Symbolic Encoding of String Lengths

Fang Yu Tevfik Bultan Oscar H. Ibarra

Dept. of Computer Science University of California Santa Barbara, USA {yuf, bultan, ibarra}@cs.ucsb.edu

October 3, 2008

・ロン ・回と ・ヨン・

1 Motivation

- String Analysis + Integer Analysis
- What is Missing?

2 ExamplesWhat is Its Length?

3 Implementation Symbolic Encoding

4 Conclusion

<回と < 回と < 回と

String Analysis + Integer Analysis What is Missing?

Motivation

We aim to develop a verification tool for analyzing systems with **strings and integers**.

We propose a **composite analysis** that combines *static string analysis* and *arithmetic analysis*.

イロト イポト イヨト イヨト

String Analysis + Integer Analysis What is Missing?

Arithmetic Analysis

Arithmetic Analysis: At each program point, symbolically compute all possible states of **integer** variables.

These infinite states are symbolically over-approximated as a Presburger arithmetic (linear arithmetic) formula and represented as an **arithmetic automaton** [Bartzis and Bultan, CAV03].

Integer analysis is widely used to detect **buffer overflows** by representing lengths of string variables as integer variables.

・ロン ・回 と ・ ヨ と ・ ヨ と

String Analysis + Integer Analysis What is Missing?

String Analysis

Static String Analysis: At each program point, statically compute all possible values that **string** variables can take.

These values are specified as the language that is accepted by a **string automaton** [Fang et al. SPIN08].

Static string analysis is widely used to detect **web vulnerabilities** like SQL Command Injection and Cross Site Scripting (XSS) attacks.

<ロ> (四) (四) (三) (三) (三)

String Analysis + Integer Analysis What is Missing?

What is Missing?

A motivating example from trans.php, distributed with MyEasyMarket-4.1.

- 1:<?php
- 2: \$www = \$_GET["www"];
- 3: \$I_otherinfo = "URL";
- 4: \$www = ereg_replace("[^A-Za-z0-9 ./-@://]","",\$www);
- 5: if(strlen(\$www) < \$limit)
- 6: echo "" . \$l_otherinfo . ": " . \$www . "";
 7:?>

(ロ) (同) (E) (E) (E)

String Analysis + Integer Analysis What is Missing?

What is Missing?

If we perform **arithmetic analysis** solely, after line 4, we lose the length of \$www.

- ∎ 1:<?php
- 2: \$www = \$_GET["www"];
- 3: \$I_otherinfo = "URL";
- 4: \$www = ereg_replace("[^A-Za-z0-9 ./-@://]","",\$www);
- 5: if(strlen(\$www) < \$limit)
- 6: echo "" . \$l_otherinfo . ": " . \$www . "";
 7:?>

(ロ) (同) (E) (E) (E)

String Analysis + Integer Analysis What is Missing?

What is Missing?

If we perform **string analysis** solely, at line 5, we cannot check the branch condition.

- 1:<?php
- 2: \$www = \$_GET["www"];
- 3: \$I_otherinfo = "URL";
- 4: \$www = ereg_replace("[^A-Za-z0-9 ./-@://]","",\$www);
- 5: if(strlen(\$www) < \$limit)</p>
- 6: echo "" . \$l_otherinfo . ": " . \$www . ""; 7:?>

(ロ) (同) (E) (E) (E)

String Analysis + Integer Analysis What is Missing?

What is Missing?

We need to connect

the information in the string automata and the arithmetic automata.

We do this by constructing length automata that accept the **length** of the language of given string automata. The length can be either in unary or binary (from the least significant bit) encoding.

The construction algorithm is detailed in the abstract. Here, I will just show some examples that we automatically compute.

イロト イポト イヨト イヨト

What is Its Length?

An Example of Length Automata

Consider a string automaton that accepts $(great)^+$. The length set is $\{5+5k | k \ge 0\}$.

- **5**: in unary 11111, in binary 101, from lsb **101**.
- 1000: in binary 1111101000, from lsb 0001011111.

< ∃ >

What is Its Length?

Another Example of Length Automata

Consider a string automaton that accepts $(great)^+cs$. The length set is $\{7 + 5k | k \ge 0\}$.

- 7: in unary 1111111, in binary 1100, from lsb **0011**.
- 107: in binary 1101011, from lsb **1101011**.
- 1077: in binary 10000110101, from lsb 10101100001.

Symbolic Encoding

Implementation

We implemented both string and arithmetic automata symbolically by using the MONA DFA Package. [Klarlund and Møller, 2001]

- Compact Representation:
 - Canonical form and
 - Shared BDD nodes
- Efficient MBDD Manipulations:
 - Union, Intersection, and Emptiness Checking
 - Projection and Minimization
- Cannot Handle Nondeterminism:
 - We used dummy bits to encode nondeterminism

(人間) ト く ヨ ト

- - E - F

Symbolic Encoding

Symbolic Encoding

A string automaton that accepts [A-Za-z0-9]* (in ASC II).

(f) Symbolic Representation

イロト イポト イヨト イヨト

2

Final Remarks

How to put length automata in:

- The binary length automaton of a string automaton is a one-track arithmetic automaton
- We construct a multi-track arithmetic automaton to represent the states of the lengths of string variables.
- This arithmetic automaton is updated according to the length automata that we compute from string automata at each iteration.

イロン イヨン イヨン ・ ヨン

Current Works:

- Implement the composite analysis tool that combines the string and arithmetic analyses.
- Use this tool to detect buffer overflows in legacy C systems.

・ロン ・回と ・ヨン ・ヨン

Thank you for your attention.

Questions?

More Information: http://www.cs.ucsb.edu/~bultan/vlab http://www.cs.ucsb.edu/~yuf

(1日) (日) (日)

3