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Abstract 
 

The authors describe the use of bounded model 
checking (BMC) for verifying Web application code. 
Vulnerable sections of code are patched automatically 
with runtime guards, allowing both verification and 
assurance to occur without user intervention. Model 
checking techniques have relatively complexity compared 
to the typestate-based polynomial-time algorithm (TS) we 
adopted in an earlier paper, but they offer three 
benefits—they provide counterexamples, more precise 
models, and sound and complete verification. Compared 
to conventional model checking techniques, BMC offers a 
more practical approach to verifying programs 
containing large numbers of variables, but requires fixed 
program diameters to be complete. Formalizing Web 
application vulnerabilities as a secure information flow 
problem with fixed diameter allows for BMC application 
without drawback. Using BMC-produced counter-
examples, errors that result from propagations of the 
same initial error can be reported as a single group 
rather than individually. This offers two distinct benefits. 
First, together with the counterexamples themselves, they 
allow for more descriptive and precise error reports. 
Second, it allows for automated patching at locations 
where errors are initially introduced rather than at 
locations where the propagated errors cause problems. 
Results from a TS-BMC comparison test using 230 open-
source Web applications showed a 41.0% decrease in 
runtime instrumentations when BMC was used. In the 38 
vulnerable projects identified by TS, BMC classified the 
TS-reported 980 individual errors into 578 groups, with 
each group requiring a minimal set of patches for repair. 

1. Introduction 

As World Wide Web usage expands to cover a greater 
number of B2B (business-to-business), B2C (business-to-

client), healthcare, and e-government services, the 
reliability and security of Web applications has become 
an increasingly important concern. A number of 
deployment-phase mechanisms have recently been 
examined as a means of assuring the quality attributes of 
Web applications. One widely-adopted approach to 
maintaining reliability is applying replication strategies to 
existing Web applications—that is, enhancing them with 
fault-tolerance features [28]. To assure security for 
existing Web applications, Scott and Sharp [24] proposed 
using gateways that filter invalid and malicious input at 
the application level. A primary advantage of these two 
deployment-phase mechanisms is their ability to provide 
immediate assurance of Web application quality, but their 
main drawback is that they blindly protect against 
unpredicted behavior without investigating the actual 
defects that compromise quality.  

To assess Web application quality, Merzbacher and 
Patterson [18] created a Web application reliability 
assessment mechanism based on user-experience 
modeling, and Huang et al. [13] designed a similar 
security assessment framework that combined user-
behavior simulation with user-experience modeling. Both 
efforts serve as examples of black-box testing. When 
compared with deployment-phase protection techniques, 
these approaches emphasize assessment over blind 
assurance, thus allowing for software improvements. 
However, they have at least two disadvantages: they do 
not provide immediate quality assurance, and they cannot 
guarantee the identification of all flaws. Providing a 
sound guarantee requires the formalization of Web 
application bugs and the application of formal verification 
techniques. 

We recently used a combination of static and runtime 
techniques to create a holistic approach to ensuring Web 
application quality [14]. The tool that resulted—which we 
named WebSSARI (Web application Security via Static 
Analysis and Runtime Inspection)—aimed to a) statically 
verify existing Web application code without any 
additional annotation effort; and b) after verification, 
automatically protect potentially defective sections of 
code. In the project, we formalized Web application 
vulnerabilities as a secure information flow problem, and 
based our verification algorithm (TS) on Strom and 
Yemini’s typestate [26]—a compile-time technique for 
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verifying program reliability. In many cases, formal 
verification algorithms for reliability and security verify 
similar or identical sets of program characteristics. Strom 
and Yemini’s typestate enhances program reliability by 
detecting (at compile-time) syntactically legal but 
semantically undefined execution sequences that can lead 
to unpredictable behavior. Two examples that they give 
are reading variables before they are initialized and 
dereferencing pointers after dynamic objects are already 
deallocated. In information security, the primary 
objectives are to protect confidentiality, integrity, and 
availability [22], and null-pointer dereferences are viewed 
as major causes for denial-of-service vulnerabilities that 
compromise availability. Furthermore, Strom and 
Yemini’s typestate essentially allows for flow-sensitive 
tracking of program variable states—that is, for each 
appearance of a variable at a program point, it determines 
the subset of allowable operations in that specific context. 
This directly addresses the problem of secure information 
flow discussed in Section 2.3. In this project, we base our 
verification on BMC, which allows for precise compile-
time estimation of runtime state and thus offers 
significant improvements over TS. For our experimental 
tests, we decided to verify security vulnerabilities rather 
than reliability attributes, although in practice our method 
can be used for both purposes. 

WebSSARI automatically inserts runtime guards in 
potentially insecure sections of code, meaning that a piece 
of Web application code will be secured immediately 
after WebSSARI processing even in the absence of 
programmer intervention. However, since our initial 
typestate-based (TS) algorithm sacrificed space and 
accuracy for speed, it only identified program points that 
violated safety policies, and was not capable of providing 
counterexample traces. We identified two major 
drawbacks from this deficiency:  
1. Runtime guards were inserted at program points where 
safety violations might have occurred (symptoms) rather 
than at points that induced errors (causes [2]). Our 
security policy stated that tainted data could not be used 
as arguments for calling sensitive functions. Using our TS 
algorithm meant that runtime guards were inserted at 
potentially vulnerable function call sites, with the guards 
sanitizing the tainted variables before they were used as 
arguments to call sensitive functions. However, following 
an initial induction, a single piece of tainted data was 
capable of triggering a snowballing process of 
propagation and tainting of other data, with the number of 
tainted variables growing exponentially as the program 
executed. Without counterexamples, we had to insert a 
sanitization routine for each instance of variable usage 
error. A more efficient strategy would be to use an 
algorithm capable of giving counterexample traces to 
identify the point where the tainting process begins and to 
sanitize the data before it propagates.  

2. It is very difficult for a programmer to validate a 
reported error, since any tainting path can potentially 
spread to numerous function calls. According to our 
initial experiments, this drawback largely reduces 
WebSSARI’s potential for practical use. Two of the 
authors needed five days to manually verify all reported 
vulnerabilities—a labor-intensive task that canceled the 
benefits resulting from the tool’s automated features. 

A simple strategy for creating counterexample traces 
is to adopt model checking techniques, but they are 
considered very expensive in terms of both time and 
space complexities. BMC offers a more practical 
approach to verifying programs containing large numbers 
of variables, but requires fixed program diameters to be 
complete [16]. Since we formalize Web application 
vulnerabilities as a secure information flow problem with 
fixed diameter, our BMC provides a sound and complete 
verification mechanism capable of offering 
counterexamples. Furthermore, since it utilizes ZChaff 
[19] (an efficient SAT solver that has been used with 
many industrial projects), it also benefits from ZChaff’s 
many optimization techniques. 

In this paper we showed how automated Web 
application safety verification and assurance can benefit 
from the counterexample traces, completeness, and 
soundness associated with a BMC-based approach. 
Counterexamples and completeness allow for more 
detailed and informative error reports, thus enhancing the 
practical potential of WebSSARI. Furthermore, 
counterexamples allow for more precise identification of 
locations that require repair, which increases the precision 
of both the error report generation and the runtime guard 
instrumentation processes. Completeness and precise 
instrumentations together result in reduced runtime 
overhead. Soundness guarantees the absence of bugs. 
We previously tested our TS algorithm against 230 real-
world Web applications downloaded from 
SourceForge.net; 69 were identified as having defective 
code. After notifying the developers, we received 38 
acknowledgements and promises of patches. For the 
present project, we implemented a BMC with ZChaff [19] 
(a mature SAT solver) and tested it against the same 230 
projects (consisting of 1,140,091 statements). The BMC-
based approach reduced the number of effective insertions 
by 41.0% compared to our TS-based results. 

2. Web Application Vulnerabilities 

As most Web application vulnerabilities arise from the 
use of untrusted data before sanitization, it is possible to 
provide an automated patch by inserting sanitization 
routines at necessary program locations. A major 
contribution of this paper lies in using counterexample 
traces to reduce the number of inserted sanitization 
routines. To make clear how this strategy works, we must 
first describe how Web application vulnerabilities arise 



 

and how we formalize it. Since we will only provide brief 
descriptions of the most widely exploited vulnerability—
script injection—readers are referred to Scott and Sharp 
[24], Curphey et al. [10], OWASP (Curphey et al.) [20] 
[10], and Meier et al. [17] for more details.  

2.1. Cross-Site Scripting (XSS) 
One severe type of XSS involves the uploading of data 

by a user, which is then stored for later delivery by a Web 
application without performing any type of sanitization. 
Consider the following example: a commercial online 
auction site hosts a ticket service for users to get support, 
report bugs, and submit feature requests. Messages posted 
by users are submitted to a server-side script that inserts 
them into a backend database. Support tickets and bug 
reports can only be read by the website’s support 
personnel, but feature requests can be read by all users. 
When viewing tickets, a request is sent to a server-side 
script that retrieves corresponding data from the backend 
database and constructs HTML output. If a user submits a 
bug report (or a feature request) that contains a piece of 
malicious script, the script will be delivered to the support 
personal (or other users) on behalf of the Web server. 
This grants rights that the script normally would not 
receive. Figure 1 presents a simplified version of a 
vulnerability that our WebSSARI discovered in PHP 
Support Tickets. 

$query="INSERT INTO tickets_tickets(tickets_id,  
tickets_username,tickets_subject, tickets_question) 
VALUES(”$_SESSION['username']"', '"$_POST['ticketsubject']", 
”$_POST['message']")"; 
$result = @mysql_query($query); 
Figure 1. A XSS vulnerability found in PHP Support Tickets 

code for ticket submission. 

Note that user input values “ticketsubject” and 
“message” have been inserted into the database without 
sanitization. An example of code from PHP Support 
Tickets that uses the backend database to generate HTML 
output for displaying tickets is shown in Figure 2. Since 
the value “tickets_subject” (containing untrusted data 
submitted by the user) is used without sanitization to 
construct HTML output, the code is vulnerable to XSS. 

$query="SELECT tickets_id, tickets_username,  
tickets_subject FROM tickets_tickets"; 
$result = @mysql_query($query); 
WHILE ($row = @mysql_fetch_array($result)) { 
  extract($row); 
  echo"$tickets_username<BR>$tickets_subject<BR><BR>" 
} 

Figure 2. Simplified code for displaying the tickets. 

2.2. SQL Injection 
Considered more severe than XSS, SQL injection 

vulnerabilities occur when untrusted values are used to 

construct SQL commands, resulting in the execution of 
arbitrary SQL commands given by an attacker. The 
example we offer below is based on a vulnerability we 
discovered in ILIAS Open Source, a popular Web-based 
learning management system. 

$sql="INSERT INTO track_temp VALUES('$HTTP_REFERER');"
mysql_query($sql); 

Figure 3. A simplified SQL injection vulnerability found in 
ILIAS Open Source. 

In Figure 3, $HTTP_REFERER (a global variable set 
by the Web server to indicate the referrer field of a HTTP 
request) is used to construct a SQL command. The 
referrer field of a HTTP request is an untrusted value 
given by the HTTP client; an attacker can set the field to: 
');DROP TABLE ('users 

This will cause the code in Figure 3 to construct the $sql 
variable as:  
INSERT INTO track_temp VALUES(''); 
DROP TABLE ('users'); 

Table “users” will be dropped when this SQL 
command is executed. This technique, which allows for 
the arbitrary manipulation of backend database, is 
responsible for the majority of successful Web application 
attacks. During our experimentation with WebSSARI, we 
found that developers who acknowledge that variables 
from HTTP requests should not be trusted tend to forget 
that the same holds true for the referrer field, user 
cookies, and other types of information collected from 
HTTP requests. 

2.3. Specifying Web Application Reliability and 
Security Policies 

According to our examples, compromises in integrity 
lead to compromises in confidentiality and availability. 
When untrusted data is used to construct trusted output 
without sanitization, violations in data integrity occur, 
leading to escalations in access rights that result in 
availability and confidentiality compromises. There is a 
clear need for a mechanism that specifies and enforces 
legal information flow policies within Web application 
programs. This can be achieved by assigning a “state” 
that represents a variable’s current trust level. The 
challenge is to design a compile-time algorithm that 
predicts variable runtime states at each program point—
similar to the requirement for enforcing certain reliability 
policies. Strom and Yemini’s [26] typestate algorithm for 
enhancing software reliability (i.e., checking for un-
initialized variables and illegal pointer dereferences) is 
one example of an algorithm that offers compile-time 
tracking of variable states. 



 

3. Verification algorithm 

Most Web applications are written in script languages, 
including PHP, ASP, Perl, and Python [15]. We designed 
our verification algorithm to take advantage of the 
imperative, deterministic, and sequential characteristics of 
these programming languages. In our information flow 
model, we associate every program variable x with a 
safety type tx, which represents the current safety level of 
x. To verify a program, we first generate an abstract 
interpretation (AI) of a program [9] that retains the 
program’s information flow properties. We then use 
bounded model checking to verify the correctness of all 
possible safety states of the AI. 

3.1. Information Flow Model 
To allow for arithmetic on variable safety types, we 

followed Denning’s [12] model and made the following 
assumptions: 
1. Each variable is associated with a safety type. 
2. T = 1 2{ , , , }nτ τ τ"  τ is a finite set of safety types. 
3. T is partially ordered by ≤, which is reflexive, 

transitive, and antisymmetric. For ,1 2 Tτ τ ∈ , 

 
 iff  and 1 2 1 2 2 1τ τ τ τ τ τ= ≤ ≤ ,  

 and  iff  and 1 2 1 2 1 2τ τ τ τ τ τ< ≤ ≠ . 

4. (T, ≤) forms a complete lattice with a lower bound ⊥  
such that T, τ τ∀ ∈ ≤⊥ , and an upper bound such 
that T, τ τ∀ ∈ ≤ . 
 
These assumptions imply that a greatest lower bound 

operator and a least upper bound operator exit on T. For 
subset Y ⊆  T, let Y denote  if Y is empty and the 
greatest lower bound of the types in Y otherwise; let Y 
denote ⊥  if Y is empty and the least upper bound of the 
types in Y otherwise. 

Types resulting from expressions are determined using 
the upper- and lower-bound operators (i.e.,  and , 
respectively) defined above. 

3.2. Abstract Interpretation 
Given a program p, we first use a filter to generate 

F(p), which consists of command sequences constructed 
according to the following syntax rules: 

( ) ( ) 1 2 1 2

1 2

:: : |  | | | if  then  else |while  do | ;  

:: | | ~
  

(commands)  

(expression) 
i oc x e f X f X stop e c c e c c c

e x n e e

= =

=

, where x is a variable, n is a constant, ~ stands for binary 
operations such as +, and X⊆dom(p) is a variable set. By 
preserving only assignments, function calls and 
conditional structures. F(p) unfolds function calls and 
discards all program constructs that are not associated 
with information flow. During execution, data is retrieved 

from external sources (e.g., reading files or retrieving 
environment variables). Functions that permit the flow of 
external data into a program are identified as untrusted 
input channels (UIC), denoted as fi(X). An example in 
PHP is GET_HTTP_VARS(), which retrieves data from 
HTTP requests sent by Web clients. In WebSSARI, UICs 
are given predefined postconditions consisting of 
command sets that match the designated safety levels of 
the retrieved data. At the same time, program execution 
also entails calling functions that manipulate system 
resources or affect system integrity—in PHP, for instance, 
exec() executes system commands and echo() generates 
output. These functions—identified as sensitive output 
channels (SOC) and denoted as fo(X)—require trusted 
arguments. Each one is assigned a predefined 
precondition that states the required argument safety 
levels.  

Filtered Result: 
F(p) 

Abstract Interpretation: 
AI(F(p))  

x = e; t tx e= , where ,  
i j i jn e e e et t t t=⊥ =∼

fi(X); x X xt τ∈∀ = , where τ depends on 
the postconditions of fi 

fo(X); 
( ), rassert X τ ,where rτ depends on the

preconditions of of  
stop; stop; 
if e then c1 else c2 if be then AI(c1) else AI(c2) 
while e do c if be then AI(c) 
c1; c2 AI(c1); AI(c2) 

Figure 4. Abstract interpretation procedure. 

As one would expect, the stop command immediately 
terminates program execution. When verifying 
conditional structures within a program, we do not 
consider how condition e evaluates, but rather focus on 
making sure that each branched path behaves correctly. In 
path-sensitive terminology, we treat all these conditions 
as nondeterministic conditions. Furthermore, since we 
only consider information flow, loop structures can be 
deconstructed into selection structures. 

Consequently, given a safety type lattice T and sets of 
pre- and postconditions, we translate F(p) into an AI that 
consists of only if instructions, type assignments and 
assertions. The intuitive interpretation procedure AI(F(p)) 
is illustrated in Figure 4. An assignment from expression 
e to variable x is translated into a type assignment that 
conveys e’s safety type to x. Function preconditions are 
expressed using assertions ( ( ), rassert X τ ) that specify 

safety requirements ( ( ), ,  domx X x r rt Tτ τ∈∀ < ∈ ), 
meaning that the types of all variable in X must be lower 
(safer) than the rτ . Postconditions are expressed using 



 

type assignment sets (in the form ,  x X xt τ∈∀ =  

( )dom Tτ ∈ ) that describe the safety level of each piece 
of retrieved data. In WebSSARI, pre- and postcondition 
definitions are stored in two prelude files that are loaded 
during startup [14]. 

3.3. Formal Verification 
Using the AI definitions given above, the verification 

of a given PHP program p consists of checking whether 
AI(F(p)) is consistent with its assertions. We will present 
some observations before attempting to automate this 
process. First, ( ( ))AI F p  is loop-free and its flow chart 
forms a directed acyclic graph (DAG), implying a fixed 
program diameter [16]. Second, AI(F(p)) represents a 
single sequential process with large numbers of: a) 
variables and b) branches following simple assignments. 
Based on these observations, we adopted Bounded Model 
Checking [3] [4] rather than the more conventional model 
checking techniques based on BDDs (binary decision 
diagrams). In addition to its ability to provide both sound 
and complete verification. BMC is more efficient in 
finding bugs and more capable of handling large numbers 
of variables that may cause BDDs to crash [23]. 

In BMC, a system’s transition relations are unfolded 
with bounded steps and coupled with initial and risk 
conditions to form a CNF formula, which is then solved 
using a SAT solver. In the following sections we will 
describe the details of our program encoding and some of 
the difficulties we encountered. 

3.3.1. Encoding using an auxiliary variable 

The first challenge was keeping track of program 
behaviors. A naïve but conceptually straightforward 
solution was to add an auxiliary variable l to record 
program lines (statements). Given a program p, let 

{ | dom( ( ( )))}xX l t x AI F p= ∪ ∈  denote state variables, 
then we can construct a control-flow graph CFG(X,p). 
The transition relations of CFG(X,p) are encoded as a 
CNF formula, T(s,s’), where s and s’ denote the current 
and subsequent program states (the evaluation of X), 
respectively. By rolling 1( , )i iT s s +  up for a bounded k 
number of steps (the length of the longest path in 
CFG(X,p)), the entire formula is represented as: 

( ) ( ) ( ) ( )0 0 1 1, ( ) , , , , ,k k i kB X k I s T s s T s s R s s−= ∧ ∧ ∧ ∧" "

where ( )0I s  is the initial condition and ( ), ,i kR s s"  

specifies the risk conditions (assertion negations) within 
the ith and kth states.  

We incorporated this idea into our first BMC version, 
xBMC0.1, but initial experiments revealed frequent 
system breakdowns, primarily due to inefficiently 
encoding each assignment using 2|X| variables. 

3.3.2. Encoding using variable renaming 

Clarke et al.[6] [7] automated memory overflow and 
assertion consistency tests for C and Verilog with their 
CBMC [8] tool. The checker unwinds C or Verilog 
programs and converts them to a Boolean formula that 
can be checked for behavior consistency. CBMC uses 
variable renaming to create a single assignment 
program—similar to a Static Single Assignment (SSA) 
program [11] without the φ − condition. Since the 
algorithm uses variable renaming, it encodes each 
assignment using only 2 variables. However, compared 
with the algorithm mentioned in the previous section, 
using renaming makes it inefficient for modeling 
languages containing loop constructs. Since our 
information flow model allows for deconstructing loop 
structures into selection structures without unfolding, we 
can adopt Clarke et al.’s algorithm without any drawback. 

In their algorithm, AI variables are renamed such that 
each renamed variable is assigned only once. Assume that 
variable v is referred to at program location i in an AI. Let 
α denote the number of assignments made to variable v 
prior to i, then the variable v at location i is renamed to. 
vα. After this renaming procedure ρ, each assignment 
becomes unique, which allows for information flow 
tracking minus the need for auxiliary location variables. 
In our revised version (xBMC1.0), we used Clarke et al.’s 
[6] [7] algorithm to encode our AI. Given a command c, 
the constraint generated by procedure C(c,g) is shown in 
Figure 5 (g denotes the guard and is initially true). 

AI Command Constraint  
stop; or empty ( ), :C c g true=  

x et t=  ( ) 1, : ? ( ) :i i
x e xC c g t g t tρ −= =

( )( )|x Rassert t x X T∈ <
( ), : x R

x X

C c g g t Tρ
∈

= ⇒ <
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∩

1 2if  then  else eb c c  ( ) ( )
( )

1

2

, : ,

             ,
e

e

C c g C c g b

C c g b

= ∧

∧ ∧ ¬
 

1 2;c c  ( ) ( ) ( )1 2, : , ,C c g C c g C c g= ∧

Figure 5. Constraint construction procedure. 

However, instead of checking all assertions at the 
same time [6] [7], we check one assertion at a time and 
generate all counterexamples for that assertion. For each 
assertion, we generate a formula B and check for its 
satisfiability. If B is satisfiable, we obtain a 
counterexample and make B more restrictive by negating 
out the counterexample. We iterate this loop until B is 
unsatisfiable—that is, when we have collected all 
counterexamples. When generating a formula for an 
assertion asserti, we view it and all its preceding 
commands as a concatenation c;asserti. The 
corresponding formula Bi is then constructed with the 



 

negation of asserti: ( ) ( ): , , .i iB C c g C assert g= ∧ ¬  
Examples are given in Figure 6. 6 

CNF(Bi) transforms Bi into a CNF formula, which can 
then be solved using the efficient SAT solver zChaff [19]. 
As mentioned above, if CNF(Bi) is satisfiable, zChaff 
proposes a truth assignment αi that violates asserti. Let BN 
denote the set of all nondeterministic boolean variables in 
the AI. According to BN’s values in αi, we can trace the 
AI and generate a sequence of single assignments, which 
represents one counterexample trace. In order to collect 
all possible counterexamples, we iteratively make Bi more 
restrictive until it becomes unsatisfiable. In other words, 
each time a truth assignment αi 

j is proposed at the jth 
iteration, we generate the negation clause Ni 

j
 of BN. Thus 

the more restrictive formula Bi 
j at the j+1th iteration is 

defined as 1j j
i i i iB B N N= ∧ ∧ ∧" . 

Once the formula becomes unsatisfiable, we continue 
the constraint generation procedure (see Figure 5) 
( ) ( ) ( )1, : , ,iC c g C c g C assert g= ∧  until we encounter the 

next assertion. Since the AI program is loop-free, each 
assertion will be checked exactly once. 

3.3.3. Counterexample Analysis 

For any instance of unsafe code reported by BMC, 
WebSSARI inserts guards that perform run-time 
inspections as part of an automated patching process—
specifically, it inserts routines that sanitize untrusted input 
before they are used by SOCs. Several combinations of 
patching locations may fix the same section of insecure 
code. In this section, we will describe how our algorithm 
takes advantage of BMC-produced counterexamples to 
identify an optimal patching combination with a 
minimum number of insertions. Our definition of an 
effective fix is as follows. 
 
Definition 1: Given a error trace r, a Fix(V) is said to 
effective if, after sanitizing all variables v V∈ , the error 
trace is removed (fixed). 
 

For an error trace r, we refer to the set of variables that 
directly caused assertion violations (i.e., variables that 
appeared in assertion commands and caused violations) as 
violating variables, and a variable set that yields an 
effective fix when sanitized as a fixing set. Given an error 
trace set R, our goal is to find a minimal fixing set VR 
such that for every trace r R∈ , Fix(VR) serves as an 
effective fix of r. For an error trace r R∈ , let Vr denote 
the violating variables of r. A naïve method of finding a 

fixing set for R is nV VR r
r R

=

∀ ∈
∪ . Obviously, fixing all 

violating variables in R removes all error traces (for all 
r R∈ , Fix( nV R ) is an effective fix), but in many cases, 

nV R  is not the minimum set. Figure 7 presents a 
simplified version of a vulnerable file we found in PHP 
Surveyor. In this example, the tainted variable $sid taints 
$iquery, $i2query, and $fnquery, causing lines 2, 3, and 4 
to become vulnerable. A naïve fixing set would be 
{$iquery, $i2query, $fnquery}—as was adopted by our 
TS algorithm. However, the optimal fixing set is clearly 
{$sid}, and so sanitizing $sid is by itself an effective fix. 
In a source code of PHP Surveyor, $sid was the root 
cause of 16 vulnerable program locations; our TS 
algorithm made 16 instrumentations, whereas a single 
instrumentation would have been sufficient to secure the 
code. 
1: $sid = $_GET['sid']; if (!$sid) {$sid = $_POST['sid'];}  
2: $iq = "SELECT * FROM groups WHERE sid=$sid”;DoSQL($iq);
3: $i2q = "SELECT * FROM ans WHERE sid=$sid; DoSQL($i2q); 
4: $fnquery = "SELECT * FROM questions, surveys WHERE 

questions.sid=surveys.sid AND questions.sid='$sid'"; 
DoSQL($fnquery); 

Figure 7. Multiple vulnerabilities arising from the same root 
cause in PHP Surveyor. 

To achieve this, for each violating variable rv Vα ∈ , a 
replacement set vs

α
 is built by tracing back from the 

violation point along the error trace r while recursively 

PHP source code Filtered Result Abstract Interpretation Renaming Constraints for each assertion 
… 
if (Nick) { 

$tmp=$_GET["nick"]; 
echo 
(htmlspecialchars 
  ($tmp) 
); 

} else { 
$tmp="You are the". 
$GuestCount." guest"; 
echo($tmp); 

} 
... 

… 
if (Nick) { 

  
( )

( )
( )

;
;
;

;

tf nicki
tmp nick

uf tmpi
f tmpo

=  

} else { 

  ( )
;

;
tmp GuestCount
f tmpo

=
 

} 
... 

… 
if bNick then  

  

( )

;
;

;
assert ;

t Tnick
t ttmp nick
t Utmp

t Ttmp

=
=
=

<

 

else 

( )
;

assert ;
t ttmp GuestCount

t Ttmp

=

<
 

… 

… 
If bNick then 

  

( )

;
;

1 ;
1assert ;

it Tnick
j it ttmp nick
jt Utmp

jt Tk tmp

=
=

+ =
+ <

 

else 

  
( )

2 ;
2assert ;1

j kt ttmp GuestCount
jt Tk tmp

+ =
+ <+

 

… 

( )
( )
( )
( )

1: ? :

1       ? :

1       ? :

1       

i iB t b T tk nick Nick nick
j i jt b t ttmp Nick nick tmp
j jt b U ttmp Nick tmp

jb t TNick tmp

−= = ∧

−= ∧

+ = ∧

+¬ ⇒ <

 

( )
( )
( )
( )
( )
( )

1: ? :1
1       ? :

1       ? :
1       

2 1       ? :
2       

i iB t b T tk nick Nick nick
j i jt b t ttmp Nick nick tmp
j jt b U ttmp Nick tmp

jb t TNick tmp
j k jt b t ttmp Nick GuestCount tmp

jb t TNick tmp

−= = ∧+
−= ∧

+ = ∧

+⇒ < ∧

+ += ¬ ∧

+¬ ¬ ⇒ <

Figure 6. An example of translation from PHP to Boolean formulas. 



 

adding variables that serve as unique r-values of single 
assignments. That is,  

{ }

{ },  .

,  
                    
v f  the single assignment isv

in the form v vv
v otherwise

is
s

β

α

α

α β

α

∪
==

⎧⎪
⎨
⎪⎩

 

Note that if vα is tainted, then vs
α

 presents a tainted 

flow path along which subsequent assignments cause vα to 
become tainted. While tracing back along the error trace 
r, vs

α
 is expanded with variables that can be sanitized 

instead of vα, yet achieve the same effect as sanitizing vα. 
 
Lemma 1: If a Fix( rV ), rv Vα ∈ , is an effective fix for r, 
then for any vv s

αβ ∈ , Fix( [ / ]rV v vβ α ) is also an effective 

fix, where [ / ]rV v vβ α  denotes ( { }) { }rV v vα β− ∪ . 
 
Proof: Initially, vs

α
is expanded only with single 

assignments in the form vα=vβ, meaning that the value of 
vα is solely dependent upon vβ. After expanding vs

α
 with 

vβ, this process is repeated to add variables (if any) whose 
value vβ depends on. Therefore, sanitizing any variable in 

vs
α

 has the same effect as sanitizing the initial variable 

vα. 
To identify the root errors, we calculate an error trace 

set R’s minimum fixing set. First, for each r R∈ , we 
identify the violating variable set Vr and then apply the 

naïve method to derive n
RV , where n

R r
r R

V V
∀ ∈

= ∪ .  

Second, for each n
Rv Vα ∈ , we calculate its 

replacement set vs
α

. Finally, the minimum effective 

fixing set m
RV  can be obtained by solving min  | |m

RV  

such that n
R

m
v Rv V s V
αα∈

∀ ∩ ≠∅ . 

 
Lemma 2: Given an error trace set R, for all r R∈ , 
Fix( m

RV ) is an effective fix for r. 
 
Proof: Obviously, fixing all violating variables in R 

removes all error traces. That is, if n
R r

r R

V V
∀ ∈

= ∪ , then for 

all r R∈ , Fix( n
RV ) is an effective fix. From Lemma 1, 

substituting rv Vα ∈  with variable vv s
α

∈  still yields an 

effective fix. Since for all n
Rv Vα ∈ , for all vs

α
 of R, 

m
v Rs V
α
∩ ≠ ∅ , Fix( m

RV ) remains an effective fix for 

all r R∈ . 

3.3.4. Minimal Fixing Set 

The only remaining problem is solving min  | |m
RV  

such that n
R

m
v Rv V s V
αα∈

∀ ∩ ≠∅ . In the following, we 

offer a formal definition and prove it to be a NP-complete 
problem. Finally, we describe the heuristic search 
procedure that WebSSARI incorporates. 

 
Definition 2: Given a variable set V and a collection of 
subsets of V, 1{ , , }nS S S= " , the MINIMUM-
INTERSECTING-SET problem is to find a minimum set 
M V⊆ , such that for 1 , ii n S M≤ ≤ ∩ ≠ ∅ . 
 
Theorem: The MINIMUM-INTERSECTING-SET problem 
is NP-complete. 
 
Proof: The MINIMUM-INTERSECTING-SET (MIS) 
problem is in NP since we can guess a subset S’ of S and 
check in polynomial time whether a) S’ shares at least one 
common element with every set in iS S∈ , and b) S’ has 
an appropriate size. To prove that it is NP-complete, we 
reduce the VERTEX-COVER problem to MIS. If G is an 
undirected graph, a vertex cover of G is a subset of the 
nodes where every edge of G touches one of those nodes. 
The vertex cover problem asks for the size of the smallest 
vertex cover. Our reduction maps each edge ei in G to a 
set { , '}iS v v= , where v and v’ denote the two vertices 
connected by ei. Then the undirected graph G with edges 

, ,1e en"  can be represented as a set of vertex sets 
{ , , }1S S Sn= " . The size of the smallest vertex cover is |M| 

where Si S∀ ∈ , Si M∩ ≠ ∅  . 
 

The MIS problem can be reduced to the SET-COVER 
problem where all sets have an equal cost. Therefore, in 
WebSSARI, we adopted the greedy heuristic algorithm in 
[5], which gives a 1+ln(|S|) approximation ratio in 
polynomial time. The reduction procedure is described as 
follows. Given a universe U of n elements, a collection of 
subsets of U, 

1
{ , , }

k
S S Sv v v= " , and a cost function 

:c S Qv
+→ , the SET-COVER problem asks to find a 

minimum-cost subcollection of Sv that covers all elements 
of U. The reduction takes each Si as an element of U. Let 

{ }|
i

S S v Vv v i= ∈ , where { | , }
i

S S v S S Uv j i j j= ∈ ∈  , and 

( )i
c Sv be a constant. The MIS problem can be solved by 

first solving this SET-COVER problem and then 
replacing each selected 

i
Sv  with vi .8 

 



 

4. System implementation 

To test our approach, we developed WebSSARI to 
verify real-world Web applications. An illustration of 
WebSSARI’s system architecture is presented in Figure 8. 
A code walker consists of a lexer, a parser, an AST 
(abstract syntax tree) maker, and a program abstractor.  
The program abstractor asks the AST maker to generate a 
full representation of a program’s AST. The AST maker 
uses the lexer and the parser to perform this task, handling 
external file inclusions along the way. By traversing the 
AST, the program abstractor generates an AI. Using the 
algorithms described in Section 3, the BMC engine 
performs verification of the AI. For each variable 
involved in an insecure statement, it inserts a statement 
that secures the variable by treating it with a sanitization 
routine. Sanitization routines are stored in a prelude, and 
users can supply the prelude with their own routines. The 
whole AI verification process is illustrated in Figure 9. 9 

5. Experimental results 

SourceForge.net [1], the world’s largest open-source 
development website, classifies all projects according to 
language, purpose, popularity, and development status 
(also referred to as maturity). As part of our previous TS 
algorithm effort, we established a sample of 230 projects 
(written in PHP) reflecting a broad variation in terms of 
the SourceForge.net classifications. After downloading 
their sources and testing them with WebSSARI, we 
manually inspected every single report of a security 
violation. If we identified an actual vulnerability, we sent 
an email notification to the developer. Of the 69 

developers we contacted, 38 acknowledged our findings 
and stated that they would provide patches (Figure 10). 

Project A TS BM Project A TS BMC
GBook MX 60 4 2 SquirrelMail 99 7 7
AthenaRMS  0 3 2 PHPMyList 69 10 4
PHPCodeCabinet 71 25 25 EGroupWare 99 4 4
BolinOS 94 3 3 PHPFriendlyAdmin 87 16 16
PHP Surveyor 99 169 90 PHP Helpdesk 87 1 1
Booby 90 5 4 Media Mate 0 53 16
ByteHoard 98 2 2 Obelus Helpdesk 22 8 6
PHPRecipeBook 99 11 8 eDreamers 80 7 1
phpLDAPadmin 97 25 13 Mad.Thought 66 4 4
Segue CMS 77 11 9 PHPLetter 79 23 23
Moregroupware 99 7 7 WebArchive 2 7 2
iNuke 0 3 3 Nalanda 58 27 8
InfoCentral 82 206 57 Site@School 94 46 40
WebMovieDB 24 7 5 PHPList 0 16 1
TestLink 88 69 48 PHPPgAdmin 98 3 3
Crafty Syntax 
Live Help 96 16 1 Anonymous Mailer 73 7 7

ILIAS open 
source 20 2 2 PHP Support 

Tickets 0 40 40
PHP Multiple 
Newsletters 68 30 30 Norfolk Household 

Financial Manager 0 60 60

International Suspect 
Vigilance Nexus 0 20 12 Tiki CMS 

Groupware 99 12 12

Total 980 578

A:  Project activity 
TS:  TS-reported errors   BMC:  BMC-reported errors 

Figure 10. The number TS- and BMC-reported errors of the 
38 projects that responded to our notifications. 

The 230 projects consisted of 11,848 files consisting 
of 1,140,091 statements; 515 files were identified by TS 
as vulnerable. Soon after starting the task of manually 
validating all reported vulnerabilities, the authors realized 
that the lack of counterexamples made for a laborious and 
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Figure 8. WebSSARI system architecture.   Figure 9. The verification process. 



 

time-consuming task that required investigating multiple 
function calls spanning multiple files. In an effort to 
speed up the process, we added features to the 
WebSSARI GUI that helped users: a) navigate between 
different source files, function calls, and vulnerable lines; 
b) identify particular variables (such as highlighting 
variables that caused assertions); and c) search for 
specific variables or text patterns. However, even with 
these special features, the job of manual validation 
remained difficult. We therefore added a tool called 
PHPXREF [27] to generate cross-referenced HTML 
documentations of source code. Despite the 
enhancements, it still took two of the authors four full 
working days to validate the 515 files that were identified 
as vulnerable. 

In the revised project that is the focus of this paper, we 
used BMC to provide counterexample traces. Differences 
in the TS and BMC reports on the 38 vulnerable projects 
whose developers acknowledged our findings are shown 
in Figure 10. For these projects, the total number of 
vulnerable statements originally reported by TS was 980. 
Using the same test set, BMC reported a total of 578 error 
introductions, meaning that the 980 vulnerabilities were 
caused by the propagation of 578 errors. Compared with 
TS, this process yielded an additional 41.0 percent 
reduction in the number of instrumentations. 

6. Discussion 

In this project, we used BMC-provided 
counterexamples to identify the cause of errors, which 
increases the precision of both error reports and code 
instrumentation. In a very recent project, Ball, Naik, and 
Rajamani [2] made a very similar effort—they attempted 
to enhance their model checker SLAM with the ability to 
localize errors. As they mentioned, current model 
checkers report error symptoms rather than the actual 
causes. Furthermore, even the state-of-the-art model 
checkers today report only a single error trace per run. 
They reported their experiences in using their algorithm 
to detect locking bugs in C device drivers.  

Our efforts were motivated by our previous effort in 
verifying Web applications using the TS algorithm. TS 
reported individual error symptoms, which not only 
resulted in inefficient automated patching, but also made 
it difficult to report a meaningful number of discovered 
vulnerabilities, since many of the reported errors were 
attributed to a same cause and should not have been 
double counted. Ball, Naik, and Rajamani focused on 
locking bugs, which usually have a one-to-one mapping 
between a symptom and a cause. However, we focus on 
information flow bugs, which are much more complex 
and can have a many-to-many symptom-cause mapping—
the reason why localizing errors resulted in a MINIMUM-
INTERSECTING-SET problem. Furthermore, their efforts 

mainly contributes to more informative error reports, 
while ours also results in more efficient automated 
patching. Like Ball, Naik, and Rajamani’s algorithm, ours 
also requires that all counterexample traces be identified. 
However, since SLAM is a BDD-based model checker 
and xBMC is a SAT-based bounded model checker, our 
proposed method for extracting all counterexamples is 
unique from theirs. 

7. Conclusion 

In this paper we proposed a practical approach for 
formally verifying Web application reliability and 
security. In an earlier work, we used a typestate-based 
algorithm (TS) that essentially performs breadth-first 
searches on control flow graphs and trades space for time. 
Although it has polynomial-time complexity, it is 
incapable of providing counterexample traces. This 
proved to be a major deficiency that reduced 
WebSSARI’s potential for practical use. On the other 
hand, we considered a depth-first search algorithm to be 
too costly in terms of time, and so we implemented a 
bounded model checker using ZChaff [19] (a mature SAT 
solver) and used it to produce counterexample traces.  
Two immediate benefits of counterexample traces are a) 
they allow for more informative error reports, and b) they 
can be used to identify multiple errors (symptoms) with 
the same root cause. Such information not only 
contributes to greater report accuracy, but also sharply 
reduces the number of inserted runtime guards. We 
showed that the problem of finding the minimum error 
causes (groups) is NP-complete, and offered a greedy 
heuristic-based strategy. 
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