
Symbolic Encoding of String Lengths

Fang Yu
University of California, Santa

Barbara
yuf@cs.ucsb.edu

Tevfik Bultan
University of California, Santa

Barbara
bultan@cs.ucsb.edu

Oscar H. Ibarra
University of California, Santa

Barbara
ibarra@cs.ucsb.edu

ABSTRACT
We present a novel construction for length automata which
accept the unary or binary representations of the length of
a regular language. The construction can be used for verifi-
cation of systems having unbounded strings and integers.

1. MOTIVATION
This project is motivated by an increasing interest in static

analysis for real-world programs [1,4]. We model these pro-
grams as infinite state systems having string and integer
variables and present an automata-based approach for ver-
ification of these systems. Particularly, we are interested in
the relationship among the values of integer variables and
the lengths of strings. In general, the precise analysis of in-
finite state system is undecidable due to the fact that the
values of integer variables are unbounded, the lengths of
string variables are unbounded, and the reachability analy-
sis of such infinite state systems is undecidable. To overcome
this complexity hurdle, checking these infinite-state systems
can be achieved by encoding infinite sets of states as reg-
ular languages and computing conservative approximations
of the reachable states. A conservative approach is com-
monly adopted using deterministic finite automata (DFAs)
to approximate the set of string values that string variables
can take at certain program points, as well as to widen the
arithmetic constraints that symbolically represent the set
of values that integer variables can take. Previous works on
static analysis of infinite state systems focus on either string
variables [1,3,6] or integer variables [2,5]. We are interested
in both. We adopt [6] to deal with string variables and
its operations, and [2] for integer variables. Both infinite
states of string and integer variables are approximated as
regular languages and encoded as DFAs. In addition, we in-
vestigate the length constraint on the language accepted by
a string automaton. Based on this constraint, one can catch
the relation among the lengths of string variables and the
values of integer variables. We believe this relation can be
used to perform sophisticated verification on systems having
unbounded string and integer variables.

In this abstract, we show that the length of the language
accepted by a DFA forms a semiliner set. Given an arbitrary
DFA, we are able to construct DFAs that accept either unary
or binary representation of the length of its accepted words.
The unary automaton can be used to identify the coefficients
of the semilinear set, while the binary automaton can be
used to compose with other arithmetic automata on integer
variables.

The performance of our analysis relies on efficient au-

tomata manipulation. We implement all functions using
a symbolic automata representation (MBDD representation
from the MONA automata package) and leverage efficient
manipulations on MBDDs, e.g., determinization and mini-
mization. We believe that the symbolic representation (com-
pared to explicit representation) of automata can be better
scaled to model large systems and facilitates our tool to an-
alyze real-world programs.

2. LENGTH AUTOMATA CONSTRUCTION
We are interested in identifying what length can be among

the accepted words of a string automaton. Given a string
automaton M , we aim to construct a DFA Mb (over a binary
alphabet) such that Mb accepts the binary encodings (from
the least significant bit) of the lengths of the words accepted
by M . The following property is well known.

Property 1: For any DFA M , {n|n = |w|, w ∈ L(M)}
forms a semilinear set.

However, identifying the length set of arbitrary regular
language is not trivial, e.g., the length set of ((baaab)+ab)+

is {7, 12, 14, 17, 19, 21, 22, 24, 25, 26, 27, 28} ∪ {29 + k|k ≥
0}. We tackle this problem by constructing the automa-
ton Mu that accepts the unary encodings of the lengths
of the accepted words of a string automaton M . Given
M = 〈Q, q0, B

k, δ, F 〉, where each symbol is encoded as a
k-bit string, Mu is constructed by determinizing the NFA
〈Q, q0, B

1, δ′, F 〉, where δ′(q, 1) = q′ if ∃α, δ(q, α) = q′.
Mu uniquely identifies a semilinear formula

W

i
x = ci ∨

W

j
∃k.x = C + rj + Rk, where ci, rj , C, R are constants,

and ∀i, ci < C, and ∀j, rj < R. The length set is exactly the
set of values of x that satisfy the formula.

In the following, we propose an incremental algorithm to
construct a DFA that accepts the binary encodings (from
the least significant bit) of the values of x that satisfy a
given semilinear formula.

The construction is achieved by calling the procedure
construct_BLA. At line 3, we first compute the set of
reachable binary states Qb by calling the recursive procedure
ABS (Add Binary State). A binary state is the value of a
triple (t, v, b). t ∈ {0, 1, 2} is the type of the binary state,
which indicates the meaning of the value of v and b. While
t = 0, v is equal to the value of the binary word accepted
from the initial state to the current state, and b is equal
to the binary value of the previous bit in the word. While
t 6= 0, v is equal to the remainder of which the dividend is
the value of the binary word accepted from the initial state
to the current state and the divisor is R; b is the remainder
of which the dividend is the binary value of the previous bit

in the accepted word and the divisor is R. t = 1 indicates
the value of the binary word accepted from the initial state
to the current state is greater or equal to C; t = 2 indicates
the value is less than C. Each binary state is further associ-
ated with an index, a true branch and a false branch, which
are used to construct the state graph later. Briefly, ABS is
a recursive procedure which incrementally adds the encoun-
tered binary state if it has never been explored. Initially, the
binary state is (0, 0,⊥). We assume 2 ⊥= 1. Since binary
states are finite, ABS is guaranteed to terminate. Upon
termination, all reached binary states are added to Qb. For
each binary state in Qb, as line 4 to 9, we iteratively gen-
erate a state q, and set its transition and final status. We
construct the final automaton at line 10.

Algorithm 1 ABS(Q, C, R, t, v, b)

1: if ∃q = (t, v, b) ∈ Q then

2: return q.index;
3: else

4: Create q = (t, v, b);
5: q.index = ♯Q; q.true = q.false = −1;
6: Add q to Q;
7: if t == 0 ∧ (v + 2 × b ≥C) then

8: q.true =ABS(Q, C, R, 1, (v+2×b)%R, (2×b)%R);
9: q.false =ABS(Q, C, R, 2, v%R, (2 × b)%R);

10: else if t == 0 ∧ (v + 2 × b < C) then

11: q.true =ABS(Q, C, R, 0, v + 2 × b, 2 × b);
12: q.false =ABS(Q, C, R, 0, v, 2 × b);
13: else if t == 1 then

14: q.true =ABS(Q, C, R, 1, (v+2×b)%R, (2×b)%R);
15: q.false =ABS(Q, C, R, 1, v%R, (2 × b)%R);
16: else if t == 2 then

17: q.true =ABS(Q, C, R, 1, (v+2×b)%R, (2×b)%R);
18: q.false =ABS(Q, C, R, 2, v%R, (2 × b)%R);
19: end if

20: return q.index;
21: end if

Algorithm 2 construct_BLA(C, R, C =
{c1, c2, . . . cn}, R = {r1, r2, . . . rm})

1: Qb = ∅;
2: Q = ∅;
3: init =ABS(Qb, C, R, 0, 0,⊥);
4: for each qb ∈ Qb do

5: Add q = qq.index to Q;
6: δ(q, 1) = (qb.true 6= −1?qqb.true : qsink);

7: δ(q, 0) = (qb.false 6= −1?qqb.false : qsink);

8: F (q) = ((qb.t == 0 ∧ ∃c ∈ C.qb.v == c) ∨(qb.t ==
1 ∧ ∃r ∈ R.qb.v == (r+C)%R) :′ +′?′−′);

9: end for

10: Construct M = 〈Q ∪ {qsink}, qinit, B
1, δ, F 〉;

Implementation.

We have implemented the above algorithms using MONA
DFA packages. We give an example in Figure 1. The length
automaton accepts the binary representatin of the semilin-
ear set {7 + 5k|k ≥ 0}. Consider the number 1087, whose
binary encoding is 10000111111. One can check that the bit
string from the least significant is accepted by the automa-
ton shown in Figure 1.

Figure 1: The Length Automata of (baaab)+ab. The

Semilinear Set is {7 + 5k|k ≥ 0}

3. CONCLUSION
We have presented the algorithms to construct DFAs that

accept unary or binary encodings of the length of a regular
language.The DFAs that accept the binary encodings can
be further composed to one multi-track arithmetic automa-
ton [2] with other integer variables. This arithmetic au-
tomaton may catch the relation among the lengths of string
variables and the values of integer variables. One can check
the length properties of string variables or enforce the con-
straints on the lengths of string variables using the length
set derived from the multi-track arithmetic automaton.

To complete our work, we will focus on: (1) the for-
ward image computation of string and arithmetic automata
against common string and arithmetic operations, (2) the
widening operator to accelerate the fixed point computa-
tion, and (3) the general symbolic verification framework on
systems having strings and integers. We plan to apply these
techniques to check buffer overflows.

4. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,

C. Kruegel, E. Kirda, and G. Vigna. Saner: Composing
Static and Dynamic Analysis to Validate Sanitization
in Web Applications. In Proceedings of the Symposium

on Security and Privacy, 2008.

[2] Constantinos Bartzis and Tevfik Bultan. Efficient
symbolic representations for arithmetic constraints in
verification. Int. J. Found. Comput. Sci.,
14(4):605–624, 2003.

[3] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise analysis of string expressions. In
Proc. 10th International Static Analysis Symposium,

SAS ’03, volume 2694 of LNCS, pages 1–18.
Springer-Verlag, June 2003.

[4] Christian Kirkegaard, Anders Møller, and Michael I.
Schwartzbach. Static analysis of xml transformations in
java. IEEE Transactions on Software Engineering,
30(3), March 2004.

[5] Pierre Wolper and Bernard Boigelot. On the
construction of automata from linear arithmetic
constraints. In TACAS, pages 1–19, 2000.

[6] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H.
Ibarra. Symbolic string verification: An
automata-based approach. In 15th International SPIN

Workshop on Model Checking of Software, 2008.

