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Abstract 
Fabricating large memory and processor arrays is subject to physical failures resulting in 

yield degradation. The strategy of incorporating spare rows and columns to obtain 
reasonable production yields was first proposed in the 1970s, and continues to serve as an 
important role in recent VLSI developments. Since the spare allocation problem (SAP) is NP-
complete but requires solving during fabrication, an efficient exact spare allocation 
algorithm has great value. Here we propose a new Boolean encoding of SAP and a new SAT-
based exact algorithm SATRepair. We used a realistic fault distribution model to compare 
SATRepair’s performances against BDDRepair and those of algorithms found in the 
literature. We suggest that a) our novel Boolean encoding of SAP allows for the development 
of efficient exact SAP algorithms, and b) our SAT-based algorithm outperforms previous 
algorithms, especially for large problems. 
 
1. Introduction 

Repairable arrays continue to serve as an important component in recent VLSI 
developments, and not only because fabrication imperfections grow proportionally with chip 
size and density. As today’s photolithography techniques approach physical limits in terms of 
density growth and device miniaturization, future fabrication will depend on such new 
technologies as Next Generation Lithography (NGL) techniques and Chemically Assembled 
Electronic Nanotechnology (CAEN). NGL and CAEN share one major disadvantage: the 
likelihood of having significantly higher defect densities; an expected defect density of as 
high as 10 percent requires efficient fault repair algorithms [32]. In addition, in 2001 the 
International Technology Roadmap for Semiconductors (ITRS) [1] reported that SoCs have 
moved from logic-dominant to memory-dominant chips (see Figure 1), and will embed 
memories of increasing sizes. This trend, which was confirmed by the ITRS 2003 report [2], 
implies that SoC yields are dominated by memory yields; hence, SAP algorithm efficiency 
directly affects today’s SoC yields. This holds true not only for SoCs, but also for current 
state-of-the-art processors in general. For example, in the Intel Itanium 2 Processor, the 9MB 
third-level on-die cache contains over 90 percent of all the 592M transistors on the 432mm2 
die [37]. Therefore, as feature sizes shrink to single digit nanometer dimensions and memory 
takes up a major area share of SoCs and advanced processors, defect tolerance is becoming 
increasingly important. 

A common treatment since the 1970s has been to use redundancy to replace faulty 
modules (see for example Schuster [35]). This strategy is most suitable for uniformly 
structured chips such as memory arrays, in which rows and columns of spare cells can be 
employed to replace faulty ones that occur during fabrication. The goal of the spare 
allocation (sometimes referred to as memory reconfiguration) problem (SAP) is to find an 
assignment of spare rows and columns to faulty rows and columns such that all faulty cells 



are eliminated. Kuo and Fuchs showed that SAP is NP-Complete [25]. Since a) redundancy 
was quickly incorporated into the design and fabrication of memory chips (see [8] [16] [23] 
[13] [14] [38] for early chips with spares), and b) memories began to comprise a major 
portion of processors (e.g., 44% of all UltraSparc’s transistors in 1997 [26]) and therefore 
became yield drivers [40] (see for example reports on DEC Alpha [3] and UltraSparc [26] in 
1997), consistent efforts have been devoted to developing heuristic (approximation) 
algorithms or efficient exact algorithms for SAP. 

To solve SAP, Kuo and Fuchs proposed a branch-and-bound (B&B) algorithm that 
searches the most promising partial solutions first. The algorithm is exact (i.e., it 
always finds a solution if one exists) and has been shown to outperform most of its 
predecessors. Therefore, subsequent efforts have focused on reducing B&B’s search 
space (e.g., Lombardi and Huang’s Faulty-Line Covering [27] and Hemmady and 
Reddy’s Quick-Terminate [22]) or on developing faster exhaustive search algorithms 
with reduced search spaces (e.g., Hasan and Liu’s Critical Sets [21], Hemmady and 
Reddy’s Ternary Repair Algorithmn (TAR) [22], and Libeskind-Hadas and Liu’s 
Excess-k Critical Sets [19]). 

Recently, Fernau and Niedermeir [15] have defined SAP as a Constraint Bipartite Vertex 
Cover (CBVC) problem. Using parameterized theory [12], they proposed a CBVC algorithm 
having running time  for an array with k1 spare rows, k2 spare columns, 
and an n sum of rows and columns. Chen and Kanj [9] later developed a parameterized 
algorithm that runs in . 
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Figure 1. ITRS 2000 and 2001 forecast that memory will occupy 
more than 90 percent of SoC area by 2016. 

 (Source: ITRS 2000 and 2001) 

Figure 2. A 3 by 3 array. 
S=({(1,1), (1,3), (3,3)}, 1, 1) 
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Rather than propose a new B&B enhancement or parameterized algorithm, in this paper 
we will propose a novel algorithm that formulates SAP as an instance of the Boolean 
Satisfiability Problem (SAT) [10] [17]. Since SAT is theoretically a core of a large family of 
intractable NP-Complete problems, methods for solving SAT play important roles in the 
development of computing theory. Furthermore, since practical problems from such areas as 
AI planning, circuit testing, and software verification (among others) can be formulated as 
SAT instances [42], there is a strong motivation to study SAT and to develop practically 
efficient SAT algorithms [18]. By formulating SAP as an SAT problem, we can benefit from 
existing SAT algorithms. The two major difficulties in deriving an efficient formulation are a) 
preventing explicitly enumerating all problem combinations and b) restraining the formula 
size to a minimal. Here we address both difficulties and propose a new Boolean SAP 
encoding based on dynamic programming. 

The two most common approaches to solving Boolean formulas are by using BDDs 
(Binary Decision Diagrams, which can be used to represent Boolean functions and to support 
efficient Boolean operations) [7] or by using SAT solvers (i.e., those SAT solvers based on 
the Davis-Logemann-Loveland algorithm [11]). Lin et al. recently [28] introduced a BDD-
based SAP algorithm BDDRepair, which outperformed the B&B algorithm incorporating 



enhancements. This attractive strategy has two drawbacks: a) its performance relies largely on 
variable ordering, and selecting an optimal ordering is considered an NP-Complete problem; 
b) BDD size expands exponentially with problem size and therefore makes it difficult to 
handle complex problems. 

On the other hand, contemporary SAT solvers can handle hundreds of thousands of 
variables without being challenged by the variable ordering problem; however, they are often 
inefficient in terms of proving a problem’s unsatisfiability. The purpose of spare 
incorporation is to improve yield, or more precisely, throughput. Therefore in practice, 
fabrication processes require that SAP solutions be found within very limited time and those 
chips whose solutions cannot be derived within time limit are simply discarded. This makes a 
SAT-based algorithm ideal for practical application, since SAT solvers are efficient in 
proving a problem’s satisfiability (i.e., finding a solution when one exists), especially when 
many solutions exist. In IC fabrication, it is the manufacturing engineers’ job to monitor yield 
and make sure enough spares are incorporated so that the majority of defective chips are 
repairable. While it may not be possible to construct a corresponding BDD for a large 
repairable array with many faulty cells and many spares, a SAT solver can quickly identify a 
solution. The disadvantage of SAT solvers is that they are slow for SAP instances having few 
or no solutions, since they have to exhaustively consider all possible values for branching 
variables; however, such a situation is unlikely to occur in practice. 

SAP algorithm evaluations are best performed by testing them with actual fault 
distributions obtained from an IC manufacturing line. However, such data are not easily 
obtainable because many commercial secrets can be uncovered by analyzing them. Therefore, 
SAP algorithm evaluation is usually conducted by generating simulated fault distributions and 
then applying the algorithm to find a repair solution. This implies that a precise fault model is 
critical for correct evaluation. Lin et al. used a Poisson fault model in their previous 
evaluation of BDDRepair [28]—that is, they assumed a uniform and random distribution of 
defects so that each cell is statically independent. However, as early as 1964, Murphy [34] 
argued that this model does not correctly capture realistic fault distributions. For the present 
project we adopted the enhanced center-satellite model proposed by Blough and Pelc [5] (see 
Meyer and Pradhan [30] for the original). In Section 4, we explain our reasons for selecting 
this model and present the results of our experiment comparing BDD- and SAT-based 
algorithms using 14 test sets representing different array configurations (e.g., size and spare 
rows/columns), with each test set containing 100 fault distributions generated randomly by 
Blough and Pelc’s model. 

We believe this paper makes five contributions to the current literature on this topic. First, 
we formulate SAP into a Boolean Satisfiability problem, and our novel Boolean encoding 
allows for the development of more efficient BDD- and SAT-based algorithms. Second, we 
observe that the nature of SAP makes it ideal for SAT application. Third, we introduce a 
novel SAT-based algorithm named SATRepair. Fourth, a precise fault model is critical for 
correct evaluation of SAP algorithms, and we proposed a realistic fault model. Fifth, we 
report the results of experiments comparing SATRepair against BDDRepair and those of 
algorithms found in the literature, and suggest that SATRepair is more efficient in practice. 
 
2. SAP and BOOLEAN encoding 

Here we present a novel Boolean encoding of SAP that is solvable using either BDDs or 
SAT solvers. We first give our formal definition of SAP. 
 
SAP Definition: A SAP instance S is a tuple (D, m, n), where m and n are two integers and D 
is a set of defects with each defect denoted as ( ),i j .  indicates the row and  indicates the i j



column that contain the defect Given a set D of defects, { | ( , ) }
D

R i i j D= ∃ ∈  denotes the set of 
defect rows and  denotes the set of defect columns. We say a SAP instance 

 is solvable if there exists a solution pair (R,C) that satisfies the following 
conditions: (1)  or 

{ | ( , ) }
D

C j i j D= ∃ ∈

( , , )S D m n=

( , ) ,i j D i R∀ ∈ ∈ j C∈ , and (2) R m≤  and C n≤ . 
Our proposed Boolean encoding of a SAP instance S uses defective rows (e.g.,ri) and 

columns (e.g., cj) as our formula’s literals. Our two objectives in this formula design are 
(1) S is solvable if the Boolean formula is satisfied and (2) the pair (R,C) is one of S’s 
solutions, where R={i|α(ri)=1}, C={j|α(cj)=1}, and  is a truth 
assignment of the Boolean formula. The encoding is composed of two Boolean 
formulas: the defect function (DF) and the constraint function (CFR or CFC). DF 
encodes the lines (rows or columns) containing defects, while CFR/CFC encodes the 
constraints of all combinations of defective rows/columns that spare lines can repair.  

:
D D

A R Cα ∈ ∪ 6 {0,1}

 
2.1 The Defect Function 

The defect function DF encodes the lines containing defects and apparently the 
following defect function DF encodes all faulty lines of a SAP instance. A defect 
function DF is a function mapping a defect distribution D to a Boolean formula. 

( )
( , )i j D

i jDF D r c
∈

= ∨∏ . 

2.2 The Constraint Function 
To limit the solution set to the fixed number of spare lines, we apply the constraint 

function, which maps a set of defective lines and a maximum spare line number (an 
integer) to a Boolean formula such that the formula encodes all combinations of defect 
lines that spare lines can repair. Formally, given a set L of defective lines and an integer 
m, a naïve solution is to enumerate all possible combinations by choosing the repaired 
lines. For example, in Figure 2-a, there are 2 faulty rows (i.e., {1,3}DR = ) but only one 
spare row (i.e., m=1) could be used. Therefore, we have two options: a) replace either 
row 1 or 3, or b) replace no row. Combining these terms yields the formula 

1 3 1 3 1 3r r r r r r∨ ∨ . A similar idea was recently proposed by Lin et al. [28].  
In our proposed encoding, we choose lines which are not allowed to be repaired 

rather than the repaired lines. That is, given a line set L and an integer m, we choose |L|-
m lines and construct our formula using the conjunction of the negation of these chosen 
lines. Our constraint function for Figure 2-a is therefore 

1 3
r r∨ . Compared to Lin et al.’s 

encoding [28], ours has at least two advantages: a) since we do not enumerate all 
possible lines used, we reduce the number of combinations from  

0 to m

!
!( )!k

n
k n k= −∑  to 

!
!( )!

n
m n m−

,  where n is the size of the set L,  

and b) we reduce the formula length of each combination from n to n-m since our 
formula is the conjunction of the negation of the chosen lines (compared to the 
conjunction of the used lines and the conjunction of the negation of the unused ones). 
Even with these advantages, enumerating all combinations of large L and m usually 
makes satisfiability solving infeasible (see results in Section 4). Therefore, we further 
introduce the function CFR() and CFC() for which we apply dynamic programming for 
efficient formula construction. We assign to each pair (L,m) a unique hash key referring 
to the literal representing the Boolean formula returned by CFR(L,m) or CFC(L,m). 
Adopting dynamic programming allows for preventing formula reconstruction and 



yields two major benefits: a) reduction of computation cost and b) reduction of the 
number of literals (reduction of unnecessary literals).  
CFR(L,m) {  

if m<=0, return false; 

else if(|L|>m)  

select some i∈L;  

return ( )( \ , 1) ( \ , )ir CFR L i m CFR L i m∧ − ∨ ;

else if (|L|==m) return 
i

i L

r
∈
∏ ; 

else return true; }  

CFC(L,m) {  

if m<=0, return false; 

else if(|L|>m)  

select some i∈L;  

return ( )( \ , 1) ( \ , )ic CFC L i m CFC L i m∧ − ∨ ;

else if (|L|==m) return 
i

i L

c
∈
∏ ; 

else return true; } 

Finally, for any SAP instance (D,m,n), we construct a formula 
 and solve the SAP problem by solving F’s satisfiability.  ( ) ( ) ( ),

D
F DF D CFR R m CFC C n= ∧ ∧ ,

D

 
3. Solving the Boolean Formulas 

Although here we design a SAT-based approach, we note that our proposed SAP Boolean 
encoding allows the use of BDD-based approaches as well. Given a proposition formula, the 
Boolean Satisfiability problem (SAT) is to determine whether there exists a variable 
assignment such that the formula evaluates to true. Lin et al.’s BDDRepair [28] essentially 
solves the Boolean formulas by yielding all satisfying assignments. However, BDDs for large 
problems are difficult to construct and good variable orderings are also difficult to derive. 
Array repair only requires a single satisfying assignment, therefore an obvious alternative 
would be to locate that assignment in an n-dimensional Boolean variable space. Many 
researchers are working to develop efficient versions of this kind of search-based algorithms 
(commonly referred to as SAT solvers), since a large family of intractable and practical 
problems (e.g., NP-Complete, AI planning, circuit testing, FPGA routing, VLSI CAD, and 
software verification) can be modeled as SAT instances [18] [42].  

SAT solvers typically take a propositional formula as input and generate a solution as 
output (i.e., a variable assignment) if one exists. To improve solver efficiency, a propositional 
formula is usually presented in a product of Sum form, usually called a Conjunctive Normal 
Form (CNF). A CNF formula is a logical and (denoted by ∧) of one or more clauses, with 
each clause being a logical or (denoted by ∨) of one or more literals. A literal is either the 
positive or the negative occurrence of a variable. Satisfying a CNF formula requires that each 
clause be satisfied individually. A variable assignment that satisfies a formula (i.e., allows the 
formula to evaluate to true) is called a truth assignment of the formula. A variable assignment 
is not a formula’s truth assignment if all literals within a certain clause (called a conflicting 
clause) of the formula evaluate to false according to the assignment. At each node in the 
search tree, modern SAT solvers—usually based on the Davis-Logemann-Loveland (DPLL) 
algorithm [11]—uses current conflicts to prune subsequent search space. If a current variable 
assignment satisfies the formula, a solution is found. If a current variable assignment induces 
conflicts, SAT solvers will backtrack on the assignment (e.g., performing the conflict-driven 
analysis). If a current variable assignment fails to either satisfy a formula or induce conflicts, 
solvers will select a new branching variable based on their individual heuristics and repeat the 
process until a) a solution is found or b) they have exhausted the search space, implying that 
no solutions exist.  

The process of pruning subsequent search space (known as deduction) is a key part of 
DPLL-based SAT solvers. Deduction derives a set of necessary variable assignments that can 
be deduced from the existing variables assignments, usually by iteratively applying the unit 



clause and pure literal rules [41]. This process (sometimes referred to as Boolean Constraint 
Propagation or BCP) accounts for the major portion of a solver’s running time. The zChaff 
solver [33] (which incorporates a novel BCP algorithm called 2-literal) outperforms many 
SAT solvers. As part of this project, we leverage zChaff in SATRepair to solve SAP forluma 
satisfiability. We reserve our Boolean state variables (i.e., defective lines) using a bit-vector, 
and dynamically construct the hash table of CFR() such that each hash key of (L,m) indicating 
an internal variable exactly equals to the evaluation of CFR(L,m). (CFC()  is treated similarly). 
This can be achieved via dynamically calling the circuit construction of zChaff.  Finally, the 
translation of formulas into CNF is trivial since we have built a circuit representation.  

 
4. Experiment Design and Results 

 
Most SAP algorithms are evaluated using simulated fault distributions, implying that 

precise fault models are critical to correct evaluations, especially for probabilistic 
analyses of SAP algorithms.  

 
4.1 Fault Model 

Since SAP is NP-Complete, exact algorithms rely on exhaustive searches with exponential 
running times. However, it is possible that the worst cases occur very infrequently, and 
therefore some algorithms exist that are efficient for most cases [4]. Shi and Fuchs [36] and 
Blough [4] used this observation to propose separate algorithms and used probabilistic 
analyses to determine their average-case running times according to certain defect 
distribution models. Murphy [34] discovered as early as 1964 that the model tends to 
underestimate yields for larger die sizes, and therefore proposed a compound Poisson model. 
It later became clear that lower predicted yields resulted from the fact that faults occur in 
clusters rather than independently in different chip regions [24] [39]. Clustered faults have a 
higher chance of being repaired compared to those that are uniformly distributed.  

Multiple proposals have been offered to describe the physical basis and thereby appropriate 
mathematical modeling for defect distributions [31]. Stapper [39] proposed the quadrat-based 
model that Blough [4] used to prove the average-case running time of his ClusterReconfig 
heuristic algorithm. The model was simple but too restrictive, and its assumption of non-
overlapping defects was unlikely in practice [5]. Blough [5] therefore used Meyer and 
Pradhan’s center-satellite model [30] to perform a probabilistic analysis of his 
ClusterReconfigNew heuristic algorithm. In a later study of the QRCF heuristic algorithm [6], 
Blough argued that while it is well suited to defect cluster modeling, the large number of 
parameters associated with the center-satellite model makes parameter estimation difficult, 
and therefore used again the quadrat-based model to evaluate QRCF. 

We used the center-satellite model described by Blough in [5] for our test case 
generation, since although it involves complex parameters, it can more accurately 
reflect realistic fault distributions. Other proposed center-satellite model variations and 
defect models are beyond the scope of this paper; interested readers are referred to a 
recent survey by Meyer and Park [31]. 

4.2 Experiment Design and Results 

Lin et al. [28] showed that BDDRepair is significantly faster than Kou and Fuchs’s [22] 
original B&B algorithm with numerous enhancements. In this project we compared 
SATRepair with BDDRepair as well as with B&B and Hadas and Liu [24]’s excess-k 
algorithm, which has been proved to outperform all predecessors. We compared three 



versions of SATRepair. SATRepair_1 implements our proposed Boolean encoding and SAT 
algorithm, but without the dynamic programming mechanism we proposed in Section 2.2. 
Instead of using the new Boolean encoding we proposed in Section 2, SATRepair_2 uses Lin 
et al.’s [28] original Boolean encoding, but solves the formulas using our SAT-based 
algorithm instead of Lin et al.’s BDD-based algorithm. Although it does not use our proposed 
encoding, it incorporates our proposed dynamic programming mechanism. SatRepair_3 
enhances SATRepair_1 with dynamic programming.  
 
Set n SR=SC mn p1 p2 Faulty cells
1 1024 32 5 0.000009 0.8 189 
2 1024 32 5 0.000013 0.8 270 
3 1024 32 5 0.000017 0.8 355 
4 1024 32 9 0.000003 0.8 204 
5 1024 32 9 0.000007 0.8 472 
6 1024 32 9 0.000009 0.8 608 
7 1024 32 15 0.000002 0.8 372 
8 1024 32 15 0.000004 0.8 759 
9 1024 32 15 0.000007 0.8 1309 

10 1024 36 15 0.000004 0.8 752 
11 1024 36 9 0.000007 0.7 412 
12 2048 64 7 0.000004 0.7 576 
13 2048 64 9 0.000003 0.5 511 
14 4096 128 7 0.000002 0.7 1149 
n: array size       SR/SC: spare row/column number   
mn, p1, p2: parameters of Blough’s model [5] 
Faulty cells: Average number of faulty cells 

Figure 3 The fourteen test sets (100 test 
cases each) used to evaluate 
SATRepair. 

Figure 4. Plot of average running times and success 
rates for BDDRepair and SATRepair. 

As shown in Figure 3, we used Blough’s [5] model to randomly generate 1400 test cases 
(14 sets of 100 cases each). The test sets contained different combinations of array size, spare 
amount, and defect density. In the figure they are ordered by problem size—the higher the 
test set number, the more complex the problem. 

We ran B&B, Excess-k, BDDRepair and SATRepair (all three modes) against these 1400 
test cases and recorded their running times. We conducted our experiments with an Intel 
Xeon processor (2.40GHz with 512 KB cache) with 1 gigabyte of memory running Red Hat 
Linux release 8.0 (Psyche) with kernel v2.4.18-14 (2 gigabytes of swap). We compiled our 
programs using gcc 3.3.4 with the optimization features turned on. In practice, a major 
concern in the chip reconfiguration process is throughput [20], defined as the number of good 
chips produced per unit time. Chips are discarded if their reconfiguration times are too long 
compared to their manufacturing times [29]. Accordingly, we aborted the algorithm and 
marked it as failed if an algorithm failed to reach completion within 100 seconds. Average 
running times and success rates for all compared algorithms are plotted in Figures 4. We 
counted the running times of failed cases as 100 seconds. The figures show that in terms of 
running time, BDDRepair outperformed B&B and Excess-k for all test sets, while B&B and 
SATRepair_1 exhibited the worst performance. SATRepair_2 outperformed BDDRepair 
starting from test set 11 when the array size reached 1024. In fact, BDDRepair exhibited a 
sharp increase in running time from test set 10 to 11, and failed for almost all cases in test sets 
12 to 14. However, BDDRepair exhibited a distinct advantage over SATRepair_2 for the first 
7 test sets, and a slight advantage for test sets 7 to 10. SATRepair_3 demonstrated notable 
improvements over SATRepair_2—compared with BDDRepair, its performance was slightly 
worse from sets 1 to 4, comparable or better from sets 4 to 7, slightly better from 7 to 10, and 
remarkably better from 11 to 14.  
 
5. Conclusion 



In this paper we argued that the nature of SAP makes it ideal for SAT application and 
proposed a new Boolean SAP encoding that allows for more efficient development of both 
BDD- and SAT-based SAP algorithms. Based on the new encoding, we developed a novel 
SAT-based SAP algorithm named SATRepair. A precise fault model is critical for the correct 
evaluation of SAP algorithms. We used that Blough’s model to randomly generate 1400 test 
cases representing different combinations of array size, spare amount, and defect density. Our 
results showed that BDDRepair slightly outperformed SATRepair_3 for very small problems 
(test sets 1 to 4), but that it failed to meet our 100-second time constraint as problem size 
increased. We also observed that its average running time increased at a much faster rate than 
that of SATRepair. These results support our assumptions that BDD size expands 
exponentially with problem size and that SAT solvers, which are designed to handle hundreds 
of thousands of variables, are capable of quickly solving SAPs with many solutions.  

 We therefore suggest the following for BDDRepair and SATRepair. 
1. BDDRepair is better suited to smaller problems. 
2. BDDRepair is better suited to fabrication processes that yield higher percentages of 

irreparable arrays. However, this implies an uneconomical and unprofitable 
manufacturing process that is unlikely to exist in practice.  

3. SATRepair is inefficient for irreparable arrays, but is otherwise more efficient than 
BDDRepair. 

4. SATRepair can handle problems with sizes that are too large for BDDRepair. 

As mentioned, condition 2 is unlikely to occur in practice. Chip designers use various fault 
models and yield analysis algorithms to ensure that they incorporate enough spares so as to 
make most chips repairable. Since this implies solutions will exist in the vast majority of 
cases, SATRepair has an advantage over BDDRepair. For condition 3, SATRepair can be 
aborted before 100 seconds, since the guiding goal is to improve the throughput of a 
manufacturing process. Doing so will yield a higher average running time for SATRepair. 
Finally, since there is currently a strong movement toward developing efficient SAT 
algorithms for practical applications [18], SATRepair will benefit from future SAT solver 
developments. 
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