
Code Compression ∗

Fang Yu
Department of Computer Science

University of California, Santa Barbara

June 18, 2006

Abstract

I investigate how code compression was achieved by using compressing ideas in
information theory in previous researches. The main idea is to take the advantage
on data compression to reduce the size of systems/programs. Code compression is
a crucial technique in modern application design, especially for those applications
highly restricted on device capability.

1 Introduction

We aim to reduce the size of programs via techniques in information theory. In recent

years, it tends to be an increasing trend to incorporate computers to wide devices, such

as palm-tops, electric appliances, embedded controllers, etc. In many of these devices,

the amount of memory is limited due to considerations like space, weight, and power

consumption. An application that requires more than that is available on a specific device

will not be able to run on that device, no matter how sophisticated the software is. Hence,

it seems to be attractive if we can remain the functionality but reduce the program size

where possible. This project explores the use of data compression techniques to achieve

code compression/compaction, in particular for two traditional techniques: dictionary

compression and Lemple-Ziv [10] compression algorithm.

2 Code Compression

2.1 Data v.s. Codes

Before compression methods detailed, one question has to be answered: what’s the differ-

ence between data and code compressions? A traditional technique used in data compres-

sion is replacing frequent words with short codewords; while, the technique used in code

∗This is the term paper of the final project of CS225-Information Theory, Spring06

compression is directing similar code segments to identified copies. Both compressions are

aim to represent information in the smallest form that still holds the information content.

In some sense, we shall serve code compression as a variant of the more general problem

of data compression. However, due to the essence of data and codes, there are some some

fundamental differences which further affect algorithms developed.

Lefurgy [6] pointed three assumptions about the data being compressed in traditional

compression against code compression. First, it is assumed that the compression must be

done in a single sequential pass over the data since in most cases, typical data may be too

large to contain in storage at one time. In contrast, programs are small enough to fit in

storage, so the compressor can optimize the final compressed representation based on the

entire program instead of using only information in a single pass. Second, the required

single pass approach in data compression usually takes advantage of history of recent

symbols in the data stream. History information allows compressors to utilize repetition

in the data. However, this also constrains the decompressor to start at the beginning of

the data stream. The decompressor cannot begin decompressing at an arbitrary point

in the data stream since in that case it may not have sufficient history information that

the decompression algorithm depends upon. For code compression, since a program shall

be able to execute any path through its control flow and decompress as the program is

executing, it is desirable to begin decompression at arbitrary points in the program. Third,

since we target code compression in most microprocessors have alignment restrictions

which impose a minimum size on instructions. For example, compressors may restrict

their encodings to begin on byte boundaries so that the decompressors can quickly access

codewords. This would require the use of pad bits to lengthen the minimum size of

codewords. Based on these differences, the following question is how to efficiently identify

similar patterns in codes?

2.2 Pattern Identification

Typically, it is hard to find large similar patterns repeated in a well-written program in

high-level language. Code compression is usually applied to machine languages where a

fixed instruction set are used repeatedly.

Dedray et al. [2] use control-flow graph to extract repeated code fragments. They induce

fingerprint function to determine that whether basic blocks are identical (or similar).

Since instructions usually differ from one another due to using different register names in

their register fields, the fingerprint function only checks whether the first 16 instructions

are the same despite what registers they use. However, this ignorance may result in

incorrect compression/decompression. To address this problem, Debray et al. combine

the technique of register renaming in their binary-rewriting tool. They find basic blocks

with matching data-flow graphs and attempt to rename the registers within the basic

2

blocks so that the instructions match(the same instruction using the same registers). To

achieve this, register move instructions are sometimes inserted before and after the basic

blocks. An example of register renaming is given in Figure 1.

r0=r1+1
r1=r0+r2
r5=r0*r1
r3=r1−r5
r4=r5*2

{r1,r2}live

{r3,r4}live

B0

{r1,r2}live

{r3,r4}live

B1 r5=r4+1
r3=r5+r2
r6=r5*r3
r0=r3−r6
r4=r6*2

(a)Before register renaming

r5=r4+1
r3=r5+r2
r6=r5*r3
r0=r3−r6
r4=r6*2

r5=r4+1
r3=r5+r2
r6=r5*r3
r0=r3−r6
r4=r6*2

{r1,r2}live

{r3,r4}live

B1

{r1,r2}live

{r3,r4}live

B0

r4=r1

r3=r0

(b)After register renaming

Figure 1: An example of register renaming

Furthermore, they look at the control-flow between basic blocks so that blocks can be

combined into larger units of abstraction. If possible, identical blocks are moved into

dominating, or post-dominating blocks to remove copies. Otherwise, the identical basic

blocks are then used as candidates for procedure abstraction.

Register renaming not only can improve repetition in the program by renaming the

registers of an instruction so that it matches another instruction in the program whenever

possible but also maintain the correctness of renamed programs.

Cooper and McIntosh [1] also adopt register renaming to increase opportunities to apply

procedure abstraction and cross-jumping. The primary difference is that they use live

ranges, rather than basic blocks, as the unit of renaming registers. They search the entire

executable binary for sequences of instructions (possibly spanning several basic blocks)

that have similar data-flow and control-flow. They then attempt to make the sequences

identical by renaming registers in the live ranges that flow through the sequences. Once

the sequences are identical, then procedure abstraction or cross-jumping is applied.

2.3 Software v.s. Hardware

Another interesting issue is how to support code compression.

Liao et al [7] propose a software method for supporting compressed code. They find

mini-subroutines which are common sequences of instructions in the program. Each in-

stance of a mini-subroutine is removed from the program and replaced with a call in-

struction. The mini-subroutine is placed once in the text of the program and ends with a

return instruction. Mini-subroutines are not constrained to basic blocks and may contain

3

branch instructions under restricted conditions. The prime advantage of this compression

method is that it requires no hardware support. However, the subroutine call overhead

will slow program execution. This method is similar to procedure abstraction at the level

of native instructions, but without the use of procedure arguments.

A hardware modification is proposed to support code compression consisting primarily

of a call-dictionary instruction [5, 9]. This instruction takes two arguments: location

and length. Common instruction sequences in the program are saved in a dictionary,

and the sequence is replaced in the program with the call-dictionary instruction. During

execution, the processor jumps to the point in the dictionary indicated by location and

executes length instructions before implicitly returning. The advantage of this method

over the purely software approach is that it eliminates the return instruction from the

mini-subroutine. However, it also limits the dictionary to sequences of instructions within

basic blocks.

2.4 With or without decompression

So far for all proposed methods [1,2,4,6,7], the resulting compressed form can be executed

without decompression. Another strategy is to apply data compression to executables on

disk, then use decompression when the executable is loaded into ram to run [3]. Ernst

et al. proposed a compressed wire representation that must be decompressed before

execution but is, for example, roughly 21% the size of SPARC code when compressing.

For this strategy, the techniques of data compression may be benefit directly to code

compression; however, it may induce extra memory requirement and power consumption,

which considerably suffers the application in particular for embedded systems.

3 Algorithms

In this section, we describe two most common algorithms used in code compression.

3.1 Dictionary

Dictionary compression uses a dictionary of common symbols to remove repetition in the

program. A symbol could be a byte, an instruction field, a complete instruction, or a

group of instructions. The dictionary contains all of the unique symbols in the program.

Each symbol in the program is replaced with an index into the dictionary. If the index

is shorter than the symbol it replaces, and the overhead of the dictionary is not large,

compression will be realized.

The dictionary compression takes advantage of the observation that the instructions in

programs are highly repetitive. The compression method finds sequences of instructions

4

(some of length one) that are frequently repeated throughout a single program and replaces

the entire sequence with a single codeword. All rewritten (or encoded) sequences of

instructions are kept in a dictionary which, in turn, is used at program execution time to

expand the singleton codewords in the instruction stream back into the original sequence

of instructions. Codewords assigned by the compression algorithm are indices into the

instruction dictionary.

The following equation and lemma specify the condition to achieve efficient dictionary

compression. We say a compression is efficient if its compression rate is greater than

1, i.e., the storage size of the original programs is greater than the storage size of the

compressed ones.

nw ≥ ndlg de+ dw (1)

In this equation, n is the number of static instructions in the program, w is the number

of bits in a single instruction, and d is the number of symbols in the dictionary.

LEMMA 1 The dictionary compression rate is greater than 1 if and only if Equation 1

holds.

The lemma holds by definition. Note that the condition may be more restricted if we

account for the size of specific implementations of the decompressor, which we ignore this

part here for simplicity.

In [6], each unique 32-bit instruction word in the original program is put in a dictionary.

Each instruction in the original program is then replaced with a 16-bit index into the

dictionary. Because the instruction words are replaced with a short index and because

the dictionary overhead is usually small compared to the program size, the compressed

version is smaller than the original. Instructions that only appear once in the program

are problematic. The index plus the original instruction in the dictionary are larger than

the single original instruction, causing a slight expansion from the native representation.

An example from [6] is given in Figure 2 to illustrate the compression method.

3.2 LZ algorithm

In most programs there are common sequences of instructions that appears in the different

sections of the code. Recall the Lemple-Ziv(LZ) algorithm in which we use pointers to

identify repeated words. Fraser [4] and Lau et al. [9] induced echo instruction as a pointer

to reduce repeated sections of code to a single copy. The idea behind echo instruction is to

compress these repeating sequences of instructions by ”echoing” existing code sequences.

More precisely, all the other sections are replaced with a single echo instruction that

tells the processor to execute a subset of the instructions from the single copy. The echo

instruction provides a way to represent pointers in the program.

5

ble
cr1,000401c8
cmplwi cr1,r11,7
bgt
cr1,00041d34

ble
cr1,000401c8
cmplwi cr1,r11,7
bgt
cr1,00041d34

bgt
cr1, 00041c98

bgt
cr1, 00041c98

lbz r9,0(r28)
clrlwi r11,r9,24
addi r0, r11,1
cmplwi cr1,r0,8

lbz r9,0(r28)
clrlwi r11,r9,24
addi r0, r11,1
cmplwi cr1,r0,8

lwz r9, 4(r28)
stb r18,0(r28)

lwz r9, 4(r28)
stb r18,0(r28)

b 00041d38
lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8

b 00041d38

CODEWORD #1

CODEWORD #2

CODEWORD #1

CODEWORD #1

CODEWORD #2

Compressed CodeUncompressed Code Dictionary

Figure 2: An example of dictionary compression [6].

Fraser proposed the basic echo instruction, called sequential echo, in LZ77 compres-

sion [4]. The sequential echo, as you will see, tells the fetch unit where the duplicate

instructions can be found and how many duplicate instructions needed to be executed.

LZ77 compression accepts a stream of characters and produces a stream that interleaves

literals and pointers(echo instructions). Each echo indicates a phrase in the previous N

characters and has two parts: a displacement and a length. The displacement gives the

distance back to the phrase, and the length identifies the number of characters in the

phrase. For example, the byte string Blah blah. compresses to Blah b5,3. where the

underlined material denotes an echo instruction which indicates the phrase lah. The dis-

placement is five, and the length is three, because the next three bytes repeat those back

five bytes. Fraser also adds LZ77 echo to conventional instruction sets. The assembler

instruction echo .-5,3 commands the (hardware or software) interpreter to fetch and

execute three instructions starting five bytes back from the echo instruction.

In this way, sequential echo instructions are like lightweight procedure calls: they cause

the processor jump to the target location, execute the desired code sequence, and return

to the call site. Note that each echo indicates a fixed number of instructions that will be

executed, and hence no return instructions required.

Lau et al. [9] forward the basic echo instruction to handle two code sections in a pro-

gram which are very similar but not exactly identical, differing by a small number of

instructions. To compress similar section codes, they extend the echo instruction by al-

lowing it to conditionally include instructions based on a bitmask. Each bitmask echo

has two fields: a bitmask and a branch offset. Each bit in the bitmask corresponds to an

instruction at the branch target: a one bit indicates that the corresponding instruction is

executed, and a zero bit indicates that the corresponding instruction is not executed. By

6

replacing sequences of code with echo instructions that refer to similar code elsewhere in

the program, they achieve a compression ratio of 85%.

4 Conclusion

The main contribution of this project is to summarize the recent issues and researches of

code compression. It is interesting to connect dots between data compression and code

compression, since both try to find an efficient form to represent information. (I believe

this is exactly the key value of Information theory.)

On the other hand, since the later is an essential technique for embedded systems,

extending techniques in information theory to this field is an attractive research direction.

References

[1] K. D. Cooper and N. McIntosh, Enhanced code compression for embedded RISC

processors. In Proceedings: the ACM SIGPLAN 1999 conference on Programming

language design and implementation, pp. 139-149, Atlanta, Georgia, United States,

1999.

[2] S. K. Debray, W. Evans, R. Muth, and B. D. Sutter, Compiler Techniques for

Code Compaction, ACM Transactions on Programming Languages and Systems

(TOPLAS), vol 22, No. 2, pages 378V415, 2000.

[3] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting. Code compression.

In Proceedings of the SIGPLAN ’97 Conference on Programming Language Design

and Implementation, pages 358-365, Las Vegas, NV, June 1997.

[4] C. Fraser, An instruction for direct interpretation of LZ77-compressed programs.

Microsoft Technical Report, MSR-TR-2002-90.

[5] M. Game and A. Booker, CodePack code Compression for PowerPc processors, Tech-

nical Report, International Business Machines, Research Triangle Park, NC, 1998.

[6] C. Lefurgy, Efficient Execution of Compressed Programs, Doctoral Dissertation,

Dept. of CS and Eng., University of Michigan, 2000.

[7] S. Liao, S. Devadas, and K. Keutzer. A text-compression-based method for code size

minimization in embedded systems. TODAES 4(1), pages 12-38, 1999.

[8] C. Lefurgy, E. Piccininni, and T. Mudge, Reducing code size with run-time decom-

pression, In Proceedings of the 6th International Symposium on High-Performance

Computer Architecture(HPCA), pages 218-227, Jan 2000.

7

[9] J. Lau, S. Schoenmackers, T. Sherwood, B. Calder. Reducing code size with echo

instructions. In Proceedings of the 2003 international conference on Compilers, ar-

chitecture and synthesis for embedded systems, , pages 84-94, San Jose, California,

USA, 2003.

[10] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23, pages 337-342, 1977.

8

