following abbreviations: tt ≡ ¬ff , ϕ1 ∧ϕ2 ≡ ¬ ((¬ϕ1) ∨ (¬ϕ2))
and ϕ1 → ϕ2 ≡ ¬ϕ1∨ϕ2. A discrete interpretation s : D 7→ N assigns each discrete
variable a non-negative integer. A clock interpretation ν : X 7→ R≥0 assigns a non-
negative real value to each clock. We say that an interpretation pair (s,ν) satisfies
constraint ϕ if and only if ϕ is true according to values given by (s,ν).

For any action τ , s [τ ] denotes the discrete interpretation after applying τ ∈ A

to s. For δ ∈ R≥0, ν + δ denotes the clock interpretation that maps each clock x to
the value ν (x) + δ. For λ ⊆ X, ν [λ] denotes the clock interpretation that assigns
0 to each x ∈ λ and agrees with ν over the rest of the clocks. The timed automata
〈D, X,A, I, E〉 defines a transition system 〈Q,→〉, where Q is the set of states and
→ is the transition relation. A state (s, ν) consists of s, a discrete interpretation
of D and ν, a clock interpretation of X. We say (s, ν) is an initial state, where s

maps discrete variables to values that satisfy I and ν (x) = 0 for all x ∈ X. The
transition relation → is defined by δ→ ∪ e→, where:

• For a state (s, ν) and a δ ∈ R+, (s, ν) δ→ (s, ν + δ).
• For a state (s, ν) and ∃e : 〈ϕ, τ, λ〉 ∈ E such that (s, ν) satisfies ϕ, (s, ν) e→

(s [τ ] , ν [λ]).
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A run r : (s0, ν0) → (s1, ν1) → · · · of a timed automata is an infinite sequence
of states and transitions, where for all i ∈ N, (si, νi) ∈ Q. An arbitrary interleaving
of the two transition types is permissible. A state (s′, ν′) is reachable from (s, ν) if
it belongs to a run starting at (s, ν). Let Run (s, ν) denote the set of runs starting
at (s, ν). We define Reach (s, ν) : {(s′, ν′) |∃r : (s, ν) → (s1, ν1) → · · · ∈ Run(s, ν)
and i ∈ N, (si, νi) = (s′, ν′)} as the set of states reachable from (s, ν).

3. Boolean Encoding of Region Automata

3.1. Region

System states change as time progresses, but some changed states are not dis-
tinguishable by constraints. Based on this observation, Alur et al. [1, 2] defined the
equivalence of clock interpretations and proposed region graphs for the verification
of timed automata. To be self-contained, we give the formal definition of equiva-
lence class in Definition 1. For each x ∈ X , let cx be the largest constant that
x is compared to within any triggering condition. For t ∈ R≥0, let btc denote t’s
integral part, and frac(t) = t− btc denote t’s fraction.
Definition 1 For clock interpretations ν and ν′ in a timed automata, we say ν ∼= ν′

if and only if the following conditions hold.

• for each x ∈ X, either bν(x)c = bν′(x)c, or ν(x) > cx and ν′(x) > cx,
• for each x ∈ X, frac(ν(x)) = 0 if and only if frac(ν′(x)) = 0,
• for each pair (x1, x2) such that ν(x1) ≤ cx1 and ν(x2) ≤ cx2 , frac(ν(x1)) ≤
frac(ν(x2)) if and only if frac(ν′(x1)) ≤ frac(ν′(x2)).

It can be shown that ∼= defines an equivalent relation over clock interpreta-
tions. We use [ν] to denote the equivalence class that ν belongs to. Given a clock
interpretation ν, we define νd : X 7→ N, a discrete interpretation of X, as follows.

νd (x) =





2 bν(x)c , if bν(x)c ≤ cx ∧ frac (ν(x)) = 0
2 bν(x)c+ 1, if bν(x)c ≤ cx ∧ frac (ν(x)) 6= 0
2cx + 1, otherwise.

(1)

We also define three predicates: E, O, M to determine whether the discrete
value of a clock is even, odd or its maximum.
Definition 2 Given a discrete interpretation νd, for some clock x ∈ X:

• E(νd(x)) is true if and only if νd(x) is even,
• O(νd(x)) is true if and only if νd(x) is odd and νd(x) < 2cx + 1.
• M(νd(x)) is true if and only if νd(x) = 2cx + 1.

To indicate the fraction ordering of ν, we define νγ : X ×X 7→ {≺,',Â} as a
discrete interpretation over clock pairs.

νγ (x1, x2) =




≺, if frac (ν (x1)) < frac (ν (x2))
Â, if frac (ν (x1)) > frac (ν (x2))
≈, if frac (ν (x1)) = frac (ν (x2))

(2)
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Lemma 1 shows the mapping [ν] 7→ (νd, νγ) is indeed well-defined.
Lemma 1 ν ∼= ν′ ↔ (νd, νγ) = (ν′d, ν

′
γ).

Proof. (⇒) Assume ν ∼= ν′. For each x ∈ X, if ν(x) > cx(implies that ν′(x) >

cx), νd(x) = ν′d(x) = 2cx + 1; if bν(x)c = bν′(x)c, since frac(ν(x)) = 0 iff
frac(ν′(x)) = 0, νd(x) = ν′d(x) = 2bν(x)c(frac(ν(x)) = 0) or νd(x) = ν′d(x) =
2bν(x)c + 1(frac(ν(x)) 6= 0). In all cases, νd(x) = ν′d(x). To prove νγ = ν′γ , note
that for any pair (x1, x2) ∈ νγ ,

• νγ(x1, x2) =≈ iff frac(ν(x1)) ≤ frac(ν(x2)) and frac(ν(x2)) ≤ frac(ν(x1)),
• νγ(x1, x2) =≺ iff frac(ν(x1)) ≤ frac(ν(x2)) and ¬(frac(ν(x2)) ≤ frac(ν(x1))),
• νγ(x1, x2) =Â iff frac(ν(x2)) ≤ frac(ν(x1)) and ¬(frac(ν(x1)) ≤ frac(ν(x2))).

Since frac(ν(x1)) ≤ frac(ν(x2)) if and only if frac(ν′(x1)) ≤ frac(ν′(x2)), it
follows that νγ(x1, x2) = ν′γ(x1, x2).

(⇐) Assume (νd, νγ) = (ν′d, ν
′
γ). For each x ∈ X, if νd(x) = ν′d(x) = 2cx+1, both

ν(x) and ν′(x) are greater than cx; if νd(x) = ν′d(x) < 2cx + 1,bν(x)c = bν′(x)c =
bνd(x)

2 c. The first condition of Definition 1 holds. Since νd(x) = ν′d(x) implies that
E(νd(x)) iff E(ν′d(x)), it follows that frac(ν(x)) = 0 iff frac(ν′(x)) = 0. Finally,
as we had mentioned, for any pair (x1, x2) ∈ νγ , each value of νγ(x1, x2) exactly
specifies the fraction relation between x1 and x2. Then, νγ(x1, x2) = ν′γ(x1, x2)
implies that frac(ν(x1)) ≤ frac(ν(x2)) iff frac(ν′(x1)) ≤ frac(ν′(x2)). 2

Lemma 1 shows that (νd, νγ) exactly represents [ν], while νd and νγ are defined in
(1) and (2) respectively. For example, the equivalence class 1 < x1 < x2 < 2∧x3 = 1
is represented by the pair (νd, νγ), where νd (x1) = 3,νd (x2) = 3,νd (x3) = 2, and
νγ (x1, x2) =≺. Accordingly, a region, (s, [ν]), can be precisely represented as an
interpretation state, (s, νd, νγ), where three discrete interpretations s : D 7→ N,
νd : X 7→ N and νγ : X ×X 7→ {≺,Â,≈} are involved.

3.2. Successor

Following the work of Alur et al. [1], we give the definition of successor, which
captures how system states move from one region into its subsequent region due to
time passage.
Definition 3 Let α, β be two distinct regions of a timed automata. β is the suc-
cessor of α, written as succ(α), if and only if for each (s, ν) ∈ α, there exists a
δ ∈ R+such that (s, ν + δ) ∈ β, and ∀0 ≤ δ′ < δ, (s, ν + δ′) ∈ α ∪ β. For an
out-of-bound region α, i.e., ∀(s, ν) ∈ α, ∀x ∈ X, ν(x) > cx, its successor relation is
defined as succ(α) = α.

Before answering how to encode successor relation for general interpretation
states, we first focus on 2-clock systems. Figure 3.2 shows all configurations found
in a 2-clock system. Respective discrete interpretation conditions of current and
next states are shown in Table 1.

Accordingly, we can define a 2-clock formula φ
(1,2)
2 for the successor relation of

a 2-clock system as follows.

φ
(1,2)
2 ≡

∨

i=1..11

ψ
(1,2)
i ∧ ψ

′(1,2)
i (3)
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Fig. 1. Region types in a 2-clock system (X = {x1, x2}).

Table 1. Successor conditions in a two-clock system(X = {x1, x2})
i current state:ψ

(1,2)
i

next state:ψ
′(1,2)
i

1 E(νd(x1)) ∧ E(νd(x2)) ν′d(x1) = νd(x1) + 1 ∧ ν′d(x2) = νd(x2) + 1
∧ν′γ(x1, x2) =≈

2 E(νd(x1)) ∧O(νd(x2)) ν′d(x1) = νd(x1) + 1 ∧ ν′d(x2) = νd(x2)
∧ν′γ(x1, x2) =≺

3 E(νd(x1)) ∧M(νd(x2)) ν′d(x1) = νd(x1) + 1 ∧ ν′d(x2) = νd(x2)
4 O(νd(x1)) ∧ E(νd(x2)) ν′d(x1) = νd(x1) ∧ ν′d(x2) = νd(x2) + 1

∧ν′γ(x1, x2) =Â
5 O(νd(x1)) ∧O(νd(x2)) ∧ νγ(x1, x2) =≺ ν′d(x1) = νd(x1) ∧ ν′d(x2) = νd(x2) + 1
6 O(νd(x1)) ∧O(νd(x2)) ∧ νγ(x1, x2) =≈ ν′d(x1) = νd(x1) + 1 ∧ ν′d(x2) = νd(x2) + 1
7 O(νd(x1)) ∧O(νd(x2)) ∧ νγ(x1, x2) =Â ν′d(x1) = νd(x1) + 1 ∧ ν′d(x2) = νd(x2)
8 O(νd(x1)) ∧M(νd(x2)) ν′d(x1) = νd(x1) + 1 ∧ ν′d(x2) = νd(x2)
9 M(νd(x1)) ∧ E(νd(x2)) ν′d(x1) = νd(x1) ∧ ν′d(x2) = νd(x2) + 1
10 M(νd(x1)) ∧O(νd(x2)) ν′d(x1) = νd(x1) ∧ ν′d(x2) = νd(x2) + 1
11 M(νd(x1)) ∧M(νd(x2)) ν′d(x1) = νd(x1) ∧ ν′d(x2) = νd(x2)

Let νd, νγ |= φ denote that φ is true when variables in φ are assigned to values
given by νd, νγ . Lemma 3 shows the correctness of the discretization.
Lemma 2 Given a 2-clock timed automata with X = {x1, x2} and a region α

represented by (s, νd, νγ) such that νd, νγ |= ψ
(1,2)
i (for some i = 1 . . . 11), succ(α) is

represented by (s, ν′d, ν
′
γ) if and only if νd, νγ , ν′d, ν

′
γ |= ψ

′(1,2)
i .

Proof. The proof is straightforward since in a 2-clock system, the successor of a
region is exactly the first region it encounters in the northeast direction. 2

Lemma 3 Let α, β, represented by (s, νd, νγ) and (s′, ν′d, ν
′
γ) respectively, be two

regions of a 2-clock timed automata with X = {x1, x2}, β = succ(α) if and only if
s = s′ and νd, νγ , ν′d, ν

′
γ |= φ

(1,2)
2 .

Proof. The correctness is shown by the following observations of Table 1.

• All cases are considered, i.e.,
∨

i=1...11 ψ
(1,2)
i = 1.

• Each case presents a unique type, i.e.,
∨

i 6=j ψ
(1,2)
i ∧ ψ

(1,2)
j = 0.

• According to Lemma 2, the condition of the current equivalence class and its
successor in the ith case is exactly specified by ψ

(1,2)
i ∧ ψ

′(1,2)
i .

2

We derive a general formula for n-clock systems by intersecting 2-clock formulas,
instead of inspecting all clock values in one time. Our initial attempt detailed
intersecting φ2 of each distinct clock pair, i.e.,

∧
xi,xj∈X,i<j φ

(i,j)
2 . Apparently such

an intuitive conjunction easily raises contradictions. Come back to the previous
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example, where a region 1 < x1 < x2 < 2 ∧ x3 = 1 is represented by νd(x1) =
3 ∧ νd(x2) = 3 ∧ νd(x3) = 2 ∧ νγ(x1, x2) =≺. The conjunction of 2-clock formulas,
i.e. φ

(1,2)
2 ∧ φ

(1,3)
2 ∧ φ

(2,3)
2 , implies

(ν′d(x1) = 3 ∧ ν′d(x2) = 4) //(x1, x2)
∧ (ν′d(x1) = 3 ∧ ν′d(x3) = 3 ∧ ν′γ(x1, x3) =Â) //(x1, x3)
∧ (ν′d(x2) = 3 ∧ ν′d(x3) = 3 ∧ ν′γ(x2, x3) =Â). //(x2, x3)

Obviously, ν′d(x2) = 4∧ ν′d(x2) = 3 makes the predicate evaluated as false. This
is because that we require x2 to increase when compared to x1 but require it to
remain the same value(stutter) when compared to x3. We call clocks that raise
contradictions contradictory clocks. Two important observations help us prevent
these contradictions.

• All contradictory clocks belong to the set:{x|O(νd(x))}.
• Contradictions should be solved by either enforcing clocks in {x|E(νd(x))} to

increase, or enforcing clocks having the largest fraction part to increase if no
clocks have even values.

Instead of enforcing clocks increasing, our solution is adding an auxiliary case
to allow contradictory clocks stuttering.

Table 2. Stuttering conditions for xi and xj

current state(ψs) next state(ψ′s)
s O(νd(xi)) ∧O(νd(xj)) ν′d(xi) = νd(xi) ∧ ν′d(xj) = νd(xj) ∧ ν′γ(xi, xj) = νγ(xi, xj)

By disjoining stuttering conditions defined in Table 2, we define (i,j)-clock for-
mula for n-clock systems as follows.

φ(i,j)
n ≡ φ

(i,j)
2 ∨ (ψ(i,j)

s ∧ ψ′(i,j)s ) (4)

Recall the previous example, the conjunction of all (i,j)-clock formulas implies
(
(ν′d(x1) = 3 ∧ ν′d(x2) = 4) ∨ (ν′d(x1) = 3 ∧ ν′d(x2) = 3 ∧ ν′γ(x1, x2) =≺)

)
∧ (ν′d(x1) = 3 ∧ ν′d(x3) = 3 ∧ ν′γ(x1, x3) =Â)
∧ (ν′d(x2) = 3 ∧ ν′d(x3) = 3 ∧ ν′γ(x2, x3) =Â).

The predicate is equal to ν′d(x1) = 3 ∧ ν′d(x2) = 3 ∧ ν′d(x3) = 3 ∧ ν′γ(x1, x2) =≺
∧ν′γ(x1, x3) =Â ∧ν′γ(x2, x3) =Â. This is the interpretation state of 1 < x3 < x1 <

x2 < 2, which is exact the successor of 1 < x1 < x2 < 2 ∧ x3 = 1.
Adding auxiliary stuttering cases helps us prevent contradictions, but it may

induce distort behavior such as all clocks stutter. This may happen only when
∀x ∈ X, O(νd(x)) holds. We prevent all pairs stuttering by adding the formula
φnzeno as follows.

φnzeno ≡ ¬

 ∧

1≤i<j≤n

ψ(i,j)
s ∧ ψ′(i,j)s


 (5)

Finally, the general successor formula for n-clock systems is given in Equation 6.
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φn ≡

 ∧

1≤i<j≤n

φ(i,j)
n


 ∧ φnzeno (6)

Lemma 4 Let α, β, represented by (s, νd, νγ) and (s′, ν′d, ν
′
γ) respectively, be two

regions of an n-clock timed automata, β = succ(α) if and only if νd, νγ , ν′d, ν
′
γ |= φn.

Proof. (⇒) It is easy to see that β = succ(α) implies that, for each pair of
clocks (xi, xj), φ

(i,j)
n is evaluated to true (according to Lemma 3), and since α, β

are distinct (according to Definition 3), not all stuttering cases are allowed, i.e.
νd, νγ , ν′d, ν

′
γ |= φnzeno.

(⇐) Assume νd, νγ , ν′d, ν
′
γ |= φn. We prove that all cases satisfy Definition 3.

Let χ = {x|x ∈ X, ν′d(x) = νd(x) + 1.}.
(i) ∀x ∈ X, M(νd(x)): In this case, (s, νd, νγ) is an out-of-bound region. For

xi, xj ∈ X, νd, νγ |= ψ
(i,j)
11 , which follows that νd = ν′d, i.e., α = β = succ(α).

(ii) ∃x ∈ X, E(νd(x)): We assert that χ = {x|x ∈ X,E(νd(x))}. It can be seen
as follows. We first prove that ∀x ∈ χ,E(νd(x)). Assume that there exists
xi ∈ χ and O(νd(xi)). Then for any xj ∈ {x|x ∈ X, E(νd(x))}, ψ

(i,j)
4 ∧ ψ

′(i,j)
4

is violated. This raises a contradiction. We then prove that ∀x ∈ X and
E(νd(x)), x ∈ χ. Assume that there exists xi ∈ {x|x ∈ X, E(νd(x))} but
xi 6∈ χ. Then we can find some xj ∈ X, such that a) if E(xj), ψ

(i,j)
1 ∧ψ

′(i,j)
1 is

violated, b)if O(xj), ψ
(i,j)
2 ∧ ψ

′(i,j)
2 is violated, and c)if M(xj), ψ

(i,j)
3 ∧ ψ

′(i,j)
3

is violated. In all cases, the assumption raises a contradiction. Since only
clocks in {x|x ∈ X, E(νd(x))} are progressed, for any ν ∈ α and ν′ ∈ β, we
can choose a δ such that 0 < δ < 1 −maxx∈X frac(ν(x)), and ∀0 ≤ δ′ < δ,
ν + δ ∈ (ν′d, ν

′
γ) and ν + δ′ ∈ (νd, νγ) ∪ (ν′d, ν

′
γ).

(iii) ∃x ∈ X, O(νd(x)) and ∀x ∈ X,¬E(νd(x)): We assert that ∀(xi, xj) ∈ νγ ,
(1)νγ(xi, xj) =≈, if xi, xj ∈ χ, (2)νγ(xi, xj) =≺, if xi 6∈ χ and xj ∈ χ,
and (3) νγ(xi, xj) =Â, if xi ∈ χ and xj 6∈ χ. In other words, we assert
that χ = {x|x ∈ X,O(νd(x)), and x has the largest fraction}. Again, we first
prove that ∀x ∈ χ, x has the largest fraction. Assume that there exists
xi ∈ χ, and xj ∈ {x|x ∈ X,O(νd(x))} such that xj has a larger fraction
than xi (i.e., νγ(xi, xj) =≺). It’s easy to see that ψ

(i,j)
5 ∧ ψ

′(i,j)
5 is violated

and a contradiction arises. We then prove that all clocks having the largest
fraction are in χ. Assume that there exists xi ∈ {x|x ∈ X, O(νd(x))}, such
that xi has the largest fraction but xi 6∈ χ. Then we can find some xj ∈ X,
such that a) if O(xj) and νγ =≈, ψ

(i,j)
6 ∧ ψ

′(i,j)
6 is violated, b)if O(xj) and

νγ =Â, ψ
(i,j)
7 ∧ ψ

′(i,j)
7 is violated and c)if M(xj), ψ

(i,j)
8 ∧ ψ

′(i,j)
8 is violated.

Since ∀x ∈ X,¬E(νd(x)), in all cases, the assumption raises a contradiction.
Finally, since all and only clocks having the largest fraction are progressed, for
any ν ∈ α and ν′ ∈ β, we can choose a δ such that δ = 1− frac(ν(x)), x ∈ χ,
and for all 0 ≤ δ′ < δ, ν + δ ∈ (ν′d, ν

′
γ) and ν + δ′ ∈ (νd, νγ) ∪ (ν′d, ν

′
γ).

2
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3.3. Discrete Transition

In this sub-section, we describe the conditions of interpretation states to trigger
an edge. Since we use discrete intervals to represent clock values, the first step is
to transform the triggering condition ϕ into ϕd by replacing x ¢ c with νd(x) ¢ 2c,
for all x ∈ X. Actions of transitions include a) applying an assignment sequence
τ , and b) resetting a set of clocks λ. Let νd[λ] denote the discrete interpretation
that a) assigns 0 to each x ∈ λ and b) agrees with νd over the rest of the clocks.
And let νγ [λ] denote the discrete interpretation that a) agrees with νγ over clocks
in {x|O(νd[λ](x))}, and b) discards other pairs. Given an edge e : 〈ϕ, τ, λ〉, we can
define ψ(e), the conditions of interpretation states to trigger e, as Equation 7. And
then, given a timed automata, we define its discrete transition formula φtran as
Equation 8.

ψ(e) ≡ ϕd ∧ s′ = s[τ ] ∧ ν′d = νd[λ] ∧ ν′γ = νγ [λ] (7)

φtran ≡
∨

e∈E

ψ(e) (8)

Lemma 5 ν |= ϕ ↔ νd |= ϕd.
Proof. The correctness comes from that ∀x ∈ {x|x ∈ X, x ¢ c ∈ ϕ}, ν(x) ¢ c ↔
νd(x) ¢ 2c. (⇒). Since c ∈ N, this can be seen that a) if ¢ is =, ν(x) = c implies
that νd(x) = 2ν(x) = 2c, b) if ¢ is <, ν(x) < c implies that bν(x)c ≤ c − 1. Then
either νd(x) = 2bν(x)c ≤ 2c− 2 < 2c or νd(x) = 2bν(x)c+ 1 ≤ 2c− 1 < 2c, and c)
if ¢ is ≤, this can be proved via a) and b). (⇐) The proof of is similar. 2

Lemma 6 Let α, β, represented by (s, νd, νγ) and (s′, ν′d, ν
′
γ) respectively, be two

regions of an n-clock timed automata, for any state (s, ν) ∈ α and (s′, ν′) ∈ β,
(s, ν) e→ (s′, ν′) if and only if s, νd, νγ , s′, ν′d, ν

′
γ |= ψtran.

Proof. It follows Lemma 5 and the correctness of discrete encodings. 2

3.4. Interpretation Graph

The transition system of a timed automata is represented by a finite discrete in-
terpretation graph

〈
Q∼=,

∼=→
〉
, where Q∼= = {(s, νd, νγ)|∃(s, ν) ∈ Q, (s, ν) ∈ (s, νd, νγ)}

and
∼=→ is defined by

δ∼=→ ∪ e∼=→.

• Given a state (s, νd, νγ), (s, νd, νγ)
δ∼=→ (

s′, ν′d, ν
′
γ

)
if and only if

s, νd, νγ , s′, ν′d, ν
′
γ |= φtime.

• Given a state (s, νd, νγ), (s, νd, νγ)
e∼=→ (

s′, ν′d, ν
′
γ

)
if and only if

s, νd, νγ , s′, ν′d, ν
′
γ |= φtran.

φtime ≡ s = s′ ∧ φn (9)

φtime (Equation 9) defines the successor relation formula for capturing a region
moving into a subsequent region due to time passage, while φtran defines the discrete
transition formula for triggering some edge using discrete interpretations.
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Note that (s, νd, νγ) is reachable from (s′, ν′d, ν
′
γ) in one step, i.e., (s, νd, νγ)

δ∼=→
(s′, ν′d, ν

′
γ), only when s, νd, νγ , s′, ν′d, ν

′
γ |= φtime ∨ φtran. Generally, we define that

(s, νd, νγ) is reachable from (s′, ν′d, ν
′
γ) by exactly using k steps (k>0) in Definition 4,

and a set of reachable states within k steps can then be defined as Definition 5.

Definition 4 (s, νd, νγ)
δk∼=→ (s′, ν′d, ν

′
γ) if and only if, ∀0 ≤ i < k, there exists

(si, νi
d, ν

i
γ), such that a) (s, νd, νγ) = (s0, ν0

d , ν0
γ), b)(s′, ν′d, ν

′
γ) = (sk, νk

d , νk
γ ), and c)

si, νi
d, ν

i
γ , si+1, νi+1

d , νi+1
γ |= φtime ∨ φtran.

Definition 5 Reach((s, νd, νγ), k) = {(s, νd, νγ)}∪{(s′, ν′d, ν′γ)|∃i, 0 < i ≤ k, (s, νd, νγ)
δi∼=→ (s′, ν′d, ν

′
γ)}

Lemma 7 Given a timed automata and two states (s, ν) and (s′, ν′), (s′, ν′) ∈
Reach(s, ν) if and only if ∃k ∈ N, (s, ν) ∈ (s, νd, νγ) and (s′, ν′) ∈ Reach((s, νd, νγ), k).

Proof. Since regions are finite, there exists an intrinsic bound, i.e. the number of
regions, to explore all reachable regions. 2

Lemma 7 shows that it is sound and complete to use interpretation graph doing
reachability analysis of real-time systems. We propose three algorithms to achieve
this in Section 4.

3.5. Boolean Encoding

One set of our state variables B is defined in Equation 10, in which a set of
Boolean variables is used to encode interpretation states. Given each discrete vari-
able’s domain and each clock’s largest constraint value, the number of state vari-
ables, i.e. |B|, equals

∑ dlg |dom (d)|e +
∑ dlg (2cx + 2)e + |X| |X − 1|. We than

adopt standard Boolean encoding method. For example, given a timed automata
with one discrete variable d : {D1, D2} and two clocks x1 : cx1 = 1, x2 : cx2 = 1, a
region d = D1∧0 < x1 < x2 < 1 would be encoded as bd

0∧b1
1∧b1

0∧b2
1∧b2

0∧b12
1 ∧b12

0 .

B =

{
bd
k|d ∈ D, 0 ≤ k < dlg |dom (d)|e} ∪{

bi
k|xi ∈ X, 0 ≤ k < dlg (2cx + 2)e} ∪{

bij
k |xi, xj ∈ X, i < j, k ∈ {0, 1}

} (10)

To perform BMC, we add a copy of B to the set of state variables at each itera-
tion. Finally, we build a circuit representation to translate a bit-vector logic (used
to build the equation for a concrete transition relation) into conjunctive normal
form (CNF).

4. Reachability Analysis

In this section, we describe how we deal with the reachability analysis by solving
the satisfiability of Boolean formulas. We first propose a bounded algorithm, and
then use loop-free constraints to release bounds. In the last of this section, we briefly
induce inductive methods and blend windowed induction [23] in our algorithm.
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BoundedFwdReach(A, R, k)
var i:0..k;

begin
i:=0; F:=I(B0);
loop forever

if (i=k) return “unreachable within k steps”;
if (SAT(F∧R(Bi))) return“reachable”;
F:=F∧¬R(Bi)∧(Bi → Bi+1);
i:=i+1;

end.

Figure 2: Bounded Forward Reachability Analysis. I(B0) indicates the circuit rep-
resentation of A’s initial states, R(Bi) indicates the circuit representation of risk
states over Bi, and (Bi → Bi+1) indicates the circuit representation of φtime∨φtran

over Bi and Bi+1.

4.1. Bounded Reachability Analysis

In Section 3.4, we have shown the correctness of using bounded interpretation
graph to do reachability analysis of real-time systems. A brief bounded algorithm is
given in Figure 2. Given a timed automata A, a set of risk states R, and an integer
bound (k : k ∈ N), we determine whether R is reached within k steps. This can
be done by solving the unfolding formulas iteratively until either the SAT solver
returns a truth assignment, or the procedure had repeated k times. By conjoining
the formula with the negation of R(Bi−1) at the ith step, each intermediate result is
saved for use in later iterations, and as a result, speeding up the decision procedure
of the SAT-solver. Moreover, in Section 4.3, we will show that this extra constraint
also helps us construct inductive proofs.

If some state in R is reachable at the ith step, the formula will be satisfied, and
a truth assignment over

⋃
Bi will be returned. We then generate a counterexample

by interpreting state variables’ values. On the other hand, the formula will keep on
expanding while no states in R are reached. In that case, the procedure terminates
while either having repeated k times, or exhausting system resources.
Theorem 1 BoundedFwdReach(A, R, k) is sound and complete when k is not less
than the number of regions in A.

Given a timed automata having n regions, we require k ≥ n in Theorem 1.
However, since n is exponential to both a) the number of clocks and b) each clock’s
largest constraint constant, the threshold is usually prohibitively expensive.

4.2. Loop-free Reachability Analysis

Choosing the number of regions as the reachability diameter reflects the worst
case. A better option might be the steps of the longest shortest path. However,
to calculate it in advance is usually infeasible. To conquer this hurdle, we adopt
loop-free termination. A loop-free algorithm is proposed in Figure 3. By inserting
loop-free constrains, i.e.

∧
j<i Bi 6= Bj at the jth iteration, we enforce SAT-solvers

11



LoopFreeReach(A, R)
begin

i:=0; F:=I(B0);
loop forever

if (SAT(F∧R(Bi))) return“reachable”;
F:=F∧¬R(Bi)∧(Bi → Bi+1)∧(

∧
j<i Bi 6= Bj);

if (not SAT(F) return“unreachable by loop-free”;
i:=i+1;

end.

Figure 3: Loopfree Reachability Analysis.

searching distinct states. Once there is no solution, i.e., no distinct state found
in the next step, the procedure terminates and R is unreachable. Since all states
are distinct, a loop-free path is exactly a shortest path, and hence, if we concern
complete verification, there is no need to determine the bound ahead.

The loop-free restrictions help us find a shortest path once a bug exists. Once
no bugs exist, the procedure will cover the steps of the longest shortest path. This
algorithm proves correctness with considering the diameter of reachability graph.

4.3. Inductive Reachability Analysis

Although SAT-based model checking is very useful for bug hunting [6, 10, 28],
its ability to prove properties is often criticized. The inductive method offers SAT-
based model checking an opportunity to prove safety properties efficiently. The basic
idea, like mathematical induction, is to construct induction proof of the property
for all steps by assuming the property on previous steps.

4.3.1. Induction

Here, we briefly illustrate the technique. Interested readers are referred to [7,
18, 23] for further discussion. Let q0 ∈ Q where q0 is the initial state and P (•) a
predicate over states in Q. We would like to prove that for any state q reachable
from q0, P (q) holds by induction. Firstly, we verify if P (q0) holds. If not, an error
is reported for q0. If P (q0) holds, we check whether P (q) ∧ (q → q′) ∧ ¬P (q′) can
be satisfied, i.e. whether it is possible to reach a state q′ that does not satisfy P (•)
from any state q satisfying P (•). If it is impossible, we know that P (•) must hold
for any state in Reach(q0). To see this, recall that P (q0) holds. We argue that
all successors of q0 must satisfy P (•). If not, P (q) ∧ (q → q′) ∧ ¬P (q′) must be
satisfiable for some successor q′, which is a contradiction. Similarly, we can prove
all states reachable from q0 in two steps must satisfy P (•), and so on. Hence we
conclude all reachable states must satisfy P (•). In the example, the depth of the
inductive step is one. We call it simple induction. However, the capability of simple
induction is very limited. Just like mathematical induction, it may be necessary
to assume several previous steps in order to prove the property. This is regarded
as windowed induction, i.e., induction with arbitrary depths. Unfortunately, the
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IndFwdReach(A, R)
begin

i:=0; F:=I(B0);
loop forever

if (not SAT(F\I∧R(Bi)) return“unreachable by induction”;
if (SAT(F∧R(Bi))) return“reachable”;
F:=F∧¬R(Bi)∧(Bi → Bi+1)∧(

∧
j<i Bi 6= Bj);

if (not SAT(F) return“unreachable by loop-free”;
i:=i+1;

end.

Figure 4: Inductive Forward Reachability Analysis

inductive technique cannot prove all safety properties, even with arbitrary depths.
In [7, 18, 23], various mechanisms are proposed to make induction complete. Here,
we use loop-free induction. In loop-free induction, additional constraints are applied
to prevent loops. Consider a self-loop transition, followed by a state that does not
satisfy P (•). The problematic state can always be reached by an inductive step of
arbitrary depth. It suffices to consider a short path leading to the problematic state
and still prove the soundness and completeness of the induction. By requiring all
previous states to be distinct, loop-free induction eliminates unsubstantial paths.
Based on the discretization scheme in Section 3, we can deploy loop-free induction
to speed up the verification of safety properties.

4.3.2. Inductive Reachability Analysis

Since the number of regions is exponential to the number of clocks, as well
as each clock’s largest constant, the threshold is usually prohibitively high. In
IndFwdReach(), we combine loop-free induction with BoundFwdReach() and obtain
a complete inductive algorithm for forward reachability analysis. Note that, in
Figure 4, we denote the released formula as F \ I, i.e. removing the clauses of I

from F . An extra check for whether an induction proof is constructed is used to
determine completeness in early steps. We regard P (•) as ¬R(•), i.e. the negation
of the risk condition. Once the induction succeeds (a proof is constructed), we can
conclude that all reachable states must satisfy ¬R(•), which implies that the risk
state is unreachable.

One limitation of this inductive method is that we can not predict in which
step an induction proof is constructed successfully. Although regions are finite
and we can guarantee “success” when the property is satisfied, in the worst case,
the inductive method may not determine termination ahead. However, when the
inductive method is effective, it can verify the given safety property within a handful
of steps, regardless of the diameter of the reachability graph. In Section 5.2, we
conduct an experiment to show the effectiveness of induction.

5. Experiment
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We have implemented our algorithms in a prototype xBMC. The SAT solver
used in the prototype is zChaff [7]. In this section, we compare the performance
of xBMC with other formal analysis tools in two case studies: Fischer’s mutual
exclusion protocol and Cornell Single Sign-On Services (CorSSO) [12].

The model checking tools used in the following experiments are Kronos [9],
RED [25], Uppaal [14] and SAL 2 (infBMC) [19]. Uppaal provides a friendly inter-
face and is able to verify safety and bounded liveness properties of real-time systems.
Kronos and RED 4.0, additionally, support full TCTL verification. Among these
three tools, they essentially use the conventional symbolic model checking algorithm
with different symbolic representations. Kronos and Uppaal use Difference Bounded
Matrices (DBM’s) [13] to represent system configurations. RED, on the other hand,
uses Clock Restriction Diagrms (CRD’s) [25].

In contrast to the aforementioned conventional model checkers, infBMC is a
bounded model checker included in SAL 2, a suit of tools developed by the SRI’s
Symbolic Analysis Laboratory for analyzing state machines. InfBMC supports ver-
ification of infinite state systems using a special decision procedure [17, 18] that
solves the satisfiability of combinations of linear real and integer arithmetics.

5.1. Fisher’s Mutual Exclusion

We first verify Fischer’s mutual exclusion protocol. In our model, there are n

timed automata in the protocol. Each timed automata modeling a process (Fig-
ure 5.1). Mutual exclusion property is known to be unsatisfied when A < B. The
largest constraint for the local clock in each process is adjusted by increasing the
value of B and keeping A = 1.

Fig. 5. A Process of Fischer’s Mutual Exclusion Protocol.

When cx = 2 (Table 3), Kronos fails to construct the product automata of
the system while verifying 6 processes. InfBMC reports all counterexamples in 10
iterations, but its internal decision procedure crashed while verifying 6 processes.
Uppaal runs efficiently until the number of processes reached 14. RED has the
best capacity among them. It can check up to 15 processes. XBMC is capable
of reporting all counterexamples in 14 iterations and verifying up to 22 processes.
In Table 4, xBMC can only handle up to 13 processes while performance among
the other tools is not significantly affected by increasing constraint constants. The
result reveals a deficiency of our method, the sensitivity of constraint constants.
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Table 3. Detecting mutual exclusion violations of Fischer’s protocol with cx =
2. ”O/M” indicates that the model checker ran out of memory.

#p Kronos 2.5.2 Uppaal 3.5.2 RED 5.0 SAL 2.1(infBMC) xBMC
4 0.12s 0.03s 0.57s 86.98s 3.28s
5 0.52s 0.03s 1.95s 420.98s 10.49s
6 O/M 0.06s 5.70s O/M 14.66s
7 0.16s 14.47s 16.83s
9 1.17s 75.5s 46.90s
11 5.08s 321.04s 129.46s
13 12.21s 1129.18s 111.59s
14 O/M 2005.23s 237.89s
15 4234.41s 531.73s
16 O/M 453.83s
17 414.29s
19 528.66s
21 641.27s
22 587.01s
23 O/M

Table 4. Detecting mutual exclusion violations of Fischer’s protocol with cx =
4000.
#p Kronos 2.5.2 Uppaal 3.5.2 RED 5.0 SAL 2.1(infBMC) xBMC
4 0.11s 0.02s 0.56s 95.45s 20.31s
5 O/M 0.04s 1.95s 275.82s 37.32s
6 0.06s 4.82s O/M 47.63s
7 0.17s 12.90s 47.04s
9 1.21s 74.31s 91.35s
11 9.35s 353.61s 200.84s
13 O/M 1345.08s 447.39s
14 2471.07s O/M
15 4238.34s
16 O/M

5.2. Cornell Single Sign-On Service

Cornell Single Sign-On (CorSSO) [12] is a distributed service for network au-
thentication. It delegates client identity checking to multiple servers by threshold
cryptography. In CorSSO, there are three kinds of principles, namely, authenti-
cation servers, application servers and clients. For a client to access the services
provided by an application server, it has to identify itself by the authentication
policy specified by the application server. The authentication policy consists of a
list of sub-policies each specifying a set of authentication servers. A client is allowed
to access the application server if it has complied with any sub-policy by obtaining
sufficient certificates from the specified authentication servers in time.

Unlike monolithic authentication schemes where the server is usually overloaded
with authentication requests, the authentication policies in CorSSO allow a client to
prove its identity by different criteria. With threshold cryptography, each criterion is
divided into requests to multiple authentication servers. The authentication process
is therefore distributed, so the load of each authentication server is more balanced.

In the experiments, we model client behavior. In the simplified client model
shown in Figure 5.2, a client has only two locations: auth(Authentication Mode)
and access(Access Mode). In auth, it firstly chooses one of the two policies by
setting the value of p non-deterministically. If the ith policy is chosen(p = i), it
needs to collect more than THi certificates from the authentication servers. If it then
obtains sufficient certificates in time, it can move to access.
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To model timing constraints, we use two clock variables x and y. Let us suppose
that it spends at least TA to acquire a certificate. Then one new certificate can be
added until x exceeds TA, and once it collected, x is reset for the next certificate.
Furthermore, all certificates for a sub-policy must be collected within TE, which is
modeled by y. Note that y is reset each time the client choosing a new sub-policy.

1

2

Fig. 6. A Client in CorSSO Protocol. p is the chosen sub-policy, a contains
the number of collected authentications, x and y are the timers for collecting
certificates and expiring sub-policy respectively.

We compare the performance of our model checker with RED. We first verify
the safety property that all clients in access have acquired sufficient certificates
required by the chosen policy. Then we implant a bug by mistyping TH2 for TH1 in
Figure 5.2. This may raise a violation of the safety property if TH1 < TH2. Systems
with 2 to 25 clients are checked by both xBMC and RED.a Both RED and xBMC
report the safety property is satisfied for normal cases, and the artificial bugs are
detected by both tools as expected. The performance results are shown in Table 5.
Instead of exploring all regions in the system, xBMC guarantees the correctness by
induction at the third step. On the other hand, the traditional reachability analysis
in RED has to explore all representatives of equivalent states. Consequently, the
time spent by xBMC is only a fraction of that required by RED. For all cases with
the crafted bug, xBMC reports that the property is falsified at the 12th step. Since
SAT-based BMC is efficient for finding defects in design, the performance of xBMC
is in accord with our expectations. Compared to RED, xBMC spends only 3.33%
time cost to find a counterexample in the system with 11 clients. Note that xBMC
stops once a bug is detected, which means that the performance in bug hunting
may not necessarily depend on system size.

6. Related Work and Discussion

The verification of timed automata by checking satisfiability has been the topic
of several research projects. Most research works encode the evaluation of atomic
constraint to variants of predicate calculus with real variables. Niebert et al. [20]
represented the bounded reachability problem in Boolean variables and numerical
constraints of Pratt’s difference logic. Audemard et al. [4] took a clock as a real
variable, and reduced the bounded verification of timed systems to the satisfiability

aWe did not turn on the symmetry reduction option in RED, even though the system is highly
symmetric.
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Table 5. Verifying CorSSO using RED and xBMC

Correctness Guarantee Bug Hunting
#p RED 5.0 xBMC RED 5.0 xBMC
2 0.25s 0.03s 0.24s 10.00s
3 2.71s 0.03s 2.64s 29.11s
4 18.24s 0.11s 17.50s 50.55s
5 89.25s 0.26s 85.23s 99.81s
6 338.86s 0.41s 316.28s 153.97s
7 1076.37s 0.59s 990.16s 278.96s
8 2960.56s 0.94s 2734.60s 554.69s
9 7169.19s 4.94s 6545.04s 739.46s
10 15950.74s 5.87s 14727.29s 582.09s
11 33201.08s 12.38s 30722.57s 746.34s
12 T/O 17.81s T/O O/M
20 N/A 185.45s N/A O/M
25 N/A 484.78s N/A O/M

of a math-formula with linear mathematical relations having real variables. Moura
et al. [17] also used real variables to represent infinite state systems.

Seshia and Bryant [22]proposed an unbounded, fully symbolic model check-
ing technique by translating Quantified Separation Logic to equivalent quantified
Boolean formula. Based on their method, both SAT and BDD techniques can
be applied to verify real time systems. They used CUDD packages to implement
their tool TMV. It would be interesting to compare zone and region algorithms
in SAT-based model checking but their SAT-based model checker is unavailable to
the public. The closest research to ours is Penczek et al [21, 26]. They also target
region automata but encode them by slicing each time unit into more segments.
Loop-free termination is applied but induction is not incorporated. In Table 6, we
compare their encodings and ours to verify Fisher’s protocol. Obviously, xBMC in-
duces less variables and clauses, no matter whether their enhancement, i.e. forward
projection(BBMC-ARG), is applied.

Table 6. Formulas comparison via detecting mutual exclusion violations of
Fischer’s protocol with A=1 and B=2. BBMC found the witness at the 12th
iteration while xBMC found the witness at the 15th iteration

BBMC-RG BBMC-ARG xBMC
#p #variables #clauses #variables #clauses #variables #clauses
2 5,434 15,197 5,533 15,102 4,502 13,770
5 37,488 110,471 30,851 90,079 22,577 77,948
10 171,229 513,965 126,801 379,470 83,652 300,176
15 358,999 1,081,790 311,501 942,085 182,842 645,297
20 824,374 2,493,481 556,987 1,686,384 321,347 1,150,023

Researchers have also tried to determine whether iterative satisfiability analysis
can terminate early if more restrictive formulas are generated based on satisfiability
results from previous iterations. Moura et al. [18, 19] achieved this by using induc-
tion rules to prove the safety properties of infinite systems. Although they were
able to detect cases where early termination was possible, they could not guarantee
termination. Sorea [24] checked full LTL formulas based on predicate abstraction
to extend BMC capabilities. Compared to encoding abstract predicates, encoding
regions themselves provides at least two advantages – simplicity and an intrinsic
bound for termination.

Unlike other reachability analysis techniques for timed automata, discretization
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allows us to deploy inductive methods rather straightforwardly. However, it is
unclear how to apply the same technique in BDD [5], DBM [13] or CRD [25]. It
would also be interesting to develop a corresponding inductive method for them
and compare their performance with our discretization approach.

7. Conclusion and Future Work

BMC is more efficient in identifying bugs, especially for systems with a large
number of program variables. However, its correctness guarantee performance could
be disappointing. With induction, it is now possible to prove safety properties
efficiently by BMC in some cases. With the help of discretization, we are able to
migrate the success of the discrete-system verification to timing-behavior analysis.
We applied induction algorithms to our previous research on discretization of region
automata, and thereby reduced the reachability analysis of dense-time systems to
satisfiability. The results of our primitive experiments indicate that even without
enhancements (e.g. symmetry reduction, forward projection, and abstraction), our
approach is more efficient than RED in correctness guarantee as well as bug hunting.
However, two limitations of our approach are that a) the performance is sensitive
to the largest constraint constant, and b) the performance depends on whether and
when the induction successes.
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