
Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Modular Verification of Web Services Using

Efficient Symbolic Encoding and Summarization

Fang Yu
joint work with: Chao Wang∗, Aarti Gupta∗ and Tevfik Bultan

University of California, Santa Barbara

and NEC Labs America, Princeton∗

November 12, 2008



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Outline

1 Introduction
Motivation
An Overview of Our Approach

2 Technical Details
Summarization
Assertion Checking

3 Experiments

4 Conclusion



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

Motivation

Motivation

Increasing interest in web-based business management
involving inter-organizational interactions and critical
transactions



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

Motivation

Motivation

Increasing interest in web-based business management
involving inter-organizational interactions and critical
transactions

Web services provide mechanisms implementing such
applications



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

Motivation

Motivation

Increasing interest in web-based business management
involving inter-organizational interactions and critical
transactions

Web services provide mechanisms implementing such
applications

Need formal mechanisms to ensure that web services behave
properly



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

Motivation

Motivation

Increasing interest in web-based business management
involving inter-organizational interactions and critical
transactions

Web services provide mechanisms implementing such
applications

Need formal mechanisms to ensure that web services behave
properly

We propose an automatic verification tool featuring efficient
symbolic encoding and modular verification using
summarization



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

Motivation

Web Services

Interoperable Machine to Machine software
Some Industry Standards: Business Process Execution
Language (BPEL), Web Service Description Language
(WSDL)



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

BPEL Web Services

A distributed system with both multi-threading (internal) and
message-passing (external).



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

BPEL Web Services

A distributed system with both multi-threading (internal) and
message-passing (external).

flow activities ⇒ fork/join structure



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

BPEL Web Services

A distributed system with both multi-threading (internal) and
message-passing (external).

flow activities ⇒ fork/join structure
invoke, receive, reply activities ⇒ asynchronous/synchronous
communications



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

Monolithic Analysis

Consider all of them as one composite service by adding a
outer fork/join structure
Need to consider all interleavings among threads
Suffer from state explosion problem



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

Modular Verification

From processes to summaries.

Interference among processes is limited to the values of
messages
Summarize processes on messages



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

Modular Verification

Modular Analysis: check one process within which interactions
among other processes are patched by their summaries



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

Modular Verification

Modular Analysis: check one process within which interactions
among other processes are patched by their summaries
From P1 × . . . × Pn to P1 + . . . + Pn



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

Modular Verification

Modular Analysis: check one process within which interactions
among other processes are patched by their summaries
From P1 × . . . × Pn to P1 + . . . + Pn

No precision loss with respect to assertion checking within
processes



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Introduction

An Overview of Our Approach

Our Framework



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Summarization: A Simple Example

Consider the following two concurrent processes.

PA invokes PB

An assertion within PA at node 4



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Summarize Process Behavior

A relation among input and output messages



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Summarize Process Behavior

A relation among input and output messages

Encode each send activity (chi!x) as an assignment to a
message (m′

i
= x)



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Summarize Process Behavior

A relation among input and output messages

Encode each send activity (chi!x) as an assignment to a
message (m′

i
= x)

Encode each receive activity (chi?x) as an assignment to a
variable (x′ = mi)



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Summarize Process Behavior

A relation among input and output messages

Encode each send activity (chi!x) as an assignment to a
message (m′

i
= x)

Encode each receive activity (chi?x) as an assignment to a
variable (x′ = mi)

Compute the forward fixpoint of reachable states



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Summarize Process Behavior

A relation among input and output messages

Encode each send activity (chi!x) as an assignment to a
message (m′

i
= x)

Encode each receive activity (chi?x) as an assignment to a
variable (x′ = mi)

Compute the forward fixpoint of reachable states

Project the fixpoint to input and output messages (using
existential quantifier elimination)



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Summarize Process Behavior: A Simple Example

The summary of PB is:

(m1 > 0 ∧ m2 = 1)∨
(m1 = 0 ∧ m2 = 0)∨
(m1 < 0 ∧ m2 = −1)



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Compose Summaries: A Simple Example

Compose summaries by conjoining the summaries of other
processes with the receive activities



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Compose Summaries: A Simple Example

Compose summaries by conjoining the summaries of other
processes with the receive activities
One can prove PA’s assertion modularly



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Modularity of Processes

An assertion can be proven via modular analysis if and only if it

can be proven via monolithic analysis.

T : transition relation, I: initial states, X: variables

reach(T, I) returns the fixpoint of reachable states

The insight comes from the property:

reach(T, I(C) ∧ I(X)) ≡ I(C) ∧ reach(T, I(X))

if C ⊆ X are parameterized constants (not defined in T ).



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Modularity of Processes

From the receiver’s perspective, a message is a parameterized
constant



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Modularity of Processes

From the receiver’s perspective, a message is a parameterized
constant

One can summarize the receiver’s behavior (reach(T, I(X)))
without knowing the states of its input messages (I(C))



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Modularity of Processes

From the receiver’s perspective, a message is a parameterized
constant

One can summarize the receiver’s behavior (reach(T, I(X)))
without knowing the states of its input messages (I(C))

One can compute the precise reachable states of the receiver’s
output messages (reach(T, I(C) ∧ I(X))) by conjoining

the states of the receiver’s input messages (I(C)) and
the receiver’s summary (reach(T, I(X)))



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Modularity of Processes: A Simple Example

The state of m1 is initialized upon sending and is imposed
implicitly after sending



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Modularity of Processes: A Simple Example

The state of m1 is initialized upon sending and is imposed
implicitly after sending
The summary of PB (the relation among m1 and m2) is
conjoined upon receiving



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Modularity of Processes: A Simple Example

The state of m1 is initialized upon sending and is imposed
implicitly after sending
The summary of PB (the relation among m1 and m2) is
conjoined upon receiving
PA gets the precise reachable states of m2 (m2 = 1).



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Summarization

Restrictions

We assume that each channel is associated with precisely one
send activity and one receive activity

The examples we analyzed do not violate this condition

For the specifications which violate this condition:

Rename channels if multiple send/receive pairs use the same
channel
If there is a send or receive activity within a loop, unwind the
loop a fixed number of times



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

Efficient Assertion Checking

Use frontier, the new states reachable from the previous
iteration, to detect violation and convergency



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

Efficient Assertion Checking

Use frontier, the new states reachable from the previous
iteration, to detect violation and convergency

No need to store whole reachable states



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

Efficient Assertion Checking

Use frontier, the new states reachable from the previous
iteration, to detect violation and convergency

No need to store whole reachable states

I: initial states, T : transition relation, Err: risk states
(violate assertions)



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

Efficient Assertion Checking

Use frontier, the new states reachable from the previous
iteration, to detect violation and convergency

No need to store whole reachable states

I: initial states, T : transition relation, Err: risk states
(violate assertions)

F 0 = I and F i = post(T, F i−1) \ F i−1



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

Efficient Assertion Checking

Use frontier, the new states reachable from the previous
iteration, to detect violation and convergency

No need to store whole reachable states

I: initial states, T : transition relation, Err: risk states
(violate assertions)

F 0 = I and F i = post(T, F i−1) \ F i−1

Assertion violated at the ith iteration when F i ∩ Err 6= ∅



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

Termination Condition

When the CPG is acyclic,

No back edges
Terminate when F i is empty



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

Termination Condition

When the CPG is acyclic,

No back edges
Terminate when F i is empty

When the CPG is not acyclic,

Compute Sback, the states
associated with the source nodes
of the back edges (much smaller
than the universe)
At each iteration, compute
Rback, the set of reached states
fall in Sback

Terminate when F i \ Rback is
empty



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

The Assertion Checking Algorithm

Reach frontier(T ,I,Err,Sback)

F = I;

Rback = I ∩ Sback;

false - assertion violated. true - assertion proven.



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

The Assertion Checking Algorithm

Reach frontier(T ,I,Err,Sback)

F = I;

Rback = I ∩ Sback;

WHILE (F 6= ∅){

}

false - assertion violated. true - assertion proven.



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

The Assertion Checking Algorithm

Reach frontier(T ,I,Err,Sback)

F = I;

Rback = I ∩ Sback;

WHILE (F 6= ∅){

IF ((F ∩ Err) 6= ∅) RETURN false;

}

false - assertion violated. true - assertion proven.



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

The Assertion Checking Algorithm

Reach frontier(T ,I,Err,Sback)

F = I;

Rback = I ∩ Sback;

WHILE (F 6= ∅){

IF ((F ∩ Err) 6= ∅) RETURN false;

F = (post(T, F ) \ F ) \ Rback;

}

false - assertion violated. true - assertion proven.



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

The Assertion Checking Algorithm

Reach frontier(T ,I,Err,Sback)

F = I;

Rback = I ∩ Sback;

WHILE (F 6= ∅){

IF ((F ∩ Err) 6= ∅) RETURN false;

F = (post(T, F ) \ F ) \ Rback;

Rback = Rback ∪ (F ∩ Sback);

}

false - assertion violated. true - assertion proven.



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Technical Details

Assertion Checking

The Assertion Checking Algorithm

Reach frontier(T ,I,Err,Sback)

F = I;

Rback = I ∩ Sback;

WHILE (F 6= ∅){

IF ((F ∩ Err) 6= ∅) RETURN false;

F = (post(T, F ) \ F ) \ Rback;

Rback = Rback ∪ (F ∩ Sback);

}

RETURN true;

false - assertion violated. true - assertion proven.



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Experiments

Experiment: Loan Approval

Monolithic Verification Modular Verification

All Approval Assessor Approver Customer

Result P P S S S

Time (s) 1227.2 124.5 0.1 0.1 0.1

Memory (MB) 810 490 289 290 290

ITRs 32 16 10 10 5

Customer invokes Approval which invokes Assessor and
Approver

Result: NA-did not terminate, P-passed assertion checks,
S-summarized

ITRs: the number of iterations of the fixpoint computation



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Experiments

Experiment: Travel Agency

Monolithic Verification Modular Verification

All VTA Hotel Flight User

Result NA P S S S

Time (s) 18947 814 13.5 13.4 34.6

Memory (MB) 1663 363 273 363 284

ITRs 57 55 23 22 30

User invokes VTA which invokes Hotel and Flight

Result: NA-did not terminate, P-passed assertion checks,
S-summarized

ITRs: the number of iterations of the fixpoint computation



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Conclusion

We propose an automatic symbolic model checker for
concurrent systems having multi-threading and
message-passing



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Conclusion

We propose an automatic symbolic model checker for
concurrent systems having multi-threading and
message-passing

We propose modular verification for message-passing
processes to achieve scalability



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Conclusion

We propose an automatic symbolic model checker for
concurrent systems having multi-threading and
message-passing

We propose modular verification for message-passing
processes to achieve scalability

We propose an efficient symbolic encoding and reachability
analysis to facilitate our approach



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Conclusion

We propose an automatic symbolic model checker for
concurrent systems having multi-threading and
message-passing

We propose modular verification for message-passing
processes to achieve scalability

We propose an efficient symbolic encoding and reachability
analysis to facilitate our approach

We have implemented a prototype tool that can automatically
analyze web services specified in BPEL+WSDL



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Related Work

BPEL Verification:

Safety property [Foster et al. ICWS04] [Lohmannet et al.
BPM06]
LTL property [Fu et al. WWW04] [Nakajima ENTCS06]
Timed CTL property [Qiu et al. ISFM05]



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Related Work

BPEL Verification:

Safety property [Foster et al. ICWS04] [Lohmannet et al.
BPM06]
LTL property [Fu et al. WWW04] [Nakajima ENTCS06]
Timed CTL property [Qiu et al. ISFM05]

Summarization:

Sequential summarization for BPEL [Duan et al. ICWS04]
Transaction-based summarization [Qadeer et al. POPL04]



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Related Work

BPEL Verification:

Safety property [Foster et al. ICWS04] [Lohmannet et al.
BPM06]
LTL property [Fu et al. WWW04] [Nakajima ENTCS06]
Timed CTL property [Qiu et al. ISFM05]

Summarization:

Sequential summarization for BPEL [Duan et al. ICWS04]
Transaction-based summarization [Qadeer et al. POPL04]

Compositional Reasoning:

LTSA [Cobleigh et al. TACAS03]
Magic/Comfort [Chaki et al. FMSD04] [Sharygina et al.
CAV05]



Modular Verification of Web Services Using Efficient Symbolic Encoding and Summarization

Conclusion

Thank you. Any Questions?


	Outline
	Introduction
	Motivation
	An Overview of Our Approach

	Technical Details
	Summarization
	Assertion Checking

	Experiments
	Conclusion

