
Outline
Overview

Symbolic String Verification
Composite Verification

References

Automatic Verification of String Manipulating

Programs

Fang Yu

Department of Computer Science
University of California, Santa Barbara, USA

CS267 Guest Leture
November 18, 2009

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

1 Overview
Motivation
Is it Vulnerable?

2 Symbolic String Verification
Verification Framework
Technical Details
Experiments

3 Composite Verification
String Analysis + Size Analysis
Length Automata
Experiments

4 References

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Overview

We investigate string verification problem and present an
automata-based approach for automatic verification of string
manipulating programs based on symbolic string analysis.

String analysis plays an important role in the security area. For
instance, one can detect various web vulnerabilities like SQL
Command Injection and Cross Site Scripting (XSS) attacks.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Web Application Vulnerabilities

• The top three vulnerabilities in OWASPs top ten list (2007)

1 Cross Site Scripting (XSS)
2 Injection Flaws (such as SQL injection)
3 Malicious File Execution (MFE)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Injection Flaws

• The attacker formulates a malicious command, and sends it as
input to the Web application

• Login / search / registration / etc

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Injection Flaws

• The Web application uses the input to construct commands
without prior sanitization

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Injection Flaws

• Command delivered to OS: Command injection

• Command delivered to database: SQL injection

• Since arbitrary command is executed, this attack may cause
great damage

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

XSS Attacks

• Malicious content injected into a web application can also
attack clients

• An attacker first inject a malicious script into the Web
applications database

• Through a functionality (e.g., message posting)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

XSS Attacks

• Upon a certain request by a victim, the script is used to
construct output

• E.g., the victim reads the posted message

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

XSS Attacks

• The script is delivered on behalf of the Web application to the
client

• It has the right to access client’s cookies and deliver them to
attackers.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Is it Vulnerable?

A PHP Example:

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• The echo statement in line 4 can contain a Cross Site
Scripting (XSS) vulnerability

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Is it Vulnerable?

An attacker may provide an input that contains <script and
execute the malicious script.

l 1:<?php

l 2: $www = <script ... >;

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .<script ... >.
”</td>”;

l 5:?>

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Is it Vulnerable?

A simple taint analysis, e.g., [Huang et al. WWW04], can report
this segment vulnerable using taint propagation.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .$www. ”</td>”;

l 5:?>

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Is it Vulnerable?

Add a sanitization routine at line s.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• Taint analysis will assume that $www is untainted after the
routine, and conclude that the segment is not vulnerable.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Sanitization Routines are Erroneous

However, ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www); does not
sanitize the input properly.

• Removes all characters that are not in { A-Za-z0-9 .-@:/ }.

• .-@ denotes all characters between ”.” and ”@” (including
”<” and ”>”)

• ”.-@” should be ”.\-@”

• A buggy sanitization routine used in MyEasyMarket-4.1 that
causes a known vulnerable point at line 218 in trans.php

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Sanitization Routines are Erroneous

Our string analysis identifies that the segment is vulnerable.
Furthermore,

• We generate vulnerability signature that characterizes all
malicious inputs that may generate attacks

• The vulnerability signature for $ GET[”www”] is
Σ∗ < α∗sα∗cα∗rα∗iα∗pα∗tΣ∗, where
α 6∈ { A-Za-z0-9 .-@:/ }

• Any string accepted by this signature may yield an attack

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Sanitization Routines are Erroneous

For example, a malicious input can be <!sc+rip!t ...> which does
not match the attack pattern Σ∗ <scriptΣ∗.

l 1:<?php

l 2: $www =<!sc+rip!t ...>;

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . <script ...> .
”</td>”;

l 5:?>

• One can filter out all malicious inputs using our signature

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Is it Vulnerable?

Fix the sanitization routine by inserting the escape character \.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s’: $www = ereg replace(”[∧A-Za-z0-9 .\-@://]”,””,$www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

Using our approach, this segment is proven not vulnerable against
the XSS attack pattern: Σ∗ <scriptΣ∗.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Motivation
Is it Vulnerable?

Automatic Verification of String Manipulating Programs

We can

1 Detect vulnerabilities in web applications that are due to
string manipulation

2 Prove the absence of vulnerabilities in web applications that
use proper sanitization

3 Generate a characterization of all malicious inputs that may
compromise a vulnerable web application

We achieve this goal by an automata-based symbolic string
analysis approach.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Part I: String Verification

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Verification Framework

• Convert PHP programs to dependency graphs with string
manipulation operations

• Associate each node with an automaton that accepts an over
approximation of its possible values

• Combine forward and backward symbolic reachability analyses

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Verification Framework

• A dependency graph specifies how the values of input nodes
flow to a sink

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Verification Framework

Detecting vulnerabilities

• Uses automata-based forward symbolic analysis to identify the
possible values of each node

• Uses post-image computations of string operations:
• postConcat(M1, M2) for M := M1.M2, and
• postReplace(M1, M2, M3) for M := replace(M1, M2, M3)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Verification Framework

Forward analysis

• Allows arbitrary values from user inputs

• Propagates post-images to next nodes

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Detecting Vulnerabilities

• Intersects the result of the sink node with the attack pattern

• If the intersection is empty then the program is not vulnerable
with respect to the attack pattern. Otherwise, it is vulnerable

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Verification Framework

Generating vulnerability signatures

• A vulnerability signature is a characterization that includes all
malicious inputs that can be used to generate attack strings

• Uses backward analysis starting from the sink node

• Uses pre-image computations on string operations:
• preConcatPrefix(M, M2), preConcatSuffix(M, M1) for

M := M1.M2 and
• preReplace(M, M2, M3) for M := replace(M1, M2, M3).

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Verification Framework

Backward analysis

• Computes pre-images along with the path to the user input

• Uses results from forward analysis

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Symbolic Fixpoint Computations

• Iteratively,
• Computes the next state of current automata against string

operations and
• Updates automata by joining the result to the automata at the

next statement

• Terminates the execution upon reaching a fixed point

• We use an automata based widening operation that
over-approximates the least fixpoint and accelerates
convergence

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Forward Fixpoint Computation

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Backward Fixpoint Computation

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Challenges

• Precision: Need to deal with sanitization routines having
PHP string functions, e.g., ereg replacement.

• Complexity: The problem in general is undecidable. The
fixed point may not exist and even if it exists the fixpoint
computation may not converge.

• Performance: Need to perform automata manipulations
efficiently in terms of both time and memory.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Selected Features of Our Approach

We propose:

• A Language-based Replacement: To model replacement
operations in PHP programs.

• A Pre-condition computation: To perform backward analysis

• An Automata Widening Operator: To accelerate fixed point
computation.

• A Symbolic Encoding: Using Multi-terminal Binary Decision
Diagrams (MBDDs) from MONA DFA packages.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Technical Details

1 Replacement

2 Pre-condition

3 Widening

4 Symbolic Encoding

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

A Language-based Replacement

M=replace(M1, M2, M3)

• M1, M2, and M3 are Deterministic Finite Automata (DFAs).
• M1 accepts the set of original strings,
• M2 accepts the set of match strings, and
• M3 accepts the set of replacement strings

• Let s ∈ L(M1), x ∈ L(M2), and c ∈ L(M3):
• Replaces all parts of any s that match any x with any c .
• Outputs a DFA that accepts the result.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

M=replace(M1, M2, M3)

Some examples:
L(M1) L(M2) L(M3) L(M)

{baaabaa} {aa} {c} {bacbc, bcabc}
{baaabaa} a+ ǫ {bb}
{baaabaa} a+b {c} {baacaa, bacaa, bcaa}
{baaabaa} a+ {c} {bcccbcc, bcccbc,

bccbcc, bccbc, bcbcc, bcbc}
ba+b a+ {c} bc+b

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

M=replace(M1, M2, M3)

• An over approximation with respect to the
leftmost/longest(first) constraints

• Many string functions in PHP can be converted to this form:
• htmlspecialchars, tolower, toupper, str replace, trim,

and
• preg replace and ereg replace that have regular

expressions as their arguments.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

A Language-based Replacement

Implementation of replace(M1, M2, M3):

• Mark matching sub-strings
• Insert marks to M1

• Insert marks to M2

• Replace matching sub-strings
• Identify marked paths
• Insert replacement automata

In the following, we use two marks: < and > (not in Σ), and a
duplicate alphabet: Σ′ = {α′|α ∈ Σ}.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

An Example

Construct M = replace(M1,M2,M3).

• L(M1) = {baab}

• L(M2) = a+ = {a, aa, aaa, . . .}

• L(M3) = {c}

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Step 1

Construct M ′

1 from M1:

• Duplicate M1 using Σ′

• Connect the original and duplicated states with < and >

For instance, M ′

1 accepts b < a′a′ > b, b < a′ > ab.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Step 2

Construct M ′

2 from M2:

• (a) Construct M2̄ that accepts strings that do not contain any
substring in L(M2).

• (b) Duplicate M2 using Σ′.

• (c) Connect (a) and (b) with marks.

For instance, M ′

2 accepts b < a′a′ > b, b < a′ > bc < a′ >.

(a) (b) (c)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Step 3

Intersect M ′

1 and M ′

2.

• The matched substrings are marked in Σ′.

• Identify (s, s ′), so that s →< . . . →> s ′.

In the example, we identify three pairs:(i,j), (i,k), (j,k).

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Step 4

Construct M:

• (d) Insert M3 for each identified pair.

• (e) Determinize and minimize the result.

L(M) = {bcb, bccb}.

(d) (e)

**The details can be found in [SPIN08]

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Technical Details

1 Replacement

2 Pre-condition

3 Widening

4 Symbolic Encoding

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Pre-conditions of String Concatenation

We introduce concatenation transducer to specify the relation of
X = YZ .

• A concatenation transducer is a 3-track DFA M over the
alphabet Σ × (Σ ∪ {λ}) × (Σ ∪ {λ}), where λ 6∈ Σ is a special
symbol for padding.

• ∀w ∈ L(M), w [1] = w ′[2].w ′[3]
• w [i] (1 ≤ i ≤ 3) to denote the i th track of w ∈ Σ3

• w ′[2] ∈ Σ∗ is the λ-free prefix of w [2] and
• w ′[3] ∈ Σ∗ is the λ-free suffix of w [3]

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Concatenation Transducer: X = YZ

Let α be any character in Σ.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Suffix: Given X and Y to Compute Z

Consider the precondition of an assignment X := (ab)+.Z .
Assume L(MX) = {ab, abc}. What are the values of Z?

• We first build the transducer M for X = (ab)+Z

• We intersect M with MX on the first track

• The result is the third track of the intersection, i.e., {ǫ, c}.

(a) M (b) After the intersection

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Prefix: Given X and Z to Compute Y

Consider the precondition of an assignment X := Y .(ab)+.
Assume L(MX) = {ab, cab}. What are the values of Y ?

• We first build the transducer M for X = Y .(ab)+

• We intersect M with MX on the first track

• The result is the second track of the intersection, i.e., {ǫ, c}.

(a) M (b) After the intersection

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Technical Details

1 Replacement

2 Pre-condition

3 Widening

4 Symbolic Encoding

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Widening Automata: M∇M
′

This widening operator was originally proposed by Bartzis and
Bultan [CAV04]. Intuitively,

• Identify equivalence classes, and

• Merge states in an equivalence class

• L(M∇M ′) ⊇ L(M) ∪ L(M ′)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

State Equivalence

q, q′ are equivalent if one of the following conditions holds:

• ∀w ∈ Σ∗, w is accepted by M from q then w is accepted by
M ′ from q′, and vice versa.

• ∃w ∈ Σ∗, M reaches state q and M ′ reaches state q′ after
consuming w from its initial state respectively.

• ∃q”, q and q” are equivalent, and q′ and q”are equivalent.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

An Example for M∇M
′

• L(M) = {ǫ, ab} and L(M ′) = {ǫ, ab, abab}.

• The set of equivalence classes: C = {q′′

0 , q′′

1}, where
q′′

0 = {q0, q
′

0, q2, q
′

2, q
′

4} and q′′

1 = {q1, q
′

1, q
′

3}.

(a) M (b) M ′ (c) M∇M ′

Figure: Widening automata

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

A Fixed Point Computation

Recall that we want to compute the least fixpoint that corresponds
to the reachable values of string expressions.

• The fixpoint computation will compute a sequence M0, M1,
..., Mi , ..., where M0 = I and Mi = Mi−1 ∪ post(Mi−1)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

A Fixed Point Computation

Consider a simple example:

• Start from an empty string and concatenate ab in a loop

• The exact computation sequence M0, M1, ..., Mi , ... will
never converge, where L(M0) = {ǫ} and
L(Mi) = {(ab)k | 1 ≤ k ≤ i} ∪ {ǫ}.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Accelerate The Fixed Point Computation

Use the widening operator ∇.

• Compute an over-approximation sequence instead: M ′

0, M ′

1,
..., M ′

i , ...

• M ′

0 = M0, and for i > 0, M ′

i = M ′

i−1∇(M ′

i−1 ∪ post(M ′

i−1)).

An over-approximation sequence for the simple example:

(a) M ′

0 (b) M ′

1 (c) M ′

2 (d) M ′

3

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Technical Details

1 Replacement

2 Pre-condition

3 Widening

4 Symbolic Encoding

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Automata Representation

A DFA Accepting [A-Za-z0-9]* (ASCII).

(a) Explicit Representation (b) Symbolic Representation

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Implementation

We used the MONA DFA Package. [Klarlund and Møller, 2001]

• Compact Representation:
• Canonical form and
• Shared BDD nodes

• Efficient MBDD Manipulations:
• Union, Intersection, and Emptiness Checking
• Projection and Minimization

• Cannot Handle Nondeterminism:
• We used dummy bits to encode nondeterminism

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Benchmarks

In [SPIN08], we reported experiments on test cases extracted from
real-world, open source applications:

• MyEasyMarket-4.1 (a shopping cart program)

• PBLguestbook-1.32 (a guestbook application)

• Aphpkb-0.71 (a knowledge base management system)

• BloggIT-1.0 (a blog engine)

• proManager-0.72 (a project management system)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Benchmarks

Generate benchmarks.

• Select vulnerable points based on the result of Saner [SPP08].
(with Marco Cova)

• For each selection, we manually generate two test cases:
• A sliced code segment from the original program (denoted as

”o”), in which we only consider statements that influence the
selected vulnerable point(s)

• A modified segment with extra/fixed sanitization routines
(denoted as ”m”)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Benchmarks

Here are some statistics about the benchmarks:

Application Benchmark No. of Constr. No. of Concat. No. of Repl.
File(line) Index

MyEasyMarket-4.1 o1 11 4 1
trans.php(218) m1 11 4 1

PBLguestbook-1.32 o2 19 15 1
pblguestbook.php(1210) m2 19 16 1

PBLguestbook-1.32 o3 6 7 0
pblguestbook.php(182) m3 14 8 4

Aphpkb-0.71 o4 4 3 1
saa.php(87) m4 8 3 3
BloggIT 1.0 o5 21 12 8

admin.php(23, 25, 27) m5 23 12 10
proManager-0.72 o6 39 31 9
message.php(91) m6 45 31 12

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Experimental Results

We compare our results against Saner [SPP08].

Idx Res. Final DFA Peak DFA Time Mem Saner Saner
state(bdd) state(bdd) user+sys(sec) (kb) n(type) Time(sec)

o1 y 17(133) 17(148) 0.010+0.002 444 1(xss) 1.173
m1 n 17(132) 17(147) 0.009+0.001 451 0 1.139
o4 y 27(219) 289(2637) 0.045+0.003 2436 1(xss) 1.220
m4 n 18(157) 1324(15435) 0.177+0.009 11388 0 1.622
o6 y 387(3166) 2697(29907) 1.771+0.042 13900 1(xss) 6.980
m6 n 423(3470) 2697(29907) 2.091+0.051 19353 0 7.201

• Res.
• y: the intersection of attack strings is not empty (vulnerable)
• n: the intersection of attack strings is empty (secure).

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Experimental Results

We compare our results against Saner [SPP08].

Idx Res. Final DFA Peak DFA Time Mem Saner Saner
state(bdd) state(bdd) user+sys(sec) (kb) n(type) Time(sec)

o2 y 42(329) 42(376) 0.019+0.001 490 1(sql) 1.264
m2 n 49(329) 42(376) 0.016+0.002 626 1(sql) 1.665
o3 y 842(6749) 842(7589) 2.57+0.061 13310 1(reg) 4.618
m3 n 774(6192) 740(6674) 1.221+0.007 8184 1(reg) 4.331
o5.1 y 79(633) 79(710) 0.499+0.002 3569 0 0.558
o5.2 y 126(999) 126(1123)
o5.3 y 138(1095) 138(1231)
m5.1 n 79(637) 93(1026) 0.391+0.006 5820 0 0.559
m5.2 n 115(919) 127(1140)
m5.3 n 127(1015) 220(2000)

• type:(1) xss - cross site scripting vulnerablity, (2) sql - SQL
injection vulnerability, (3) reg - regular expression error.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Vulnerability Experiments

We conduct vulnerability analysis on the following vulnerable
benchmarks. The results are reported in [ASE09].

• (1) MyEasyMarket-4.1 (a shopping cart program),

• (2) PBLguestbook-1.32 (a guestbook application),

• (3) BloggIT-1.0 (a blog engine), and

• (4) proManager-0.72 (a project management system).

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Basic information

Here are some data of the dependency graphs.

vul #nodes #edges #sinks #inputs #literals

1 1(xss) 21 20 1 1 51

2 1(sql) 41 44 1 2 99

3 1(xss) 32 31 1 1 142

4 3(xss) 119 117 3 3 450

Table: Dependency Graphs

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Fwd v.s. Bwd Analyses

Time Performance.

total time(s) fwd time(s) bwd time(s) mem(kb)

1 0.569 0.093 0.474 2700

2 3.449 0.124 3.317 5728

3 1.087 0.248 0.836 18890

4 16.931 0.462 16.374 116097

Table: Total Performance

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Post- v.s. Pre-condition Computations

concat replace preConcat preReplace

#operations/time(s)

1 6/0.015 1/0.004 2/0.411 1/0.004

2 19/0.082 1/0.004 11/3.166 1/0.0

3 22/0.038 4/0.112 2/0.081 4/0.54

4 14/0.014 12/0.058 26/11.892 24/3.458

Table: String Function Performance

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

Vulnerability Signatures

Here are some data about the generated automata.

Reachable Attack (Sink) Vulnerability Signature (Input)

#states #bdd nodes #states #bdd nodes

1 24 225 10 222

2 66 593 2 9
2 9

3 29 267 92 983

4 131 1221 57 634
136 1234 174 1854
147 1333 174 1854

Table: Attack and Vulnerability Signatures

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Verification Framework
Technical Details
Experiments

What should you know?

A symbolic approach for string verification on PHP programs

• A general forward and backward verification framework

• A language-based replacement

• A weakest pre-condition computation on concatenation

• An automaton-based widening operator

Our string analysis tool can be downloaded from:
http://www.cs.ucsb.edu/∼ vlab/stranger

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Part II: Composite Verification

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Composite Verification

We aim to extend our string analysis techniques to analyze systems
that have unbounded string and integer variables.

We propose a composite static analysis approach that combines
string analysis and size analysis.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Size Analysis

Integer Analysis: At each program point, statically compute the
possible states of the values of all integer variables.

These infinite states are symbolically over-approximated as a
Presburger arithmetic and represented as an arithmetic automaton
[Bartzis and Bultan, CAV03].

Integer analysis can be used to perform Size Analysis by
representing lengths of string variables as integer variables.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

What is Missing?

Consider the following segment.

• 1:<?php

• 2: $www = $ GET[”www”];

• 3: $l otherinfo = ”URL”;

• 4: $www = ereg replace(”[∧A-Za-z0-9 ./-@://]”,””,$www);

• 5: if(strlen($www) < $limit)

• 6: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

• 7:?>

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

What is Missing?

If we perform size analysis solely, after line 4, we do not know the
length of $www.

• 1:<?php

• 2: $www = $ GET[”www”];

• 3: $l otherinfo = ”URL”;

• 4: $www = ereg replace(”[∧A-Za-z0-9 ./-@://]”,””,$www);

• 5: if(strlen($www) < $limit)

• 6: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

• 7:?>

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

What is Missing?

If we perform string analysis solely, at line 5, we cannot check the
branch condition.

• 1:<?php

• 2: $www = $ GET[”www”];

• 3: $l otherinfo = ”URL”;

• 4: $www = ereg replace(”[∧A-Za-z0-9 ./-@://]”,””,$www);

• 5: if(strlen($www) < $limit)

• 6: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

• 7:?>

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

What is Missing?

We need a composite analysis that combines string analysis with
size analysis.

Challenge: How to transfer information between string automata
and arithmetic automata?

To do so, we introduce Length Automata.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Some Facts about String Automata

• A string automaton is a single-track DFA that accepts a
regular language, whose length forms a semi-linear set, .e.g.,
{4, 6} ∪ {2 + 3k | k ≥ 0}

• The unary encoding of a semi-linear set is uniquely identified
by a unary automaton

• The unary automaton can be constructed by replacing the
alphabet of a string automaton with a unary alphabet

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Some Facts about Arithmetic Automata

• An arithmetic automaton is a multi-track DFA, where each
track represents the value of one variable over a binary
alphabet

• If the language of an arithmetic automaton satisfies a
Presburger formula, the value of each variable forms a
semi-linear set

• The semi-linear set is accepted by the binary automaton that
projects away all other tracks from the arithmetic automaton

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

An Overview

To connect the dots, we need to convert unary automata to binary
automata and vice versa.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

An Example of Length Automata

Consider a string automaton that accepts (great)+.
The length set is {5 + 5k|k ≥ 0}.

• 5: in unary 11111, in binary 101, from lsb 101.

• 1000: in binary 1111101000, from lsb 0001011111.

Unary Binary

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Another Example of Length Automata

Consider a string automaton that accepts (great)+cs.
The length set is {7 + 5k|k ≥ 0}.

• 7: in unary 1111111, in binary 1100, from lsb 0011.
• 107: in binary 1101011, from lsb 1101011.

• 1077: in binary 10000110101, from lsb 10101100001.

Unary Binary

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

From Unary to Binary

Given a unary automaton, construct the binary automaton that
accepts the same set of values in binary encodings (starting from
the least significant bit)

• Identify the semi-linear sets

• Add binary states incrementally

• Construct the binary automaton according to those binary
states

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Identify the semi-linear set

• A unary automaton M is in the form of a lasso

• Let C be the length of the tail, R be the length of the cycle

• {C + r + Rk | k ≥ 0} ⊆ L(M) if there exists an accepting
state in the cycle and r is its length in the cycle

• For the above example
• C = 1, R = 2, r = 1
• {1 + 1 + 2k | k ≥ 0}

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Binary states

A binary state is a pair (v , b):

• v is the integer value of all the bits that have been read so far

• b is the integer value of the last bit that has been read

• Initially, v is 0 and b is undefined.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

The Binary Automaton Construction

We construct the binary automaton by adding binary states
accordingly

• Once v + 2b ≥ C , v and b are the remainder of the values
divided by R

• (v , b) is an accepting state if v is a remainder and
∃r .r = (C + v)%R

• The number of binary states is O(C 2 + R2)

(c) v + 2b < C (d) v + 2b ≥ C

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

The Binary Automaton Construction

Consider the previous example, where C = 1, R = 2, r = 1.

• (0, 0) is an accepting state, since
∃r .r = 1, (C + v)%R = (1 + 0)%2 = 1

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

The Binary Automaton Construction

After the construction, we apply minimization and get the final
result.

Figure: A binary automaton that accepts {2+2k}

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

From Binary to Unary

Given a binary automaton, construct the unary automaton that
accepts the same set of values in unary encodings

• There exists a binary automaton, e.g., {2k | k ≥ 0}, that
cannot be converted to a unary automaton precisely.

• We adopt an over- approximation:
• Compute the minimal and maximal accepted values of the

binary automaton
• Construct the unary automaton that accepts the values in

between

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Compute the Minimal/Maximal Values

• The minimal value forms the shortest accepted path

• The maximal value forms the longest loop-free accepted path
(If there exists any accepted path containing a cycle, the
maximal value is inf)

• Perform BFS from the accepting states (depth is bounded by
the number of states)

• Initially, both values of the accepting states are set to 0
• Update the minimal/maximal values for each state accordingly

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

The Unary Automaton Construction

Consider our previous example,

• min = 2, max = inf

• An over approximation: {2 + 2k | k ≥ 0} ⊆ {2 + k | k ≥ 0}

Computing the minimal value The value of the previous state

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Composite Verification

We perform composite verification on a simple imperative language
that supports:

• Branch and goto statements (path sensitive)
• Branch conditions can be membership of regexp on string

variables or a Presburger formula on integers and the length of
string variables.

• String operations including concatenation, prefix, suffix, and
language-based replacement.

• Linear arithmetic computations on integers

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

A Composite State

A composite state consists of the states of :

• Multiple single-track string automata (Each string automaton
accepts the values of a string variable)

• A multi-track arithmetic automaton (Each track accepts the
length of a string variable or the value of an integer variable)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Forward Fixpoint Computation

• We iteratively compute and add the post images of the
composite states for each program label until reaching a
fixpoint

• The post image is defined on the composite state
• String → (Unary → Binary) → Arithmetic
• Arithmetic → (Binary → Unary) → String

• We also incorporate the widening operator on automata to
accelerate the fixpoint computation

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Implementation

We implemented a prototype tool on top of

• Symbolic String Analysis [Yu et al. SPIN08]

• Arithmetic Analysis [Bartzis et al. CAV03]

• Automata Widening [Bartzis et al. CAV04]

**Both string and arithmetic automata are symbolically encoded by using

the MONA DFA Package.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Experiments

In [TACAS09], we manually generate several benchmarks from:

• C string library

• Buffer overflow benchmarks [Ku et al., ASE07]

• Web vulnerable applications [Balzarotti et al., SSP08]

These benchmarks are small (<100 statements and < 10 variables)
but demonstrate typical relations among string and integer
variables.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

String Analysis + Size Analysis
Length Automata
Experiments

Experimental Results

The results show some promise in terms of both precision and
performance

Test case (bad/ok) Result Time (s) Memory (kb)

int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T 0.014/0.018 216/252
samba (CVE-2007-0453) F/T 0.015/0.021 218/252
MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210) F/T 0.021/0.022 496/662
BloggIT 1.0 (admin.php:27) F/T 0.719/0.721 5857/7067

Table: T: The property holds.(buffer overflow free or SQL attack free)

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Related Publications

• Stranger: An Automata-based String Analysis Tool for PHP

Fang Yu, Muath Alkhalaf, Tevfik Bultan.
Under submission.

• Verification of String Manipulating Programs Using Multi-track Automata

Fang Yu, Tevfik Bultan, Oscar H. Ibarra.
Under submission.

• Generating Vulnerability Signatures for String Manipulating Programs Using Automata-based Forward and

Backward Symbolic Analyses

Fang Yu, Muath Alkhalaf, and Tevfik Bultan.
Short paper. Accepted for Publication in the 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2009).

• Symbolic String Verification: Combining String Analysis and Size Analysis

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra.
In Proceedings of the 15th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2009), LNCS 5505, pages 322-336, York, UK, Mar. 2009.

• Symbolic String Verification: An Automata-based Approach

Fang Yu, Tevfik Bultan, Marco Cova, Oscar H. Ibarra.
In Proceedings of the 15th International SPIN Workshop on Model Checking of Software (SPIN 2008),
LNCS 5156, pages 306-324, Los Angeles, CA, August 2008.

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Related Work on Static String Analysis

Grammar-based String Analysis:

• Java String Analyzer [Chris and Moller, SAS03]

• Valid Web Pages [Minamide, WWW05]

• Injection Vulnerability [Wassermann and Su, PLDI07]

Our papers [SPIN08, TACAS09] are also cited by:
A decision procedure for subset constraints over regular languages.
[P. Hooimeijer and W. Weimer, PLDI09]

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

Outline
Overview

Symbolic String Verification
Composite Verification

References

Thank you for your attention.

Questions?

Fang Yu, UCSB Automatic Verification of String Manipulating Programs

	Outline
	Overview
	Motivation
	Is it Vulnerable?

	Symbolic String Verification
	Verification Framework
	Technical Details
	Experiments

	Composite Verification
	String Analysis + Size Analysis
	Length Automata
	Experiments

	References

