
How MapReduce Works 
資碩一 戴睿宸



MapReduce Entities 
four independent entities: 
•  The client 
•  The jobtracker 
•  The tasktrackers 
•  The distributed filesystem





Steps 
1.  Asks the jobtracker for a new job ID 

2.  Checks the output specification of the job 

3.  Computes the input splits for the job 

4.  Copies the resources needed to run the job 

5.  Tells the jobtracker that the job is ready for 
execution 



Job Submission 
runJob() 

 
•  polls the job’s progress once a second 
•  reports the progress to the console if it has 

changed since the last report 
• When the job is complete, if it was successful, 

the job counters are displayed. 



Job Initialization 
•  job scheduler first retrieves the input splits 

computed by the JobClient from the shared 
filesystem 

•  It then creates one map task for each split.  

•  The number of reduce tasks is determined by 
the mapred.reduce.tasks property 

•  Tasks are given IDs at this point 



Task Assignment 
•  Tasktrackers run a simple loop that periodically 

sends heartbeat method calls to the jobtracker. 

•  As a part of the heartbeat, a tasktracker will 
indicate whether it is ready to run a new task, 
and if it is, the jobtracker will allocate it a task



Task Assignment 
•  In the optimal case, the task is data-local 

•  Alternatively, the task may be rack-local 

•  tasks are neither data-local nor rack-local and 
retrieve their data from a different rack from 
the one they are running on 



Task Execution 
•  First, it localizes the job JAR by copying it from 

the shared filesystem 

•  Second, it creates a local working directory 

•  Third, it creates an instance of TaskRunner to 
run the task.rectory for the task 

•  TaskRunner launches a new Java Virtual 
Machine to run each task in



Task Execution progress 
• When a task is running, it keeps track of its 

progress, that is, the proportion of the task 
completed.  

•  For map tasks, this is the proportion of the 
input that has been processed. 

•  For reduce tasks, it’s the estimated proportion 



Task Execution 
•  If a task reports progress, it sets a flag to 

indicate that the status change should be sent 
to the tasktracker.  

• Meanwhile, the tasktracker is sending 
heartbeats to the jobtracker every five seconds



Job Completion 
•  jobtracker receives a notification that the last 

task for a job is complete, it changes the status 
for the job to “successful.” 

•  JobClient polls for status, it learns that the job 
has completed successfully, so it prints a 
message to tell the user, and then returns from 
the runJob() method. 





Task Failure 
• Wihle the child JVM reports the error back to its 

parent tasktracker, The tasktracker marks the 
task attempt as 

   failed, freeing up a slot to run another task. 
 
•  The tasktracker notices that it hasn’t received a 

progress update for a while, and proceeds to 
mark the task as failed. (normally 10 min)



Task Failure 
• When the jobtracker is notified of a task 

attempt that has failed , it will reschedule 
execution of the task 

•  The jobtracker will try to avoid rescheduling 
the task on a tasktracker where it has 
previously failed 

•  By default, if any task fails more than four 
times, the whole job fails (editable)



Tasktracker Failure 
•  If a tasktracker fails by crashing, or running 

very slowly, it will stop sending heartbeats to 
the jobtracker 

•  The jobtracker arranges for map tasks that 
were run and completed successfully on that 
tasktracker to be rerun if they belong to 
incomplete jobs and reschedule.



Jobtracker Failure 
• Hadoop has no mechanism for dealing with 

failure of the jobtracker 

•  It is possible that a future releaseof Hadoop 
will remove this limitation by running multiple 
jobtrackers, only one of which is the primary 
jobtracker at any time



Job Scheduling 
•  Basically FIFO 

•  setting a job’s priority was enabled, which take 
one of the values VERY_HIGH, HIGH, NORMAL, 
LOW, VERY_LOW 

•  priorities do not support preemption



The Fair Scheduler 
•  For Multiuser 
 
•  The Fair Scheduler aims to give every user a fair share 

of the cluster capacity over time. 

•  If a single job is running, it gets all of the cluster 

•  It is also possible to define custom pools with 
guaranteed minimum capacities and to set weighting 
for each pool 

•  The Fair Scheduler supports preemption 



Shuffle and Sort 
• MapReduce makes the guarantee that the input 

to every reducer is sorted by key.  

•  Theprocess by which the system performs the 
sort—and transfers the map outputs to 
thereducers as inputs 

                        —is known as the shuffle.†



The Map Side 



The Map Side 
•  Spills are written in round-robin fashion to the 

directories specified by the mapred.local.dir 
property, in a job-specific subdirectory 

• Before it writes to disk, the thread first divides 
the data into partitions corresponding to the 
reducers that they will ultimately be sent to. 

•  The background thread performs an in-memory 
sort by key 



The Map Side 
•  The spill files are merged into a single 

partitioned and sorted output file 

•  It is often a good idea to compress the map 
output as it is written to disk



The Reduce Side 



The Reduce Side 
•  The map outputs are copied to the reduce 

tasktracker’s memory if they are small 
enough ;otherwise, they are copied to disk. 

•  When all the map outputs have been copied, the 
reduce task moves into the sort phase (merge phase) 

•  The merge saves a trip to disk by directly feeding the 
reduce function in what is the last phase: the reduce 
phase. This final merge can come from a mixture of 
in-memory and on-disk segments. 




