
Automated Size Analysis for OCL∗

Fang Yu Tevfik Bultan Erik Peterson
Computer Science Department

University of California
Santa Barbara, CA 93106, USA

{yuf,bultan,wombatty}@cs.ucsb.edu

ABSTRACT
An essential tool in object oriented modeling is the speci-
fication of cardinalities of associations between classes. In
Object Constraint Language (OCL) such constraints are ex-
pressed as conditions on the sizes of the collections that
correspond to associations. In this paper we present tools
and techniques for automated verification of size properties
of collection types in OCL. We automatically verify invari-
ants related to the sizes of the collections of a class with
respect to the pre and post-conditions of the methods of
that class. Our approach is based on a size abstraction
that abstracts away the contents of the collections, but pre-
serves the constraints on their sizes. We implemented a tool
which automates this abstraction by converting OCL ex-
pressions on collections to arithmetic expressions on their
sizes. Following this translation, we employ an infinite state
model checker, called Action Language Verifier (ALV), for
size analysis. Size abstraction reduces the state space of the
system and, hence, the cost of automated verification, and
by focusing on size properties, enables us to use efficient, do-
main specific model checking techniques for automated ver-
ification. To demonstrate the effectiveness of our approach
we conducted a case study on the OCL specification of the
Java Card API [9]. The OCL specification of the Java Card
API consists of 31 classes and 150 methods. Using our tool,
we translated the OCL specification of each class to Action
Language and verified the size properties using ALV. Verifi-
cation with ALV took only a few seconds per class and we
revealed errors in 26 out of the 150 method specifications.

Categories and Subject Descriptors: D.2.4 [Software/
Program Verification]: Class invariants, Model checking

General Terms: Verification

Keywords: size abstraction, size analysis, OCL

1. INTRODUCTION

∗This work is supported by NSF grants CCF-0341365 and
CCF-0614002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

One of the most basic tools in object oriented modeling
is the specification of cardinalities of associations. These
specifications correspond to arithmetic constraints on the
number of objects that can be associated with another ob-
ject. We refer to these invariants as size properties, since
they constrain the sizes of the associations. We believe that
specification and analysis of size properties is important and
promising for several reasons:

• Size properties are commonly used in object oriented
models and do not require an extra specification effort
from the software developers who use object oriented
modeling languages.

• Violation of size properties is the cause of many types
of security vulnerabilities such as buffer overflows.

• Effective automated verification of size properties can
be achieved by first reducing the state space of a spec-
ification using abstractions that focus on size proper-
ties, and then by using domain specific and efficient au-
tomated verification techniques that target verification
of systems characterized by arithmetic constraints.

We present tools and techniques for size analysis of Object
Constraint Language (OCL) specifications. OCL [10, 13] is
a specification language for describing constraints on object-
oriented models. OCL is primarily used for specifying class
invariants on fields and associations, and for specifying pre
and post conditions of class methods.

Being one of the components of the Unified Modeling Lan-
guage (UML) [11], OCL is a commonly used formal language
for object oriented modeling, especially for expressing pre-
cise constraints that cannot be expressed using UML dia-
grams. Still, most software developers prefer to use UML as
an informal specification language rather than adding more
precision with the OCL constraints. We believe that effec-
tive automated verification and analysis of OCL/UML mod-
els can significantly improve the benefits of precise object
oriented modeling, and, therefore, increase the use of precise
object oriented models prior to implementation. Moreover,
it is well known that identifying errors before the implemen-
tation stage is cost effective, hence an effective verification
approach employed before the implementation stage is wor-
thy of investigation.

Previous efforts in verification of OCL specifications have
ranged from simulation of objection oriented models [12], to
interactive verification via automated theorem prover sup-
port [1]. The approach taken in this paper is to use spe-
cialized techniques for automated verification of size prop-
erties rather than provide a general verification framework

331

for OCL which would require significant human interaction
during verification. Our approach is more automated com-
pared to approaches based on theorem proving [1], and pro-
vides stronger guarantees compared to approaches based on
simulation [12] or bounded verification [7].

The OCL type system consists of basic types (i.e., booleans
and integers), user-defined types (i.e., classes), and collec-
tion types. A Collection is an essential data type in object-
oriented modeling, since an association between two classes
corresponds to a relationship between one object and a col-
lection of other objects. OCL supports three types of collec-
tions: Set, Bag and Sequence. In this paper, we present tools
and techniques for verification of class invariants that ex-
press constraints on the sizes of these three collection types.

We present an automated abstraction technique for size
analysis of OCL specifications. Size abstraction removes
contents of collection types and replaces each collection in an
OCL specification with an integer variable that represents
the size of the collection. We define the size abstraction us-
ing an abstraction function that transforms OCL expressions
by mapping expressions on collection types to expressions on
integers. The abstract OCL specification conservatively ap-
proximates the behavior of the concrete specification which
means that if the abstract system satisfies a size property
it is guaranteed that the concrete system also satisfies the
property.

After generating the abstract system, we use the Action
Language Verifier (ALV) [14] to verify the size properties.
ALV is an infinite state model checking tool that can verify
or falsify (by generating counter-examples) a property using
approximate fixpoint computations. Using ALV we are able
to verify size properties of OCL specifications.

We applied our method to the Java Card API specifica-
tion, which is the first open application programming inter-
face for smart cards. Since smart cards are designed to be
the next generation IDs, correctness of the Java Card API
specification is extremely important. The OCL specifica-
tion of the Java Card API [9] contains 31 classes with 150
methods. Using ALV we were able to verify or falsify all the
classes in the Java Card API specification. For the falsified
classes, we identified the errors in the corresponding method
specifications by tracing the counter examples generated by
ALV. This work consists of the following contributions:

• We propose a novel size abstraction and analysis for
object-oriented systems. The experiments indicate our
abstraction is precise enough to verify/falsify target
systems, while coarse enough to perform complex model
checking techniques efficiently.

• We implement an automatic translator from OCL to
Action Language, in order to check the size properties
of OCL specifications using ALV.

• We provide a detailed analysis of the Java Card API
specification. We identify a set of falsified methods as
well as the errors, and propose corrections for the pre-
post conditions of these methods. To our best knowl-
edge, this is the first attempt to successfully verify and
falsify all classes and methods of Java Card API.

2. SIZE ABSTRACTION
Our goal is to automatically verify the size properties (i.e.,

properties about the sizes of the collection types) that are

specified as class invariants with respect to pre and post-
conditions of the methods in a class. We achieve this using
a size abstraction that abstracts away the contents of col-
lections but preserves the constraints about their sizes. In
order to explain the size abstraction we first introduce a
simple formal model for class specifications in OCL.

An OCL class specification C = (P, A, M) consists of a
set of properties P which represent the class invariants, a
set of attributes (fields of the class) A, and a set of methods
M , where each method is specified with one pre-condition
expression and one post-condition expression. We formalize
the semantics of an OCL class C as a transition system
‖C‖ = (I, S, R) where S is the set of states, R ⊆ S × S is
the transition relation and I ⊆ S is the initial states, of the
class C, respectively. We define the set of states of a class C
as the Cartesian product of the sets of values that attributes
of C can take

S = dom(type(a1))× dom(type(a2))× . . .× dom(type(a|A|))

where type(ai) ∈ T denotes the type of the attribute ai ∈ A,
T denotes the set of OCL types, and dom(type(ai)) denotes
the set of values that the attribute ai can take. I.e., each
state s ∈ S defines a valuation for all the attributes in A.

We define the set of initial states I ⊆ S as all the states
that satisfy all the class invariants1, i.e., for all p ∈ P , I ⊆
‖p‖. We denote the set of OCL expressions as E, where
P ⊆ E, and for any OCL expression e ∈ E we use ‖e‖ to
denote the set of states for which e evaluates to true.

We assume that each method m ∈ M contains a pre-
condition expression m.pre ∈ E and a post-condition expres-
sion m.post ∈ E where ‖m.pre‖ ⊆ S and ‖m.post‖ ⊆ S ×S.
Note that, the post condition expressions are evaluated on
pairs of states, one that corresponds to the state at the be-
ginning of the method execution, and one that corresponds
to the state at the end of the method execution. The tran-
sition relation of the class C is defined in terms of the tran-
sition relations of its methods as

R =
[

m∈M

Rm

and transition relation of each method m is defined in terms
of its pre and post-conditions as

Rm = {(s1, s2) | s1 ∈ ‖m.pre‖ ∧ (s1, s2) ∈ ‖m.post‖}
Given a set of states Q ⊆ S, let R(Q) denote the image of
Q with respect to R, i.e.,

R(Q) = {s2 | ∃s1 ∈ Q , (s1, s2) ∈ R}
and let R∗ denote the reflexive transitive closure of the tran-
sition relation R. We define the correctness of OCL class
specifications as follows:

Definition 1. An OCL class specification C = (P, A, M)
with the corresponding transition system ‖C‖ = (I, S, R) is
correct, if and only if, all the reachable states of the class sat-
isfy all the class invariants, i.e., for all p ∈ P , R∗(I) ⊆ ‖p‖.

In general, automatically checking correctness of OCL
classes is a difficult problem due to unbounded types in
OCL. Automated abstraction is one of the key techniques

1Alternatively, we can define the initial states based on the
constructors of the class, however, this does not lead to any
significant modification in our framework.

332

for achieving scalable verification. In order to achieve scal-
able verification of size properties we define a size abstrac-
tion which reduces the state space of an OCL specification
by abstracting away the contents of collection types.

Given an OCL class specification C = (P, A, M) with the
corresponding transition system ‖C‖ = (I, S, R), size ab-

straction generates an abstract class specification bC = (bP , bA,
cM) and its corresponding transition system ‖ bC‖ = (bI, bS, bR).
We formalize the size abstraction using the abstraction func-
tion αC where given an OCL class specification C, αC(C) =bC denotes its abstraction. The concrete and abstract class
specifications satisfy the following properties:

∀s ∈ S, s ∈ I ⇒ bs ∈ bI
∀s1, s2 ∈ S, (s1, s2) ∈ R ⇒ (bs1, bs2) ∈ bR
∀s ∈ S,∀p ∈ P, bs ∈ ‖bp‖ ⇒ s ∈ ‖p‖

Note that we use bs to denote the abstract states that cor-
responds to s and bp to denote the abstract invariant that
corresponds to p. The mappings between the concrete and
abstract elements are defined by the abstraction function
αC . Based on the above properties we have the following:

Theorem 1. Given a class specification C and its ab-

straction αC(C) = bC, if bC is correct, then C is correct.

One can prove this property using an induction on the length
of the sequences of states generated during the execution of a
class and the properties of the abstraction function discussed
above.

The formalization we gave above is a general formalization
for abstraction based verification. The specifics of the size
abstraction is in the implementation of the above abstraction
function. We implement the abstraction function αC using
two other abstraction functions which transform OCL types
(T) and expressions (E):

• αT : T → T where T is the set of all OCL types.

• αE : E → E where E is the set of all OCL expressions.

The abstraction functions αT and αE eliminate the collec-
tion types and expressions on collection types from OCL
types and expressions, respectively. We will discuss the ab-
straction functions αT and αE in the following two subsec-
tions.

2.1 Transforming OCL Types
The OCL type system consists of basic types, user-defined

types, and collection types. There are three collections types
in OCL: set , bag and sequence:

• A set is a collection that contains instances of a valid
OCL type. A Set does not contain duplicate elements;
any instance can be presented only once.

• A bag is like a set , but it can contain duplicate ele-
ments; that is, the same instance can occur in a bag
more than once.

• A sequence is like a bag but the elements are ordered.
Elements in a bag or set are not ordered.

Size abstraction abstracts collection types by converting them
to integer type. After size abstraction, information about

the contents of a collection variable is lost, and the collec-
tion variable is replaced with an integer variable. This inte-
ger variable represents the size of the collection it replaces.
Hence, after the size abstraction, an OCL specification does
not contain any collection types.

In addition to the collection types, there are four basic
types in OCL: boolean, integer, real, and string. Size ab-
straction does not effect the basic types.

We define the set of OCL types as T = {boolean, integer ,
real , string , set , bag , sequence}. Then the abstraction func-
tion αT is defined as follows:

t ∈ {boolean, integer , real , string} ⇒ αT (t) = t
t ∈ {set , bag , sequence} ⇒ αT (t) = integer

Given a class specification C = (P, A, M) and the corre-
sponding transition system ‖C‖ = (I, S, R), abstraction func-

tion αC transforms attributes A to abstract attributes bA
by changing the types of the attributes as follows: For all
ai ∈ A, type(bai) = αT (type(ai)). The abstract state spacebS corresponds to the Cartesian product of the domains of

the abstract attributes in bA.
Semantically, the abstraction mapping αC maps each at-

tribute that is a collection, to an integer variable that de-
notes the size of that collection. Hence, the mapping be-
tween the concrete and abstract states is defined as follows:
Given a state s and its abstraction bs, and an attribute a
that is a collection, the value of the abstracted attribute ba
in bs is equal to the size of the collection a in s.

2.2 Transforming OCL Expressions
The key step in size abstraction is the transformation of

OCL expressions. As with the type transformations, size
abstraction does not modify the expressions on basic types.
Size abstraction converts the expressions on collection types
to boolean and integer expressions.

An OCL collection expression consists of constants, vari-
ables (i.e., class attributes) and OCL collection operations.
Each OCL collection expression evaluates to one of the fol-
lowing types: boolean, integer , set , bag , sequence. Given an
OCL collection expression o ∈ E we use type(o) to denote
the type of the result of the expression (i.e., type(o) denotes
the type of the value that results from evaluating o).

During size abstraction of an expression, for each subex-
pression o ∈ E, we generate an auxiliary variable o.v and a
size constraint o.c where type(o.c) = boolean. The type of
the auxiliary variable o.v is defined as type(o.v) =
αT (type(o)), i.e., expressions that evaluate to collection
types are assigned auxiliary variables of type integer ,
whereas the expressions that evaluate to boolean or integer
values are assigned auxiliary variables of the same type.

For expressions that evaluate to boolean or integer val-
ues (i.e., type(o) ∈ {boolean, integer}), auxiliary variable
o.v represents the result of evaluating the expression o and
the constraint o.c represents the constraints on the auxiliary
variable o.v. I.e., if the constraint o.c holds, then the value
of o.v corresponds to the result of evaluating the expression
o.

For expressions that evaluate to collections (i.e., type(o) ∈
{set , bag , sequence}) o.v represents the size of the resulting
collection, i.e., if the constraint o.c holds, then the value of
o.v corresponds to the size of the collection that is the result
of evaluating the expression o. Note that, since we abstract
away the contents of the collections, we cannot always pre-

333

cisely figure out the sizes of the resulting collections. For
example, given an expression o in the form o1->union(o2),
if type(o1) = type(o2) ∈ {bag , sequence}, then o.c is

o.v = o1.v + o2.v ∧ o1.c ∧ o2.c

and type(o.v) = integer . However, for the same expression,
if the arguments are sets (i.e., type(o1) = type(o2) = set),
then the best we can do for o.c is:

max(o1.v, o2.v) ≤ o.v ≤ o1.v + o2.v ∧ o1.c ∧ o2.c

which states that the size of the resulting collection (i.e., o.v)
can take any value between the size of its largest argument
and the addition of the sizes of both of its arguments.

Tables 1, 2, and 3, define how the constraint o.c is com-
puted for each OCL expression o ∈ E. Table 1 describes the
case where type(o) ∈ {set , bag , sequence}. Table 2 describes
the case where type(o) = integer , and Table 3 describes the
case where type(o) = boolean.

We use the following shorthand notation for types in Ta-
bles 1, 2, and 3: i denotes type integer , b denotes type
boolean, s denotes type set , and m denotes type bag or
sequence. We use m to represent both bag and sequence
types since the treatment of bag and sequence types are iden-
tical in our size abstraction. Note that, since size abstraction
abstracts the contents of each collection, the ordering infor-
mation among the elements in a collection are also lost, and,
hence, the behavior of the bag and sequence types become
equivalent after the size abstraction.

Table 1 shows the construction of constraints for expres-
sions with type(o) ∈ {set , bag , sequence}. In the first col-
umn, we show the topmost OCL operator used in the ex-
pression. The second column shows the type of the result
of the expression and its arguments, respectively. Finally,
the third columns shows o.c, the constraint generated by
the size abstraction. Note that for this type of expressions
o.v represents the size of the resulting collection and, hence,
type(o.v) = integer .

Table 2 shows the construction of constraints for expres-
sions with type(o) = integer and type(o.v) = integer . Fi-
nally, Table 3 describes the construction of constraints for
expressions with type(o) = boolean and type(o.v) = boolean.

We define the abstraction function αE based on the size
constraints defined in Tables 1, 2, and 3. Given a class spec-
ification C, we use the abstraction function αE to generate
the abstract pre and post-conditions for the methods of the
abstraction class specification αC . Note that, pre and post-
condition expressions are always boolean expressions, i.e.,
for all m, type(m.pre) = type(m.post) = boolean. Let o ∈ E
be an OCL expression where type(o) = boolean. In order
to compute the abstraction of o we first compute the size
constraint o.c based on the rules given in Tables 1, 2, and 3.
Let V denote the set of all the auxiliary variables that are
introduced during the computation of o.c, and let o.v be the
auxiliary variable for the whole expression o, then we define
αE(o) as follows:

αE(o) = ∃V, o.v ∧ o.c

The abstraction function αE satisfies the following property:

∀s ∈ S, s ∈ ‖e‖ ⇒ bs ∈ ‖αE(e)‖
I.e., for any concrete state for which e evaluates to true,
there exists a valuation of the auxiliary variables where, for
the corresponding abstract state, αE(e) evaluates to true.

This property holds since the existential quantification of
the auxiliary variables allows the evaluation of the expres-
sion o.v∧o.c in the most conservative manner (i.e., allowing
all the nondeterminism to be resolved in a way to make ex-
pression o.v ∧ o.c to evaluate to true when possible).

Given a class specification C = (P, A, M), we compute
the pre and post-condition of the methods of its abstraction

αC(C) = (bP , bA, cM) using the expression abstraction func-

tion αE . Let m ∈ M be a concrete method and let bm ∈ cM
be the abstraction of method m, the pre and post-condition
expressions for the abstract method bm are defined as follows:

∀m ∈ M, bm.pre = αE(m.pre)
∀m ∈ M, bm.post = αE(m.post)

Based on this definition and the above discussions we estab-
lish the following property mentioned earlier:

∀s1, s2 ∈ S, (s1, s2) ∈ R ⇒ (bs1, bs2) ∈ bR
i.e., the abstract transition relation is a conservative abstrac-
tion of the concrete transition relation.

So far, we described the abstraction of attributes and
methods. The only remaining piece in a class specification is
the set of class invariants. First, we define the initial states
of the abstract transition system as all the abstract states
that satisfy the following property:

V
p∈P αE(p). This def-

inition establishes another abstraction property mentioned
earlier:

∀s ∈ S, s ∈ I ⇒ bs ∈ bI
i.e., the set of initial states in the abstract transition sys-
tem is a conservative abstraction of the initial states in the
concrete transition system.

The last abstraction property we need to establish is:

∀s ∈ S,∀p ∈ P, bs ∈ ‖bp‖ ⇒ s ∈ ‖p‖
Note that we cannot establish this property by simply re-
placing a class invariant p ∈ P with αE(p) in the abstract
class specification. Since αE(p) is a conservative abstrac-
tion of p, this would violate the above property. We resolve
this problem by computing a conservative abstraction of the
negations of the invariant properties and then looking for
property violations. Note that, since αE(¬p) is a conserva-
tive abstraction of ¬p, we have the following property:

∀s ∈ S, ∀p ∈ P, bs �∈ ‖αE(¬p)‖ ⇒ s ∈ ‖p‖
which means that if an abstract state does not violate the
abstraction of an invariant then we can conclude that the
corresponding concrete state satisfies the invariant. In gen-
eral, if we cannot find a violation of an invariant in the
abstract transition system, then we can conclude that the
concrete transition system does not violate the property ei-
ther.

3. SIZE ANALYSIS
In order to perform size analysis, we translate the ab-

stract OCL specifications to Action Language and then use
Action Language Verifier (ALV) to check the class invari-
ants. ALV consists of 1) a compiler that converts Action
Language specifications into symbolic representations, and
2) an infinite-state symbolic model checker which verifies or
falsifies (by generating counterexamples) CTL properties of
Action Language specifications [14].

334

OCL Expression Type Size Constraint
o type(o) : type(o1)[type(o2)][type(o3)] o.c

o1->including(e) s : s o1.v ≤ o.v ≤ o1.v + 1 ∧ (o1.v = 0 ⇒ o.v = 1) ∧ o1.c
m : m o.v = o1.v + 1 ∧ o1.c

o1->append(e) m : m o.v = o1.v + 1 ∧ o1.c
o1->prepend(e) m : m o.v = o1.v + 1 ∧ o1.c
o1->insertAt(e) m : m o.v = o1.v + 1 ∧ o1.c
o1->excluding(e) s : s max(0, o1.v − 1) ≤ o.v ≤ o1.v ∧ o1.c

m : m max(0, o1.v − 1) ≤ o.v ≤ o1.v ∧ o1.c
o1->union(o2) s : s, s max(o1.v, o2.v) ≤ o.v ≤ o1.v + o2.v ∧ o1.c ∧ o2.c

m : {s, m}, {s, m} o.v = o1.v + o2.v ∧ o1.c ∧ o2.c
o1->intersection(o2) {s, m} : {s, m}, {s, m} 0 ≤ o.v ≤ min(o1.v, o2.v) ∧ o1.c ∧ o2.c
o1-o2 s : s, s max(0.o1.v − o2.v) ≤ o.v ≤ o1.v ∧ o1.c ∧ o2.c
o1->symmetricDifference(o2) s : s, s 0 ≤ o.v ≤ o1.v + o2.v ∧ o1.c ∧ o2.c
o1->select(expr) s : s 0 ≤ o.v ≤ o1.v ∧ o1.c

m : m 0 ≤ o.v ≤ o1.v ∧ o1.c
o1->reject(expr) s : s 0 ≤ o.v ≤ o1.v ∧ o1.c

m : m 0 ≤ o.v ≤ o1.v ∧ o1.c
o1->collect(expr) s : s 0 ≤ o.v ≤ o1.v ∧ o1.c

m : m 0 ≤ o.v ≤ o1.v ∧ o1.c
o1->subSequence(o2, o3) m : m, i, i ((o1.v ≥ o3.v ≥ o2.v ∧ o.v = o3.v − o2.v + 1)∨

(¬(o1.v ≥ o3.v ≥ o2.v) ∧ o.v = o1.v)) ∧ o1.c ∧ o2.c ∧ o3.c
o1->at(o2) m : m, i ((o1.v ≥ o2.v ≥ 0 ∧ o.v = 1)∨

(¬(o1.v ≥ o2.v ≥ 0) ∧ o.v = o1.v)) ∧ o1.c ∧ o2.c
o1->first s : m o.v = 1 ∧ o1.c
o1->last s : m o.v = 1 ∧ o1.c
o1->asSet s : s o.v = o1.v ∧ o1.c

s : m ((o1.v > 0 ∧ 1 ≤ o.v ≤ o1.v) ∨ (o1.v = o.v = 0)) ∧ o1.c
o1->asBag m : {s, m} o.v = o1.v ∧ o1.c
o1->asSequence m : {s, m} o.v = o1.v ∧ o1.c

Table 1: Interpretation of OCL expressions that return collections.

OCL Expression Type Size Constraint
o type(o) : type(o1) o.c

o1->size i : {s, m} o.v = o1.v ∧ o1.c
o1->count(e) i : s 0 ≤ o.v ≤ 1 ∧ o1.c

i : m 0 ≤ o.v ≤ o1.v ∧ o1.c

Table 2: Interpretation of OCL expressions that return an integer value.

OCL Expression Type Size Constraint
o type(o) : type(o1)[type(o2)] o.c

o1 = o2 b : {s, m}, {s, m} (o.v = false ∨ o.v = (o1.v = o2.v)) ∧ o1.c ∧ o2.c
o1->includes(e) b : {s, m} (o.v = false ∨ o.v = (o1.v ≥ 1)) ∧ o1.c
o1->exists(expr) b : {s, m} (o.v = false ∨ o.v = (o1.v ≥ 1)) ∧ o1.c
o1->forAll(expr) b : {s, m} (o.v = false ∨ o.v = (o1.v ≥ 1)) ∧ o1.c
o1->includesAll(o2) b : {s, m}, {s, m} (o.v = false ∨ o.v = (o1.v ≥ o2.v)) ∧ o1.c ∧ o2.c
o1->isEmpty b : {s, m} (o.v = (o1.v = 0)) ∧ o1.c
o1->notEmpty b : {s, m}, {s, m} (o.v = (o1.v > 0)) ∧ o1.c
not(o1) b : b (o.v = ¬(o1.v)) ∧ o1.c
o1 and o2 b : b, b (o.v = (o1.v ∧ o2.v)) ∧ o1.c ∧ o2.c
o1 or o2 b : b, b (o.v = (o1.v ∨ o2.v)) ∧ o1.c ∧ o2.c

Table 3: Interpretation of OCL expressions that returns a boolean value.

335

An Action Language specification contains integer, Boolean
and enumerated variables, parameterized integer constants,
and a set of modules and actions which are composed us-
ing synchronous and asynchronous composition operators.
Semantically, each Action Language module corresponds to
a transition system. The variable declarations of a module
define the module’s state set. A module’s initial expres-
sion defines the module’s set of initial states. Each action
expression corresponds to a single execution step and a mod-
ule expression defines the transition relation of the module
in terms of its actions and submodules using composition
operators.

We translate abstract OCL specifications to Action Lan-
guage by mapping method specifications in OCL to module
specifications in Action Language. We implemented an au-
tomatic translator which parses the OCL class specification
(in USE format [12]), performs the size abstraction and au-
tomatically emits an Action Language module which corre-
sponds to the abstract OCL specification. We use ALV to
check the correctness of the automatically generated Action
Language specification.

ALV is a symbolic CTL model checker and uses the least
and greatest fixpoint characterizations of CTL operators to
compute the truth set of a given CTL property. It itera-
tively computes the fixpoints starting from the innermost
temporal operator in the input CTL formula. Since Action
Language allows specifications with unbounded integer vari-
ables, fixpoint computations are not guaranteed to converge.
To achieve convergence, ALV uses conservative approxima-
tion techniques such as widening and bounded fixpoint com-
putations [14].

Since ALV can only handle boolean, enumerated, and in-
teger variables, in the current version of our size analysis
tool we interpret only the boolean and integer basic types
from OCL. However, with an appropriate back-end verifica-
tion tool (that can support other basic types such as reals
and strings) size analysis can easily be extended to other
types.

However, boolean and integer types are the most impor-
tant in terms of size analysis. It is important to support the
boolean type since any bounded type (such as enumerated
types or bounded strings) can be automatically mapped to
boolean variables without increasing the state space of the
specification. For verification of size properties it is crucial
to handle integer variables during analysis since most size
properties express a relationship between the size of a col-
lection and the value of an integer variable (i.e., an integer
attribute of a class). On the other hand, real variables are
unlikely to be involved in size properties since the size of
a collection is always a discrete value. As we mentioned
above bounded string types can be handled using boolean
variables. Moreover, size properties on strings can be veri-
fied by interpreting strings as a sequence of characters.

4. CASE STUDY: JAVA CARD API
In this section, we discuss the application of size analy-

sis to verification of the OCL specification of the Java Card
API. Java Card is a platform for developing applications
that run on smart cards. Java Card API is a library that
handles smart card features such as data units, identifiers,
PIN codes, etc. In [9], Larsson and Mostowski give OCL
specification of all the classes in the Java Card API based
on the specification provided by Sun. The Java Card API

specification contains 31 classes and 150 methods. We ap-
plied the size analysis techniques proposed in this paper to
verification of the Java Card API specification.

The front end of our size analysis toolset uses the OCL
parser from the USE tool [12]. Hence, in order to analyze the
Java Card API specification, we first had to convert it to a
form compatible with USE format. This required two types
of modifications to the original Java Card API specification.
First one involves using default OCL types and operations
instead of Java types and utilities, and the second involves
the specification of exceptions.

Assume that we want to compare a segment of two integer
arrays pin1 and pin2. In Java Card API, utility functions
are defined to support element comparison. Hence, we can
specify a method for array comparison with the following
post-condition:

Util.arrayCompare(pin1,0,pin2,offset,length)==0.

Alternatively, instead of using Java types and utilities
(which may or may not have OCL specifications of their
own), we can use matching OCL types and operations. Since
our size analysis tool knows how to interpret default OCL
types and operations, using them instead of Java types and
utilities can add precision to the size analysis (especially for
the cases where OCL specifications of Java utilities are not
available). For example, instead of invoking utility functions
in the above post-condition, we can treat arrays as sequences
and replace the above post-condition with the following one:

pin1->subSequence(0,length)=

pin2->subSequence(offset,offset+length)

Our size analysis tool would automatically interpret this
post-condition based on OCL semantics without needing any
other specification. Whenever we found cases like this we
modified the Java Card API specification by replacing the
Java types and utilities with the equivalent OCL types and
operations in order to improve the precision of our analysis.

The second modification we made to the Java Card API
specification is about the exception handling. Exception
handling is an essential part of Java programs. The typi-
cal behavior of a Java method can be specified using a pre-
condition, a postcondition, and a set of condition, exception
pairs: (condition 1, exception 1), (condition 2, exception 2)
. . . , (condition n, exception n). The behavior of the method
is then defined as follows: If the precondition holds at the
beginning of the method invocation, then the method either
terminates normally and the postcondition holds, or it ter-
minates abruptly by throwing some listed exception and the
corresponding exception condition holds.

In order to represent this behavior in OCL, for each class
which may throw exceptions, we induce an auxiliary at-
tribute, named thrownExceptions, which is a bag of type
exception. Then the exception handling semantics can be
captured by the following OCL specification:

context SomeClass::someMethod()
pre: <precondition>
post: (thrownExceptions = thrownExceptions@pre

and <postcondition>)
or (thrownExceptions = thrownExceptions@pre

->including(e: exception |
e.oclType = Exception_1)
and <condition_1>)

...
or (thrownExceptions = thrownExceptions@pre

->including (e: exception|e.oclType = Exception_n)
and <condition_n>)

336

Considering that the goal of the size analysis is to verify
size properties, we can further simplify the post condition
as follows

post: (thrownExceptions=thrownExceptions@pre
and <postcondition>)

or((thrownExceptions->size()=
thrownExceptions@pre->size()+1)
and(<condition_1> or...or <condition_n>))

This specification keeps track of the number of exceptions
thrown. One can specify that a class invariant holds when
no exception is thrown as:

thrownExceptions->isEmpty() implies“invariant”.

Correct interpretation of the exception handling semantics
is important for verification of such properties.

Below, we give the OCL specification of the update method
of the PIN class in the Java Card API 2.1.1. The OCL speci-
fication is based on the specification in [9], updated with the
modifications discussed above.

context OwnerPIN::update(newpin: Sequence(Integer),
offset:Integer, length:Integer, e:Integer)

pre: newpin->notEmpty()
and offset >= 0
and offset+length <= newpin->size()
and length >= 0

post:(
1: thrownExceptions=thrownExceptions@pre
2: and self.pin->subSequence(0,length)

=newpin->subSequence(offset, offset+length)
)or(

3: thrownExceptions=thrownExceptions@pre->including(e)
4: and length > self.maxPINSize

)or(
5: thrownExceptions=thrownExceptions@pre->including(e)
6: and systemInstance->notEmpty()

)

The corresponding automatically generated Action Lan-
guage specification is as follows:

module updateMod()
updateMod:

pre: newpin > 0 and offset >= 0
and length + offset <= newpin
and length >= 0 and

post:(
1: (thrownExceptions’ = thrownExceptions
2: and tmp8 = tmp9

and ((tmp8 = length - 0 + 1 and pin’ >= length)
or (tmp8 = pin’ and pin’ < length))

and ((tmp9 = length + offset - offset + 1
and newpin’ >= length + offset)

or (tmp9 = newpin’
and newpin’< length + offset))

) or (
3: thrownExceptions’ = tmp10

and tmp10 = thrownExceptions + 1
4: and length > maxPINSize’

) or (
5: thrownExceptions’ = tmp11

and tmp11 = thrownExceptions + 1
6: and systemInstance’ > 0));
endmodule

For each method, we generate a corresponding Action
Language module based on the pre and post condition of
the method. In the example above we labeled the Action
Language and OCL specifications to indicate the parts that

correspond to each other. Note that the Action Language
module above corresponds the abstraction of the OCL spec-
ification based on the size abstraction we defined earlier.

5. EXPERIMENTS
Using our size analysis toolset, we checked all classes with

non-trivial OCL specifications in the Java Card API speci-
fication [9]. These include 31 classes and 150 methods con-
tained in javacard.framework, javacard.security,
javacard.framework.services, and javacardx.crypto pack-
ages.

In the first phase of the verification we try to verify that a
class is correct. If the verification phase fails then we move
to the falsification phase and look for counter-examples. In
the following, we discuss the verification phase.

We take the conjunction of all the class invariants and
generate a single invariant property that implies all the class
invariants. Let us call this invariant property p. We check
that the property ”p holds in all reachable states of the class”.
For the classes that throw exceptions, we check the prop-
erty that ”p holds in all reachable states where no exception
has been thrown”, i.e., we check that ”thrownExceptions->
isEmpty() ⇒ p” is an invariant.

We generate an Action Language module for each method
in a class and then compose these modules asynchronously
to obtain the class specification. This means that when we
check a class using ALV, we are checking all states that
can be reached by all possible interleavings of all the class
methods.

The verification results are shown in Table 5. ALV verified
26 out of the 31 classes and falsified the other 5 classes. For
those classes that are verified, the class invariant holds with
respect to pre and post-conditions of the methods. I.e., if
one implements these methods according to pre and post-
conditions in the OCL specifications, the class invariants
are guaranteed to hold. For the five classes that were not
verified, we conducted the second phase of our analysis and
looked for counter-example behaviors.

For these classes that were falsified we were able to gen-
erate a counter-example behavior. Recall that since we over
approximate the behavior of a class, the falsified classes may
be correct in the concrete system, i.e., the generated counter
example may be spurious. After tracing the counter example
manually, we determined that none of the reported counter-
examples were spurious. This demonstrates that the size
abstraction is relatively precise and does not introduce too
many spurious behaviors. We will discuss the falsification
phase and discuss the errors we found in the Java Card API
specification in the next section.

ALV performs very well with its default parameters while
verifying most classes. This indicates that the size abstrac-
tion is effective in reducing the size of the state space and
generates compact modules that can be analyzed efficiently.
However, recall that infinite state model checking is un-
decidable in general and ALV’s fixpoint computations are
not guaranteed to converge. In fact we observed this while
checking DSAKey. ALV did not terminate with its default
parameters. ALV can conservatively approximate a fixpoint
using the widening technique. When we used the widening
technique provided by the ALV, the fixpoint converged and
ALV was able to verify the correctness of the DSAKey class.

We mentioned above that we identified five classes of Java
Card API that might contain errors. In order to identify the

337

Class M R tran+ver Mem

AID 7 F 0.06s+0.03s 2273k
Y 0.06s+0.06s 2322k

APDU 14 V 0.38s+0.12s 18248k
Applet 7 V 0.06s+0.01s 1532k
CardException 4 V 0s+0s 406k
CardRuntimeException 4 V 0s+0s 323k
Cipher 6 V 0.02 s+2.05s 2998k
CryptoException 2 V 0s+0s 135k
DESKey 2 V 0.01s+0.01s 422k
Dispatcher 5 V 0.01s+0.01s 635k
DSAKey 6 V 0.06s+6.2s 7840k
DSAPrivateKey 8 V 0.11s+2.61s 4170k
DSAPublicKey 8 V 0.11s+2.62s 4170k
CardRemoteObject 2 V 0s+0s 135k
JCSystem 11 F 1.08s+0.15s 18571k

Y 1.09s+0.19s 18571k
KeyBuilder 1 V 0.01s+0s 135k
KeyEncryption 2 F 0.01s+0s 118k

Y 0s+0s 131k
KeyPair 5 V 0s+0s 1044k
MessageDigest 3 V 0.01s+0s 397k
OwnerPIN 9 F 0.08s+0.52s 7725k

Y 0.1s+0.4s 5091k
PIN 4 F 0.03s+0.33s 5693k

Y 0.03s+0.23s 3670k
PINException 2 V 0.01s+0s 135k
RandomData 3 V 0s+0s 401k
RMIService 2 V 0s+0s 414k
RandomData 3 V 0s+0s 401k
RSAPrivateCrtKey 10 V 0.2s+7.31s 6087k
RSAPrivateKey 4 V 0.03s+0.05s 1008k
RSAPublicKey 4 V 0.03s+0.05s 1008k
SecurityService 3 V 0.01s+0s 520k
Service 3 V 0.01s+0s 270k
TransactionException 3 V 0s+0s 135k
UserException 3 V 0s+0s 270k

Table 4: Verification of the Java Card API OCL
specification. M: No. of methods, R: Result
(F:Falsify/V:Verify), tran: Translation time, ver:
Verification Time. Y: Found a counter example

errors in these classes we analyzed their methods separately.
For each method, we generated an Action Language mod-
ule that can only execute that method, and checked if the
class invariants can be violated by that method. For the
methods we were able to falsify, we traced the generated
counter example, identified the possible bugs, and fixed the
pre and post condition of the method whenever we can. In
the following subsections, we first summarize the errors we
identified in these methods, and then detail our falsification
analysis for each buggy method.

Identified errors.
The errors we found in the Java Card API specification

fall into three categories: 1) Frame Error (FE), 2) Unsound
Implication (UI), and 3) Design Error (DE).

Frame Error (FE) If a post-condition does not spec-
ify the next value of a variable, this unconstrained variable
can take any value in the next step. If some variable that
appears in an invariant is an unconstrained variable, it can
take a value that violates the invariant. Frame errors can
be fixed by appending

V
i vi = vi@pre to the post-condition,

where each vi is an unconstrained variable. This error was
identified mostly in our falsified classes.

Unsound Implication (UI) One common used struc-
ture in post conditions is implication conjunction, i.e.,

V
i(Bi

implies B′
i). Unsound implication happens if

W
i Bi �= true.

In this case, the state satisfying
V

i ¬Bi is allowed to make
unexpected transitions that can violate the invariant. Un-
sound implication can be fixed by adding an extra impli-
cation to specify the behavior for the states which satisfyV

i ¬Bi.
Design Error (DE) We put all the other errors in this

category as design errors. One common design error is the
use of an unchecked method parameter to define the next
value of a variable that appears in an invariant. This may
make the updated variable take unexpected values that can
violate the invariant. This error may be fixed by restricting
the values of the used parameter. We manually fixed errors
in this category for each case.

In the following sections, we discuss our falsification anal-
ysis for each falsified class in Java Card API specifications
respectively.

AID.
This class encapsulates the Application Identifier (AID)

associated with an applet. An AID is defined in ISO 7816-5
to be a sequence of bytes between 5 and 16 bytes in length.
In the OCL specification, an AID is treated as a sequence
object, and the class invariant is

self.thrownExceptions->isEmpty() implies
(self.theAID->size() >= 5 and self.theAID->size() <= 16).

We separately checked each method in AID without any
modification. The method AID was verified while the other
six methods were falsified. We then inserted frame con-
straints for undefined variables, and checked each method
again. The result is shown in table 5. Three methods:
equal, getPartialBytes, and RIDEquals were verified after fix-
ing frame errors, while the other three methods were still fal-
sified. We attempted to identify errors of these three meth-
ods by tracing the generated counter examples manually.
For the method equals, its post condition is an implication
structure, B implies B′, where B is as follows:

bArray->isEmpty()
or(offset>= 0 and

length>= 0 and
offset+length <= bArray->size() and
offset+length >= 1)

Since B �= true, this raises an unsound implication er-
ror. The counter example indicates that for some state that
satisfies ¬B, theAID may have an arbitrary size that vio-
lates the invariant. A similar error happens in the method
partialEquals.

For the method getBytes, a nontrivial design error was
found. In one part of its post condition, theAID is set equal
to a subsequence of dest with the size of theAID, which is
specified as follows:

self.theAID = dest->
subSequence(offset, offset+self.theAID->size())

Note that this specification defines theAID with its own
size, and results in theAID having an arbitrary size. The
correct post condition can be specified as follows:

self.theAID = dest->
subSequence(offset, offset+self.theAID@pre->size())

338

Method Err. R trans+ver. Mem
AID None V 0.02+0.09s 2523k
equal (FE) V 0s+0s 299k
equals UI F 0.02s+0.02 610k
getBytes DE F 0.02s+0.02s 676k
getPartialBytes (FE) V 0.01s+0.02s 418k
partialEquals UI F 0.02s+0.01s 545k
RIDEquals (FE) V 0s+0s 324k

Table 5: Checking Methods in AID Class with
Frame Constraints Inserted. None: the method is
verified without any modification. (FE): Frame er-
ror is fixed in this case.

This postcondition enforces theAID and dest having the
same size as theAID in the previous state.

ALV performed quite well while checking all methods in
this class. This indicates that our size analysis generates
compact modules that can be analyzed efficiently. On the
other hand, the fact that we were able to discover nontriv-
ial errors using ALV shows that our size analysis is precise
enough to check considerable part of system correctness.

JCSystem.
The JCSystem class is the only system class in Java Card

API. It includes methods to control applet execution, re-
source management, atomic transaction management, etc.
in the Java Card environment. The class invariant is

self.thrownExceptions ->isEmpty() implies
(self.transactionDepth = 0 or self.transactionDepth = 1).

We checked each method without any modification.
abortTransaction was verified while the other ten methods
were falsified in our first attempt. We then inserted frame
constraints for the ten falsified methods. The falsification re-
sults are shown in Table 6. Nine methods were verified after
inserting frame constraints, while
getAppletSharableObjectInterface remained falsified. We iden-
tified an unsound implication error by tracing the generated
counter example.

ALV encounters some problems while checking
MakeTransientBooleanArray, MakeTransientByteArray,
MakeTransientObjectArray, and MakeTransientShortArray af-
ter inserting frame constraints. The fixpoint computation
did not converge with the default option or widening ap-
proximation. ALV allows users to change widening seeds
such that the widening operator is used only after a certain
number of steps. For our cases, the fixpoint computation
converged once we started widening after the third iteration
(with the option -A -W 3), and all these four methods were
successfully verified.

KeyEncryption.
KeyEncryption is an interface in javacardx.crypto pack-

age, which defines the methods used to enable encrypted
key data access to a key implementation. In this simple
interface, there is no exception thrown and the class in-
variant is self.cipher ≥ 0. Both methods were falsified,
and getKeyCipherMod was verified after inserting frame con-
straints. The result is shown in table 7. For the method
setKeyCipherMod, we identified a design error. In its post-
condition, a parameter KeyCipher is used to define cipheri.
This results that cipher may have arbitrary values and vio-
lates the invariant. A fixed post condition can be

Method Err. R trans+ver. Mem
abortTransaction None V 0s+0.01s 266k
beginTransaction (FE) V 0s+0.06s 266k
commitTransaction (FE) V 0s+0.01s 266k
getAppletSharable- UI F 0.06s+0.03s 815k
ObjectInterface
getTransactionDepth (FE) V 0s+0s 270k
isTransient (FE) V 0s+0.01s 270k
lookupAID (FE) V 0.03s+0.07s 1028k
MakeTransientBooleanArray (FE) V 0.09s+1.61s 1147k
MakeTransientByteArray (FE) V 0.06s+1.73s 1487k
MakeTransientObjectArray (FE) V 0.06s+1.72s 1495k
MakeTransientShortArray (FE) V 0.07s+1.72s 950k

Table 6: Checking Methods in JCSystem Class with
Frame Constraints Inserted

Method Err. R trans+ver. Mem
getKeyCipherMod (FE) V 0s+0s 115k
setKeyCipherMod DE F 0s+0s 123k

Table 7: Checking Methods in KeyEncryption Class
with Frame Constraints Inserted.

keyCipher>=0 and self.cipher = keyCipher.

OwnerPIN and PIN.
OwnerPIN is a class defined in the javacard.framework pack-

age, which implements the PIN interface. The class provides
methods for performing PIN operations, such as updating or
verifying a PIN. In our OCL specification, the class invariant
is specified as follows:

this.thrownExceptions->isEmpty() implies
(this.maxPINSize > 0 and this.maxTries > 0
and this.triesRemaining>= 0
and this.triesRemaining<=this.maxTries
and this.pin->notEmpty()}
and this.pin->size()<=this.maxPINSize)

In our first attempt, reset was verified while the other
eight methods were falsified. We then inserted frame con-
straints for these falsified methods, and checked each method
again. The result is shown in table 8. Seven methods:
getValidatedFlag, setValidatedFlagare, OwnerPIN, update,
resetAndUnblock, getTriesRemaining, isValidated were veri-
fied after inserting frame constraints, while check remained
falsified. Its post condition is an implication structure where
B is self.triesRemaining ≥ 0 and an unsound implication
error was identified.

Method Err. R trans+ver. Mem
getValidatedFlag (FE) V 0s+0.01s 385k
setValidatedFlag (FE) V 0.01s+0s 381k
OwnerPIN (FE) V 0.01s+0.05s 590k
update (FE) V 0.02s+0.7s 782k
resetAndUnblock (FE) V 0s+0.01s 381k
getTriesRemaining (FE) V 0.01s+0s 385k
isValidated (FE) V 0.01s+0s 381k
reset None V 0.01s+0s 381k
check UI F 0.03s+0.06s 877k

Table 8: Checking Methods in OwnerPIN Class with
Frame Constraints Inserted

339

6. RELATED WORK
One attempt to check the correctness of UML/OCL mod-

els is UML-based Specification Environment (USE) [12, 5].
USE provides an environment where users can simulate the
behavior of UML models and check OCL invariants and
pre and post conditions during the simulation. One disad-
vantage of USE is lack of support for automatically guided
simulation, and, hence, one can only cover a small portion
of system behaviors with USE. In contrast to this type of
simulation-based validation, we apply automated verifica-
tion techniques to guarantee the correctness of UML/OCL
models.

Another related work is the “Key” system [1, 9], which
adopts interactive theorem proving to verify object-oriented
software models. The OCL specification of the Java Card
API was developed as a part of this project [9]. One im-
portant difference between our approach and the techniques
based on interactive theorem proving is the level of automa-
tion. As our experiments demonstrate verification with ALV
is very efficient and the only user interaction involves choos-
ing some heuristics or parameters for verification. Another
advantage of verification techniques based on model check-
ing is the ability to generate counter-example behaviors.
Our experiments demonstrate that this feature is essential
for identifying errors in a specification.

Alloy [7] is another design language used to specify object
oriented systems. It has formal syntax and semantics, and
an automatic analyzer developed to facilitate formal verifi-
cation of Alloy modules. Alloy analyzer analyzes concrete
object-oriented systems and reduces the complexity of verifi-
cation by bounding the number of instances of each object.
Alloy analyzer reduces the first order logic reasoning over
bounded domains to the boolean satisfiability problem and
incorporates the modern SAT solver. Such an approach is
not likely to be effective for verification of size properties
for a couple of reasons: 1) errors in size properties may not
be identified within a small bound (for example violations
such as buffer overflow), 2) translation of numeric relation-
ships among size variables to a boolean encoding may not be
efficient. Note that, compared to the bounded verification
approach used in Alloy which cannot guarantee correctness,
our size analysis approach is able to guarantee correctness
for size properties.

Various methods to verify size properties of systems had
been proposed. However, most work in this area is in the
area of programming languages. Hughes et al. [6] develop
a sound semantic model of size types to verify the proper-
ties of reactive systems. They showed that various essential
program properties, such as function productivity, memory
leaks, array bounds and the termination of some restricted
functions, could be reduced to type checking problems. The
advantages of type analysis include a) the soundness proof
and b) the efficient type checking algorithm. Hughes’ work is
the first paper using size types to analyze programs. Chin et
al. [2] expand size types to verify object-oriented languages
by annotations. They annotate an abstract data type for
each object with size invariants, which can then be used
to infer size properties among objects. An intermediate lan-
guage, called OIMP, is proposed to capture the size informa-
tion of real programs, such as C++/Java, via an annotated
type system.

These earlier efforts in size analysis focus on programming
languages and use type checking to establish the correct-

ness of size properties. We, on the other hand, adopt auto-
mated abstraction and model checking techniques to verify
size properties in UML/OCL models. We employ ALV [14]
as the back-end model checker, which incorporates BDD and
polyhedra/automata representations to verify systems with
integer variables. Although ALV may not be able to give
a conclusive answer when fixpoints fail to converge and the
approximations are not precise enough, this did not happen
in our case study and all specifications were successfully ver-
ified or falsified using ALV.

7. CONCLUSIONS
We presented tools and techniques for size analysis of

OCL specifications. In order to achieve efficient size anal-
ysis we proposed a size abstraction. Size abstraction re-
moves the collection types from the OCL specification and
replaces them with integer variables that represent the sizes
of the collections. To demonstrate the effectiveness of our
approach, we conducted a case study on the OCL specifica-
tion of the Java Card API [9]. All 31 class specifications were
either verified or falsified, and various errors were identified
in 26 out of the 150 method specifications.

8. REFERENCES
[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard

Bubel, Martin Giese, Reiner Hahnle, Wolfram Menzel,
Wojciech Mostowski, Andreas Roth, Steffen Schlager, and
Peter H. Schmitt. “The KeY Tool.” Software and Systems
Modeling, vol. 4, no. 1, pp. 32–54, 2005.

[2] Wei-Ngan Chin, Siau-Cheng Khoo, Shengchao Qin, Corneliu
Popeea, Huu Hai Nguyen. “Verifying Safety Policies with Size
Properties and Alias Controls.” In Proc. ICSE ’05, St. Louis,
MO, USA, pp. 186–195, 2005.

[3] Andy Evans, Robert B. France, Ana M. D. Moreira, Bernhard
Rumpe. “Using Alloy and UML/OCL to Specify Run-Time
Configuration Management: A Case Study.” In Practical
UML-Based Rigorous Development Methods UML01, Oct
2001, Toronto, Canada.

[4] Jonathan Edwards, Daniel Jackson, Technology Emina Torlak.
“A Type System for Object Models.” In Proc. of FSE ’04,
Newport Beach, CA, pp. 189-199, 2004.

[5] Martin Gogolla, Jorn Bohling, and Mark Richters. “Validation
of UML and OCL Models by Automatic Snapshot Generation.”
In Proc. UML 2003. Springer, Berlin, LNCS 2863, 2003.

[6] John Hughes, Lars Pareto, Amr Sabry. “Proving the
Correctness of Reactive Systems Using Sized Types.” In Proc.
POPL ’96, pp. 410-423, 1996.

[7] Daniel Jackson. “Alloy: A Lightweight Object Modelling
Notation.” ACM Transactions on Software Engineering and
Methodology, vol. 11, no. 2, pp. 256-290, 2002.

[8] Viktor Kuncak and Daniel Jackson. “Relational Analysis of
Algebraic Datatypes.” In Proc. ESEC/FSE 2005, Lisbon,
Portugal, September 5-9, 2005.

[9] Daniel Larsson and Wojciech Mostowski. “Specifying Java
Card API in OCL.” OCL 2.0 Workshop at UML 2003, San
Francisco, Electronic Notes in Theoretical Computer Science,
vol. 102 pp. 3-19, 2004,

[10] OMG. “Object Constraint Language Specification.” In OMG
Unified Modeling Language Specification, Version 1.3, June
1999.

[11] OMG. “OMG Unified Modeling Language Specification,
Version 1.3.” Object Management Group, Inc., Framingham,
Mass., Internet:http://www.omg.org, 1999.

[12] Mark Richters and Martin Gogolla. “Validating UML models
and OCL constraints.” In Proc. UML 2000. Springer, York,
UK, LNCS 1939, 2000.

[13] Jos Warmer and Anneke Kleppe. “The Object Constraint
Language: Precise Modeling with UML.” Addison-Wesley,
1998.

[14] Tuba Yavuz-Kahveci, Constantinos Bartzis, and Tevfik Bultan.
“Action Language Verifier, Extended.” In Proc. CAV ’05,
LNCS 3576, pp. 413-427, 2005.

340

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

