

Verifying Web Applications Using Bounded Model Checking*

Yao-Wen Huang12, Fang Yu2, Christian Hang3, Chung-Hung Tsai1, D. T. Lee12, Sy-Yen Kuo1 †
1Department of Electrical Engineering,

National Taiwan University,
Taipei 106, Taiwan.

sykuo@cc.ee.ntu.edu.tw

2Institute of Information Science,
Academia Sinica,

Taipei 115, Taiwan
{ywhuang,yuf,dtlee}@iis.sinica.edu.tw

3LuFG Informatik II,
RWTH Aachen, Ahornstr,

55, 52074 Aachen, Germany
christian.hang@web.de

Abstract

The authors describe the use of bounded model
checking (BMC) for verifying Web application code.
Vulnerable sections of code are patched automatically
with runtime guards, allowing both verification and
assurance to occur without user intervention. Model
checking techniques have relatively complexity compared
to the typestate-based polynomial-time algorithm (TS) we
adopted in an earlier paper, but they offer three
benefits—they provide counterexamples, more precise
models, and sound and complete verification. Compared
to conventional model checking techniques, BMC offers a
more practical approach to verifying programs
containing large numbers of variables, but requires fixed
program diameters to be complete. Formalizing Web
application vulnerabilities as a secure information flow
problem with fixed diameter allows for BMC application
without drawback. Using BMC-produced counter-
examples, errors that result from propagations of the
same initial error can be reported as a single group
rather than individually. This offers two distinct benefits.
First, together with the counterexamples themselves, they
allow for more descriptive and precise error reports.
Second, it allows for automated patching at locations
where errors are initially introduced rather than at
locations where the propagated errors cause problems.
Results from a TS-BMC comparison test using 230 open-
source Web applications showed a 41.0% decrease in
runtime instrumentations when BMC was used. In the 38
vulnerable projects identified by TS, BMC classified the
TS-reported 980 individual errors into 578 groups, with
each group requiring a minimal set of patches for repair.

1. Introduction

As World Wide Web usage expands to cover a greater
number of B2B (business-to-business), B2C (business-to-

client), healthcare, and e-government services, the
reliability and security of Web applications has become
an increasingly important concern. A number of
deployment-phase mechanisms have recently been
examined as a means of assuring the quality attributes of
Web applications. One widely-adopted approach to
maintaining reliability is applying replication strategies to
existing Web applications—that is, enhancing them with
fault-tolerance features [28]. To assure security for
existing Web applications, Scott and Sharp [24] proposed
using gateways that filter invalid and malicious input at
the application level. A primary advantage of these two
deployment-phase mechanisms is their ability to provide
immediate assurance of Web application quality, but their
main drawback is that they blindly protect against
unpredicted behavior without investigating the actual
defects that compromise quality.

To assess Web application quality, Merzbacher and
Patterson [18] created a Web application reliability
assessment mechanism based on user-experience
modeling, and Huang et al. [13] designed a similar
security assessment framework that combined user-
behavior simulation with user-experience modeling. Both
efforts serve as examples of black-box testing. When
compared with deployment-phase protection techniques,
these approaches emphasize assessment over blind
assurance, thus allowing for software improvements.
However, they have at least two disadvantages: they do
not provide immediate quality assurance, and they cannot
guarantee the identification of all flaws. Providing a
sound guarantee requires the formalization of Web
application bugs and the application of formal verification
techniques.

We recently used a combination of static and runtime
techniques to create a holistic approach to ensuring Web
application quality [14]. The tool that resulted—which we
named WebSSARI (Web application Security via Static
Analysis and Runtime Inspection)—aimed to a) statically
verify existing Web application code without any
additional annotation effort; and b) after verification,
automatically protect potentially defective sections of
code. In the project, we formalized Web application
vulnerabilities as a secure information flow problem, and
based our verification algorithm (TS) on Strom and
Yemini’s typestate [26]—a compile-time technique for

————————————————
† Corresponding author: Sy-Yen Kuo. Email: sykuo@cc.ee.ntu.edu.tw
 Tel: +886-2-2363-5251 ext 444. Fax: +886-2-2367-1909.

* This project was supported in part by the National Science Council,
 Taiwan under grants NSC 92-2213-E-002-011, NSC-93-2422-H-001-

0001, and NSC-92-2213-E-001-024.

verifying program reliability. In many cases, formal
verification algorithms for reliability and security verify
similar or identical sets of program characteristics. Strom
and Yemini’s typestate enhances program reliability by
detecting (at compile-time) syntactically legal but
semantically undefined execution sequences that can lead
to unpredictable behavior. Two examples that they give
are reading variables before they are initialized and
dereferencing pointers after dynamic objects are already
deallocated. In information security, the primary
objectives are to protect confidentiality, integrity, and
availability [22], and null-pointer dereferences are viewed
as major causes for denial-of-service vulnerabilities that
compromise availability. Furthermore, Strom and
Yemini’s typestate essentially allows for flow-sensitive
tracking of program variable states—that is, for each
appearance of a variable at a program point, it determines
the subset of allowable operations in that specific context.
This directly addresses the problem of secure information
flow discussed in Section 2.3. In this project, we base our
verification on BMC, which allows for precise compile-
time estimation of runtime state and thus offers
significant improvements over TS. For our experimental
tests, we decided to verify security vulnerabilities rather
than reliability attributes, although in practice our method
can be used for both purposes.

WebSSARI automatically inserts runtime guards in
potentially insecure sections of code, meaning that a piece
of Web application code will be secured immediately
after WebSSARI processing even in the absence of
programmer intervention. However, since our initial
typestate-based (TS) algorithm sacrificed space and
accuracy for speed, it only identified program points that
violated safety policies, and was not capable of providing
counterexample traces. We identified two major
drawbacks from this deficiency:
1. Runtime guards were inserted at program points where
safety violations might have occurred (symptoms) rather
than at points that induced errors (causes [2]). Our
security policy stated that tainted data could not be used
as arguments for calling sensitive functions. Using our TS
algorithm meant that runtime guards were inserted at
potentially vulnerable function call sites, with the guards
sanitizing the tainted variables before they were used as
arguments to call sensitive functions. However, following
an initial induction, a single piece of tainted data was
capable of triggering a snowballing process of
propagation and tainting of other data, with the number of
tainted variables growing exponentially as the program
executed. Without counterexamples, we had to insert a
sanitization routine for each instance of variable usage
error. A more efficient strategy would be to use an
algorithm capable of giving counterexample traces to
identify the point where the tainting process begins and to
sanitize the data before it propagates.

2. It is very difficult for a programmer to validate a
reported error, since any tainting path can potentially
spread to numerous function calls. According to our
initial experiments, this drawback largely reduces
WebSSARI’s potential for practical use. Two of the
authors needed five days to manually verify all reported
vulnerabilities—a labor-intensive task that canceled the
benefits resulting from the tool’s automated features.

A simple strategy for creating counterexample traces
is to adopt model checking techniques, but they are
considered very expensive in terms of both time and
space complexities. BMC offers a more practical
approach to verifying programs containing large numbers
of variables, but requires fixed program diameters to be
complete [16]. Since we formalize Web application
vulnerabilities as a secure information flow problem with
fixed diameter, our BMC provides a sound and complete
verification mechanism capable of offering
counterexamples. Furthermore, since it utilizes ZChaff
[19] (an efficient SAT solver that has been used with
many industrial projects), it also benefits from ZChaff’s
many optimization techniques.

In this paper we showed how automated Web
application safety verification and assurance can benefit
from the counterexample traces, completeness, and
soundness associated with a BMC-based approach.
Counterexamples and completeness allow for more
detailed and informative error reports, thus enhancing the
practical potential of WebSSARI. Furthermore,
counterexamples allow for more precise identification of
locations that require repair, which increases the precision
of both the error report generation and the runtime guard
instrumentation processes. Completeness and precise
instrumentations together result in reduced runtime
overhead. Soundness guarantees the absence of bugs.
We previously tested our TS algorithm against 230 real-
world Web applications downloaded from
SourceForge.net; 69 were identified as having defective
code. After notifying the developers, we received 38
acknowledgements and promises of patches. For the
present project, we implemented a BMC with ZChaff [19]
(a mature SAT solver) and tested it against the same 230
projects (consisting of 1,140,091 statements). The BMC-
based approach reduced the number of effective insertions
by 41.0% compared to our TS-based results.

2. Web Application Vulnerabilities

As most Web application vulnerabilities arise from the
use of untrusted data before sanitization, it is possible to
provide an automated patch by inserting sanitization
routines at necessary program locations. A major
contribution of this paper lies in using counterexample
traces to reduce the number of inserted sanitization
routines. To make clear how this strategy works, we must
first describe how Web application vulnerabilities arise

and how we formalize it. Since we will only provide brief
descriptions of the most widely exploited vulnerability—
script injection—readers are referred to Scott and Sharp
[24], Curphey et al. [10], OWASP (Curphey et al.) [20]
[10], and Meier et al. [17] for more details.

2.1. Cross-Site Scripting (XSS)
One severe type of XSS involves the uploading of data

by a user, which is then stored for later delivery by a Web
application without performing any type of sanitization.
Consider the following example: a commercial online
auction site hosts a ticket service for users to get support,
report bugs, and submit feature requests. Messages posted
by users are submitted to a server-side script that inserts
them into a backend database. Support tickets and bug
reports can only be read by the website’s support
personnel, but feature requests can be read by all users.
When viewing tickets, a request is sent to a server-side
script that retrieves corresponding data from the backend
database and constructs HTML output. If a user submits a
bug report (or a feature request) that contains a piece of
malicious script, the script will be delivered to the support
personal (or other users) on behalf of the Web server.
This grants rights that the script normally would not
receive. Figure 1 presents a simplified version of a
vulnerability that our WebSSARI discovered in PHP
Support Tickets.

$query="INSERT INTO tickets_tickets(tickets_id,
tickets_username,tickets_subject, tickets_question)
VALUES(”$_SESSION['username']"', '"$_POST['ticketsubject']",
”$_POST['message']")";
$result = @mysql_query($query);
Figure 1. A XSS vulnerability found in PHP Support Tickets

code for ticket submission.

Note that user input values “ticketsubject” and
“message” have been inserted into the database without
sanitization. An example of code from PHP Support
Tickets that uses the backend database to generate HTML
output for displaying tickets is shown in Figure 2. Since
the value “tickets_subject” (containing untrusted data
submitted by the user) is used without sanitization to
construct HTML output, the code is vulnerable to XSS.

$query="SELECT tickets_id, tickets_username,
tickets_subject FROM tickets_tickets";
$result = @mysql_query($query);
WHILE ($row = @mysql_fetch_array($result)) {
 extract($row);
 echo"$tickets_username
$tickets_subject

"
}

Figure 2. Simplified code for displaying the tickets.

2.2. SQL Injection
Considered more severe than XSS, SQL injection

vulnerabilities occur when untrusted values are used to

construct SQL commands, resulting in the execution of
arbitrary SQL commands given by an attacker. The
example we offer below is based on a vulnerability we
discovered in ILIAS Open Source, a popular Web-based
learning management system.

$sql="INSERT INTO track_temp VALUES('$HTTP_REFERER');"
mysql_query($sql);

Figure 3. A simplified SQL injection vulnerability found in
ILIAS Open Source.

In Figure 3, $HTTP_REFERER (a global variable set
by the Web server to indicate the referrer field of a HTTP
request) is used to construct a SQL command. The
referrer field of a HTTP request is an untrusted value
given by the HTTP client; an attacker can set the field to:
');DROP TABLE ('users

This will cause the code in Figure 3 to construct the $sql
variable as:
INSERT INTO track_temp VALUES('');
DROP TABLE ('users');

Table “users” will be dropped when this SQL
command is executed. This technique, which allows for
the arbitrary manipulation of backend database, is
responsible for the majority of successful Web application
attacks. During our experimentation with WebSSARI, we
found that developers who acknowledge that variables
from HTTP requests should not be trusted tend to forget
that the same holds true for the referrer field, user
cookies, and other types of information collected from
HTTP requests.

2.3. Specifying Web Application Reliability and
Security Policies

According to our examples, compromises in integrity
lead to compromises in confidentiality and availability.
When untrusted data is used to construct trusted output
without sanitization, violations in data integrity occur,
leading to escalations in access rights that result in
availability and confidentiality compromises. There is a
clear need for a mechanism that specifies and enforces
legal information flow policies within Web application
programs. This can be achieved by assigning a “state”
that represents a variable’s current trust level. The
challenge is to design a compile-time algorithm that
predicts variable runtime states at each program point—
similar to the requirement for enforcing certain reliability
policies. Strom and Yemini’s [26] typestate algorithm for
enhancing software reliability (i.e., checking for un-
initialized variables and illegal pointer dereferences) is
one example of an algorithm that offers compile-time
tracking of variable states.

3. Verification algorithm

Most Web applications are written in script languages,
including PHP, ASP, Perl, and Python [15]. We designed
our verification algorithm to take advantage of the
imperative, deterministic, and sequential characteristics of
these programming languages. In our information flow
model, we associate every program variable x with a
safety type tx, which represents the current safety level of
x. To verify a program, we first generate an abstract
interpretation (AI) of a program [9] that retains the
program’s information flow properties. We then use
bounded model checking to verify the correctness of all
possible safety states of the AI.

3.1. Information Flow Model
To allow for arithmetic on variable safety types, we

followed Denning’s [12] model and made the following
assumptions:
1. Each variable is associated with a safety type.
2. T = 1 2{ , , , }nτ τ τ" τ is a finite set of safety types.
3. T is partially ordered by ≤, which is reflexive,

transitive, and antisymmetric. For ,1 2 Tτ τ ∈ ,

 iff and 1 2 1 2 2 1τ τ τ τ τ τ= ≤ ≤ ,

 and iff and 1 2 1 2 1 2τ τ τ τ τ τ< ≤ ≠ .

4. (T, ≤) forms a complete lattice with a lower bound ⊥
such that T, τ τ∀ ∈ ≤⊥ , and an upper bound such
that T, τ τ∀ ∈ ≤ .

These assumptions imply that a greatest lower bound

operator and a least upper bound operator exit on T. For
subset Y ⊆ T, let Y denote if Y is empty and the
greatest lower bound of the types in Y otherwise; let Y
denote ⊥ if Y is empty and the least upper bound of the
types in Y otherwise.

Types resulting from expressions are determined using
the upper- and lower-bound operators (i.e., and ,
respectively) defined above.

3.2. Abstract Interpretation
Given a program p, we first use a filter to generate

F(p), which consists of command sequences constructed
according to the following syntax rules:

() () 1 2 1 2

1 2

:: : | | | | if then else |while do | ;

:: | | ~

(commands)

(expression)
i oc x e f X f X stop e c c e c c c

e x n e e

= =

=

, where x is a variable, n is a constant, ~ stands for binary
operations such as +, and X⊆dom(p) is a variable set. By
preserving only assignments, function calls and
conditional structures. F(p) unfolds function calls and
discards all program constructs that are not associated
with information flow. During execution, data is retrieved

from external sources (e.g., reading files or retrieving
environment variables). Functions that permit the flow of
external data into a program are identified as untrusted
input channels (UIC), denoted as fi(X). An example in
PHP is GET_HTTP_VARS(), which retrieves data from
HTTP requests sent by Web clients. In WebSSARI, UICs
are given predefined postconditions consisting of
command sets that match the designated safety levels of
the retrieved data. At the same time, program execution
also entails calling functions that manipulate system
resources or affect system integrity—in PHP, for instance,
exec() executes system commands and echo() generates
output. These functions—identified as sensitive output
channels (SOC) and denoted as fo(X)—require trusted
arguments. Each one is assigned a predefined
precondition that states the required argument safety
levels.

Filtered Result:
F(p)

Abstract Interpretation:
AI(F(p))

x = e; t tx e= , where ,
i j i jn e e e et t t t=⊥ =∼

fi(X); x X xt τ∈∀ = , where τ depends on
the postconditions of fi

fo(X);
(), rassert X τ ,where rτ depends on the

preconditions of of
stop; stop;
if e then c1 else c2 if be then AI(c1) else AI(c2)
while e do c if be then AI(c)
c1; c2 AI(c1); AI(c2)

Figure 4. Abstract interpretation procedure.

As one would expect, the stop command immediately
terminates program execution. When verifying
conditional structures within a program, we do not
consider how condition e evaluates, but rather focus on
making sure that each branched path behaves correctly. In
path-sensitive terminology, we treat all these conditions
as nondeterministic conditions. Furthermore, since we
only consider information flow, loop structures can be
deconstructed into selection structures.

Consequently, given a safety type lattice T and sets of
pre- and postconditions, we translate F(p) into an AI that
consists of only if instructions, type assignments and
assertions. The intuitive interpretation procedure AI(F(p))
is illustrated in Figure 4. An assignment from expression
e to variable x is translated into a type assignment that
conveys e’s safety type to x. Function preconditions are
expressed using assertions ((), rassert X τ) that specify

safety requirements ((), , domx X x r rt Tτ τ∈∀ < ∈),
meaning that the types of all variable in X must be lower
(safer) than the rτ . Postconditions are expressed using

type assignment sets (in the form , x X xt τ∈∀ =

()dom Tτ ∈) that describe the safety level of each piece
of retrieved data. In WebSSARI, pre- and postcondition
definitions are stored in two prelude files that are loaded
during startup [14].

3.3. Formal Verification
Using the AI definitions given above, the verification

of a given PHP program p consists of checking whether
AI(F(p)) is consistent with its assertions. We will present
some observations before attempting to automate this
process. First, (())AI F p is loop-free and its flow chart
forms a directed acyclic graph (DAG), implying a fixed
program diameter [16]. Second, AI(F(p)) represents a
single sequential process with large numbers of: a)
variables and b) branches following simple assignments.
Based on these observations, we adopted Bounded Model
Checking [3] [4] rather than the more conventional model
checking techniques based on BDDs (binary decision
diagrams). In addition to its ability to provide both sound
and complete verification. BMC is more efficient in
finding bugs and more capable of handling large numbers
of variables that may cause BDDs to crash [23].

In BMC, a system’s transition relations are unfolded
with bounded steps and coupled with initial and risk
conditions to form a CNF formula, which is then solved
using a SAT solver. In the following sections we will
describe the details of our program encoding and some of
the difficulties we encountered.

3.3.1. Encoding using an auxiliary variable

The first challenge was keeping track of program
behaviors. A naïve but conceptually straightforward
solution was to add an auxiliary variable l to record
program lines (statements). Given a program p, let

{ | dom((()))}xX l t x AI F p= ∪ ∈ denote state variables,
then we can construct a control-flow graph CFG(X,p).
The transition relations of CFG(X,p) are encoded as a
CNF formula, T(s,s’), where s and s’ denote the current
and subsequent program states (the evaluation of X),
respectively. By rolling 1(,)i iT s s + up for a bounded k
number of steps (the length of the longest path in
CFG(X,p)), the entire formula is represented as:

() () () ()0 0 1 1, () , , , , ,k k i kB X k I s T s s T s s R s s−= ∧ ∧ ∧ ∧" "

where ()0I s is the initial condition and (), ,i kR s s"

specifies the risk conditions (assertion negations) within
the ith and kth states.

We incorporated this idea into our first BMC version,
xBMC0.1, but initial experiments revealed frequent
system breakdowns, primarily due to inefficiently
encoding each assignment using 2|X| variables.

3.3.2. Encoding using variable renaming

Clarke et al.[6] [7] automated memory overflow and
assertion consistency tests for C and Verilog with their
CBMC [8] tool. The checker unwinds C or Verilog
programs and converts them to a Boolean formula that
can be checked for behavior consistency. CBMC uses
variable renaming to create a single assignment
program—similar to a Static Single Assignment (SSA)
program [11] without the φ − condition. Since the
algorithm uses variable renaming, it encodes each
assignment using only 2 variables. However, compared
with the algorithm mentioned in the previous section,
using renaming makes it inefficient for modeling
languages containing loop constructs. Since our
information flow model allows for deconstructing loop
structures into selection structures without unfolding, we
can adopt Clarke et al.’s algorithm without any drawback.

In their algorithm, AI variables are renamed such that
each renamed variable is assigned only once. Assume that
variable v is referred to at program location i in an AI. Let
α denote the number of assignments made to variable v
prior to i, then the variable v at location i is renamed to.
vα. After this renaming procedure ρ, each assignment
becomes unique, which allows for information flow
tracking minus the need for auxiliary location variables.
In our revised version (xBMC1.0), we used Clarke et al.’s
[6] [7] algorithm to encode our AI. Given a command c,
the constraint generated by procedure C(c,g) is shown in
Figure 5 (g denotes the guard and is initially true).

AI Command Constraint
stop; or empty (), :C c g true=

x et t= () 1, : ? () :i i
x e xC c g t g t tρ −= =

()()|x Rassert t x X T∈ <
(), : x R

x X

C c g g t Tρ
∈

= ⇒ <
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∩

1 2if then else eb c c () ()
()

1

2

, : ,

 ,
e

e

C c g C c g b

C c g b

= ∧

∧ ∧ ¬

1 2;c c () () ()1 2, : , ,C c g C c g C c g= ∧

Figure 5. Constraint construction procedure.

However, instead of checking all assertions at the
same time [6] [7], we check one assertion at a time and
generate all counterexamples for that assertion. For each
assertion, we generate a formula B and check for its
satisfiability. If B is satisfiable, we obtain a
counterexample and make B more restrictive by negating
out the counterexample. We iterate this loop until B is
unsatisfiable—that is, when we have collected all
counterexamples. When generating a formula for an
assertion asserti, we view it and all its preceding
commands as a concatenation c;asserti. The
corresponding formula Bi is then constructed with the

negation of asserti: () (): , , .i iB C c g C assert g= ∧ ¬
Examples are given in Figure 6. 6

CNF(Bi) transforms Bi into a CNF formula, which can
then be solved using the efficient SAT solver zChaff [19].
As mentioned above, if CNF(Bi) is satisfiable, zChaff
proposes a truth assignment αi that violates asserti. Let BN
denote the set of all nondeterministic boolean variables in
the AI. According to BN’s values in αi, we can trace the
AI and generate a sequence of single assignments, which
represents one counterexample trace. In order to collect
all possible counterexamples, we iteratively make Bi more
restrictive until it becomes unsatisfiable. In other words,
each time a truth assignment αi

j is proposed at the jth
iteration, we generate the negation clause Ni

j
 of BN. Thus

the more restrictive formula Bi
j at the j+1th iteration is

defined as 1j j
i i i iB B N N= ∧ ∧ ∧" .

Once the formula becomes unsatisfiable, we continue
the constraint generation procedure (see Figure 5)
() () ()1, : , ,iC c g C c g C assert g= ∧ until we encounter the

next assertion. Since the AI program is loop-free, each
assertion will be checked exactly once.

3.3.3. Counterexample Analysis

For any instance of unsafe code reported by BMC,
WebSSARI inserts guards that perform run-time
inspections as part of an automated patching process—
specifically, it inserts routines that sanitize untrusted input
before they are used by SOCs. Several combinations of
patching locations may fix the same section of insecure
code. In this section, we will describe how our algorithm
takes advantage of BMC-produced counterexamples to
identify an optimal patching combination with a
minimum number of insertions. Our definition of an
effective fix is as follows.

Definition 1: Given a error trace r, a Fix(V) is said to
effective if, after sanitizing all variables v V∈ , the error
trace is removed (fixed).

For an error trace r, we refer to the set of variables that
directly caused assertion violations (i.e., variables that
appeared in assertion commands and caused violations) as
violating variables, and a variable set that yields an
effective fix when sanitized as a fixing set. Given an error
trace set R, our goal is to find a minimal fixing set VR
such that for every trace r R∈ , Fix(VR) serves as an
effective fix of r. For an error trace r R∈ , let Vr denote
the violating variables of r. A naïve method of finding a

fixing set for R is nV VR r
r R

=

∀ ∈
∪ . Obviously, fixing all

violating variables in R removes all error traces (for all
r R∈ , Fix(nV R) is an effective fix), but in many cases,

nV R is not the minimum set. Figure 7 presents a
simplified version of a vulnerable file we found in PHP
Surveyor. In this example, the tainted variable $sid taints
$iquery, $i2query, and $fnquery, causing lines 2, 3, and 4
to become vulnerable. A naïve fixing set would be
{$iquery, $i2query, $fnquery}—as was adopted by our
TS algorithm. However, the optimal fixing set is clearly
{$sid}, and so sanitizing $sid is by itself an effective fix.
In a source code of PHP Surveyor, $sid was the root
cause of 16 vulnerable program locations; our TS
algorithm made 16 instrumentations, whereas a single
instrumentation would have been sufficient to secure the
code.
1: $sid = $_GET['sid']; if (!$sid) {$sid = $_POST['sid'];}
2: $iq = "SELECT * FROM groups WHERE sid=$sid”;DoSQL($iq);
3: $i2q = "SELECT * FROM ans WHERE sid=$sid; DoSQL($i2q);
4: $fnquery = "SELECT * FROM questions, surveys WHERE

questions.sid=surveys.sid AND questions.sid='$sid'";
DoSQL($fnquery);

Figure 7. Multiple vulnerabilities arising from the same root
cause in PHP Surveyor.

To achieve this, for each violating variable rv Vα ∈ , a
replacement set vs

α
 is built by tracing back from the

violation point along the error trace r while recursively

PHP source code Filtered Result Abstract Interpretation Renaming Constraints for each assertion
…
if (Nick) {

$tmp=$_GET["nick"];
echo
(htmlspecialchars
 ($tmp)
);

} else {
$tmp="You are the".
$GuestCount." guest";
echo($tmp);

}
...

…
if (Nick) {

()

()
()

;
;
;

;

tf nicki
tmp nick

uf tmpi
f tmpo

=

} else {

 ()
;

;
tmp GuestCount
f tmpo

=

}
...

…
if bNick then

()

;
;

;
assert ;

t Tnick
t ttmp nick
t Utmp

t Ttmp

=
=
=

<

else

()
;

assert ;
t ttmp GuestCount

t Ttmp

=

<

…

…
If bNick then

()

;
;

1 ;
1assert ;

it Tnick
j it ttmp nick
jt Utmp

jt Tk tmp

=
=

+ =
+ <

else

()

2 ;
2assert ;1

j kt ttmp GuestCount
jt Tk tmp

+ =
+ <+

…

()
()
()
()

1: ? :

1 ? :

1 ? :

1

i iB t b T tk nick Nick nick
j i jt b t ttmp Nick nick tmp
j jt b U ttmp Nick tmp

jb t TNick tmp

−= = ∧

−= ∧

+ = ∧

+¬ ⇒ <

()
()
()
()
()
()

1: ? :1
1 ? :

1 ? :
1

2 1 ? :
2

i iB t b T tk nick Nick nick
j i jt b t ttmp Nick nick tmp
j jt b U ttmp Nick tmp

jb t TNick tmp
j k jt b t ttmp Nick GuestCount tmp

jb t TNick tmp

−= = ∧+
−= ∧

+ = ∧

+⇒ < ∧

+ += ¬ ∧

+¬ ¬ ⇒ <

Figure 6. An example of translation from PHP to Boolean formulas.

adding variables that serve as unique r-values of single
assignments. That is,

{ }

{ }, .

,

v f the single assignment isv

in the form v vv
v otherwise

is
s

β

α

α

α β

α

∪
==

⎧⎪
⎨
⎪⎩

Note that if vα is tainted, then vs
α

 presents a tainted

flow path along which subsequent assignments cause vα to
become tainted. While tracing back along the error trace
r, vs

α
 is expanded with variables that can be sanitized

instead of vα, yet achieve the same effect as sanitizing vα.

Lemma 1: If a Fix(rV), rv Vα ∈ , is an effective fix for r,
then for any vv s

αβ ∈ , Fix([/]rV v vβ α) is also an effective

fix, where [/]rV v vβ α denotes ({ }) { }rV v vα β− ∪ .

Proof: Initially, vs

α
is expanded only with single

assignments in the form vα=vβ, meaning that the value of
vα is solely dependent upon vβ. After expanding vs

α
 with

vβ, this process is repeated to add variables (if any) whose
value vβ depends on. Therefore, sanitizing any variable in

vs
α

 has the same effect as sanitizing the initial variable

vα.
To identify the root errors, we calculate an error trace

set R’s minimum fixing set. First, for each r R∈ , we
identify the violating variable set Vr and then apply the

naïve method to derive n
RV , where n

R r
r R

V V
∀ ∈

= ∪ .

Second, for each n
Rv Vα ∈ , we calculate its

replacement set vs
α

. Finally, the minimum effective

fixing set m
RV can be obtained by solving min | |m

RV

such that n
R

m
v Rv V s V
αα∈

∀ ∩ ≠∅ .

Lemma 2: Given an error trace set R, for all r R∈ ,
Fix(m

RV) is an effective fix for r.

Proof: Obviously, fixing all violating variables in R

removes all error traces. That is, if n
R r

r R

V V
∀ ∈

= ∪ , then for

all r R∈ , Fix(n
RV) is an effective fix. From Lemma 1,

substituting rv Vα ∈ with variable vv s
α

∈ still yields an

effective fix. Since for all n
Rv Vα ∈ , for all vs

α
 of R,

m
v Rs V
α
∩ ≠ ∅ , Fix(m

RV) remains an effective fix for

all r R∈ .

3.3.4. Minimal Fixing Set

The only remaining problem is solving min | |m
RV

such that n
R

m
v Rv V s V
αα∈

∀ ∩ ≠∅ . In the following, we

offer a formal definition and prove it to be a NP-complete
problem. Finally, we describe the heuristic search
procedure that WebSSARI incorporates.

Definition 2: Given a variable set V and a collection of
subsets of V, 1{ , , }nS S S= " , the MINIMUM-
INTERSECTING-SET problem is to find a minimum set
M V⊆ , such that for 1 , ii n S M≤ ≤ ∩ ≠ ∅ .

Theorem: The MINIMUM-INTERSECTING-SET problem
is NP-complete.

Proof: The MINIMUM-INTERSECTING-SET (MIS)
problem is in NP since we can guess a subset S’ of S and
check in polynomial time whether a) S’ shares at least one
common element with every set in iS S∈ , and b) S’ has
an appropriate size. To prove that it is NP-complete, we
reduce the VERTEX-COVER problem to MIS. If G is an
undirected graph, a vertex cover of G is a subset of the
nodes where every edge of G touches one of those nodes.
The vertex cover problem asks for the size of the smallest
vertex cover. Our reduction maps each edge ei in G to a
set { , '}iS v v= , where v and v’ denote the two vertices
connected by ei. Then the undirected graph G with edges

, ,1e en" can be represented as a set of vertex sets
{ , , }1S S Sn= " . The size of the smallest vertex cover is |M|

where Si S∀ ∈ , Si M∩ ≠ ∅ .

The MIS problem can be reduced to the SET-COVER
problem where all sets have an equal cost. Therefore, in
WebSSARI, we adopted the greedy heuristic algorithm in
[5], which gives a 1+ln(|S|) approximation ratio in
polynomial time. The reduction procedure is described as
follows. Given a universe U of n elements, a collection of
subsets of U,

1
{ , , }

k
S S Sv v v= " , and a cost function

:c S Qv
+→ , the SET-COVER problem asks to find a

minimum-cost subcollection of Sv that covers all elements
of U. The reduction takes each Si as an element of U. Let

{ }|
i

S S v Vv v i= ∈ , where { | , }
i

S S v S S Uv j i j j= ∈ ∈ , and

()i
c Sv be a constant. The MIS problem can be solved by

first solving this SET-COVER problem and then
replacing each selected

i
Sv with vi .8

4. System implementation

To test our approach, we developed WebSSARI to
verify real-world Web applications. An illustration of
WebSSARI’s system architecture is presented in Figure 8.
A code walker consists of a lexer, a parser, an AST
(abstract syntax tree) maker, and a program abstractor.
The program abstractor asks the AST maker to generate a
full representation of a program’s AST. The AST maker
uses the lexer and the parser to perform this task, handling
external file inclusions along the way. By traversing the
AST, the program abstractor generates an AI. Using the
algorithms described in Section 3, the BMC engine
performs verification of the AI. For each variable
involved in an insecure statement, it inserts a statement
that secures the variable by treating it with a sanitization
routine. Sanitization routines are stored in a prelude, and
users can supply the prelude with their own routines. The
whole AI verification process is illustrated in Figure 9. 9

5. Experimental results

SourceForge.net [1], the world’s largest open-source
development website, classifies all projects according to
language, purpose, popularity, and development status
(also referred to as maturity). As part of our previous TS
algorithm effort, we established a sample of 230 projects
(written in PHP) reflecting a broad variation in terms of
the SourceForge.net classifications. After downloading
their sources and testing them with WebSSARI, we
manually inspected every single report of a security
violation. If we identified an actual vulnerability, we sent
an email notification to the developer. Of the 69

developers we contacted, 38 acknowledged our findings
and stated that they would provide patches (Figure 10).

Project A TS BM Project A TS BMC
GBook MX 60 4 2 SquirrelMail 99 7 7
AthenaRMS 0 3 2 PHPMyList 69 10 4
PHPCodeCabinet 71 25 25 EGroupWare 99 4 4
BolinOS 94 3 3 PHPFriendlyAdmin 87 16 16
PHP Surveyor 99 169 90 PHP Helpdesk 87 1 1
Booby 90 5 4 Media Mate 0 53 16
ByteHoard 98 2 2 Obelus Helpdesk 22 8 6
PHPRecipeBook 99 11 8 eDreamers 80 7 1
phpLDAPadmin 97 25 13 Mad.Thought 66 4 4
Segue CMS 77 11 9 PHPLetter 79 23 23
Moregroupware 99 7 7 WebArchive 2 7 2
iNuke 0 3 3 Nalanda 58 27 8
InfoCentral 82 206 57 Site@School 94 46 40
WebMovieDB 24 7 5 PHPList 0 16 1
TestLink 88 69 48 PHPPgAdmin 98 3 3
Crafty Syntax
Live Help 96 16 1 Anonymous Mailer 73 7 7

ILIAS open
source 20 2 2 PHP Support

Tickets 0 40 40
PHP Multiple
Newsletters 68 30 30 Norfolk Household

Financial Manager 0 60 60

International Suspect
Vigilance Nexus 0 20 12 Tiki CMS

Groupware 99 12 12

Total 980 578

A: Project activity
TS: TS-reported errors BMC: BMC-reported errors

Figure 10. The number TS- and BMC-reported errors of the
38 projects that responded to our notifications.

The 230 projects consisted of 11,848 files consisting
of 1,140,091 statements; 515 files were identified by TS
as vulnerable. Soon after starting the task of manually
validating all reported vulnerabilities, the authors realized
that the lack of counterexamples made for a laborious and

Lexer Parser

AST
Generator

Program
Abstractor

AST

Abstract Interpretation

BMC Engine

SableCC

LALR(1)
Grammar

Command
Flow

Information
Flow

Code Walker

Grammar
Generation

Prelude Prelude Prelude

Inside BMC Engine

Constraint
Generator

SAT Solver

Counterexample
Analyzer

Renamer

Instrumentor

Filter

Abstract
Interpretation

Renaming

Constraint
Generation

SAT solver

Counter-
example
Analyser

PHP:p

Fp

ATp

Unsatifiable

Counter examples: R

Run time
Protection

Inspected Variables:CR

Assertion Satisfiable:
Restriction

Secured PHP

Figure 8. WebSSARI system architecture. Figure 9. The verification process.

time-consuming task that required investigating multiple
function calls spanning multiple files. In an effort to
speed up the process, we added features to the
WebSSARI GUI that helped users: a) navigate between
different source files, function calls, and vulnerable lines;
b) identify particular variables (such as highlighting
variables that caused assertions); and c) search for
specific variables or text patterns. However, even with
these special features, the job of manual validation
remained difficult. We therefore added a tool called
PHPXREF [27] to generate cross-referenced HTML
documentations of source code. Despite the
enhancements, it still took two of the authors four full
working days to validate the 515 files that were identified
as vulnerable.

In the revised project that is the focus of this paper, we
used BMC to provide counterexample traces. Differences
in the TS and BMC reports on the 38 vulnerable projects
whose developers acknowledged our findings are shown
in Figure 10. For these projects, the total number of
vulnerable statements originally reported by TS was 980.
Using the same test set, BMC reported a total of 578 error
introductions, meaning that the 980 vulnerabilities were
caused by the propagation of 578 errors. Compared with
TS, this process yielded an additional 41.0 percent
reduction in the number of instrumentations.

6. Discussion

In this project, we used BMC-provided
counterexamples to identify the cause of errors, which
increases the precision of both error reports and code
instrumentation. In a very recent project, Ball, Naik, and
Rajamani [2] made a very similar effort—they attempted
to enhance their model checker SLAM with the ability to
localize errors. As they mentioned, current model
checkers report error symptoms rather than the actual
causes. Furthermore, even the state-of-the-art model
checkers today report only a single error trace per run.
They reported their experiences in using their algorithm
to detect locking bugs in C device drivers.

Our efforts were motivated by our previous effort in
verifying Web applications using the TS algorithm. TS
reported individual error symptoms, which not only
resulted in inefficient automated patching, but also made
it difficult to report a meaningful number of discovered
vulnerabilities, since many of the reported errors were
attributed to a same cause and should not have been
double counted. Ball, Naik, and Rajamani focused on
locking bugs, which usually have a one-to-one mapping
between a symptom and a cause. However, we focus on
information flow bugs, which are much more complex
and can have a many-to-many symptom-cause mapping—
the reason why localizing errors resulted in a MINIMUM-
INTERSECTING-SET problem. Furthermore, their efforts

mainly contributes to more informative error reports,
while ours also results in more efficient automated
patching. Like Ball, Naik, and Rajamani’s algorithm, ours
also requires that all counterexample traces be identified.
However, since SLAM is a BDD-based model checker
and xBMC is a SAT-based bounded model checker, our
proposed method for extracting all counterexamples is
unique from theirs.

7. Conclusion

In this paper we proposed a practical approach for
formally verifying Web application reliability and
security. In an earlier work, we used a typestate-based
algorithm (TS) that essentially performs breadth-first
searches on control flow graphs and trades space for time.
Although it has polynomial-time complexity, it is
incapable of providing counterexample traces. This
proved to be a major deficiency that reduced
WebSSARI’s potential for practical use. On the other
hand, we considered a depth-first search algorithm to be
too costly in terms of time, and so we implemented a
bounded model checker using ZChaff [19] (a mature SAT
solver) and used it to produce counterexample traces.
Two immediate benefits of counterexample traces are a)
they allow for more informative error reports, and b) they
can be used to identify multiple errors (symptoms) with
the same root cause. Such information not only
contributes to greater report accuracy, but also sharply
reduces the number of inserted runtime guards. We
showed that the problem of finding the minimum error
causes (groups) is NP-complete, and offered a greedy
heuristic-based strategy.

8. Acknowledgement

We deeply appreciate the anonymous reviewers for
offering us many valuable comments. We would also like
to thank Dr. Bow-Yaw Wang for his useful suggestions.

9. References

[1] Augustin, L., Bressler, D., Smith, G. “Accelerating
Software Development through Collaboration." In
Proc. 24th International Conf. Software Engineering,
p.559-563, Orlando, Florida, 2002.

[2] Ball, T., Naik, M., Rajamani, S. “From Symptom to
Cause: Localizing Errors in Counterexample Traces.”
In Proc. 30th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, p.97-105,
New Orleans, Louisiana, 2003.

[3] Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., Zhu,
Y. “Symbolic Model Checking without BDDs.” In
Proc. 5th Int’l Conf. Tools and Algorithms for
Construction and Analysis of Systems, p.193-207,

volume LNCS 1579, Amsterdam, The Netherlands,
1999. Springer-Verlag.

[4] Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., Zhu,
Y. “Symbolic Model Checking using SAT
Procedures instead of BDDs.” In Proc. 36th Design
Automation Conference, p.317-320, New Orleans,
Las Angeles, 1999.

[5] Chvatal, V. “A Greedy Heuristic for the Set Covering
Problem.” Mathematics of Operations Research,
4:33-235, 1979.

[6] Clarke, E., Kroening, D., Yorav, k. “Behavioral
Consistency of C and Verilog Programs using
Bounded Model Checking.” Technical Report CMU-
CS-03-126, Carnegie Mellon University, School of
Computer Science, 2003.

[7] Clarke, E., Kroening, D., Yorav, K. “Behavioral
Consistency of C and Verilog Programs using
Bounded Model Checking.” In Proc. 40th Design
Automation Conference, Session 23.3, Anaheim, CA,
2003.

[8] Clarke, E., Kroening, D. “ANSI-C Bounded Model
Checker User Manual.” Carnegie Mellon University,
School of Computer Science, 2003.

[9] Cousot, P., Cousot, R. “Abstract Interpretation: A
Unified Lattice Model for Static Analysis of
Programs by Constructions or Approximation of
Fixpoints.” In Conference Record of the 4th ACM
Symp. Principles of Programming Languages, p.238-
252, 1977.

[10] Curphey, M., Endler, D., Hau, W., Taylor, S., Smith,
T., Russell, A., McKenna, G., Parke, R., McLaughlin,
K., Tranter, N., Klien, A., Groves, D., By-Gad, I.,
Huseby, S., Eizner, M., McNamara, R. “A Guide to
Building Secure Web Applications.” The Open Web
Application Security Project, v.1.1.1, Sep 2002.

[11] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M.
N., Zadeck, F. K. “An Efficient Method of
Computing Static Single Assignment Form.” In Proc.
16th ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages, p.25-35, Austin, Texas,
1989. ACM Press.

[12] Denning, D. E. “A Lattice Model of Secure
Information Flow.” Communications of the ACM,
19(5):236-243, 1976.

[13] Huang, Y. W., Huang, S. K., Lin, T. P., Tsai, C. H.
“Web Application Security Assessment by Fault
Injection and Behavior Monitoring.” In Proc. 12th
Int’l World Wide Web Conference, p.148-159,
Budapest, Hungary, 2003.

[14] Huang, Y. W., Yu, F., Hang, C., Tsai, C. H., Lee,
D.T., Kuo, S. Y. “Securing Web Application Code by
Static Analysis and Runtime Inspection.” In: Proc.
13th Int’l World Wide Web Conference, New York,
2004.

[15] Hughes, F. “PHP: Most Popular Server-Side Web
Scripting Technology.” LWN.net.

 http://lwn.net/Articles/1433/
[16] Kroening, D., Strichman, O. “Efficient Computation

of Recurrence Diameters.” In Proc. 4th Int’l Conf.
Verification, Model Checking, and Abstract
Interpretation, p.298-309, volume LNCS 2575, New
York, 2003. Springer-Verlag.

[17] Meier, J.D., Mackman, A., Vasireddy, S. Dunner, M.,
Escamilla, R., Murukan, A. “Improving Web
Application Security—Threats and
Countermeasures.” Microsoft Corporation, 2003.

[18] Merzbacher, M., Patterson, D. “Measuring End-User
Availability on the Web: Practical Experience.” In
Proc. 2002 Int’l Conf. Dependable Systems and
Networks, p.473-488, Washington, D.C., 2002.

[19] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang,
L., Malik, S. “Chaff: Engineering an Efficient SAT
Solver.” In Proc. 38th Design Automation
Conference, session 33.1, New Orleans, LA, 2001.

[20] OWASP. “The Ten Most Critical Web Application
Security Vulnerabilities.” OWASP Whitepaper,
version 1.0, 2003.

[21] Pottier, F., Simonet, V. “Information Flow Inference
for ML.” ACM Transactions on Programming
Languages and Systems, 25(1):117-158, 2003.

[22] Sandhu, R. S. “Lattice-Based Access Control
Models.” IEEE Computer, 26(11):9-19, 1993.

[23] Sanjit, A. S., Bryant, R. E., “Unbounded, Fully
Symbolic Model Checking of Timed Automata using
Boolean Methods.” In Proc. 15th Int’l Conf.
Computer-Aided Verification, p.154-166, volume
LNCS 2725, Boulder, Colorado, 2003. Springer-
Verlag.

[24] Scott, D., Sharp, R. “Abstracting Application-Level
Web Security.” In Proc. 11th Int’l World Wide Web
Conference, p.396-407, Honolulu, Hawaii, 2002.

[25] Shankar, U., Talwar, K., Foster, J. S., Wagner, D.
“Detecting Format String Vulnerabilities with Type
Qualifiers.” In Proc. 10th USENIX Security
Symposium, p.201-220, Washington DC, 2002.

[26] Strom, R. E., Yemini, S. A. “Typestate: A
Programming Language Concept for Enhancing
Software Reliability.” IEEE Transactions on
Software Engineering, 12(1):157-171, Jan 1986.

[27] Watts, G. “PHPXref: PHP Cross Referencing
Documentation Generator.” Sep 2003.

 http://phpxref.sourceforge.net/
[28] Woodman, S., Morgan, G., Parkin, S. “Portal

Replication for Web Application Availability Via
SOAP.” In Proc. 8th IEEE Int’l Workshop on Object-
Oriented Real-Time Dependable Systems, p.122-130,
Guadalajara, Mexico, 2003.

[29] Wright, A. K, Cartwright, R. “A Practical Soft Type
System for Scheme.” ACM Transactions on
Programming Languages and Systems, 19(1):87-152,
Jan 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

