Overview

Motivation
About This Work

Automatic Verification of String Manipulating
Programs

Fang Yu

VLab, Department of Computer Science
University of California, Santa Barbara, USA

May 19, 2010

1/76

Overview Motivation

About This Work

Web Application Vulnerabilities

String manipulation errors are the most common cause of security
vulnerabilities

Commom Vulnerability and Exposure [CVE, 2007]

40 —
B Cross.Site.Scripting
@ SOQL.Injection
O File.Inclusion

30 —

=
20 —
10 —
o

o1 02 03 04 05 06

year

Overview Motivation

About This Work

Web Application Vulnerabilities

e The top three vulnerabilities of the Open Web Application
Security Project (OWASP)'s top ten list. [OWASP, 2007]

@ Cross Site Scripting (XSS)
@ Injection Flaws (such as SQL Injection)
©® Malicious File Executions

After three years...

e The top two vulnerabilities of the OWASPs top ten list.
[OWASP, 2010]

@ Injection Flaws (such as SQL Injection)
@ Cross Site Scripting (XSS)

3/76

Overview Motivation

About This Work

Cross Site Scripting (XSS) Attack

A PHP Example:
[1:<?php
20 $www = $_GET["www"[;
| 3: $l_otherinfo = "URL";
| 4: echo "<td>" . $l_otherinfo . ": " . $www . "</td>";
[5:7>

e The echo statement in line 4 can contain a Cross Site
Scripting (XSS) vulnerability

4/176

Overview Motivation

About This Work

XSS Attack

An attacker may provide an input that contains <script and
execute the malicious script.

[1:<?php

I 2: $Swww = <script ... >

| 3: $l_otherinfo = "URL";

| 4: echo " <td>" . $l_otherinfo . ": " .<script ... >.
"< /td>"

[5:7>

Overview Motivation

About This Work

Is it Vulnerable?

A simple taint analysis, e.g., [Huang et al. WWW04], would report
this segment as vulnerable using taint propagation.

| 1:<?php

I 2 $www = $_GET["www"];

| 3: $l_otherinfo = "URL";

| 4: echo "<td>" . $l_otherinfo . ": " Swww. "< /td>";
[5:7>

6/76

Overview Motivation

About This Work

Is it Vulnerable?

Add a sanitization routine at line s.
[1:<?php
I 2: $www = $_GET[" www"];
| 3: $l_otherinfo = "URL";
I
| 4: echo "<td>" . $l_otherinfo . ": " . $www . "< /td>";
[5:7>

e Taint analysis will assume that $www is untainted after the
routine, and conclude that the segment is not vulnerable. /

Overview Motivation

About This Work

Sanitization Routines are Erroneous

However, does not
sanitize the input properly.
e Removes all characters that are not in { A-Za-z0-9 .-Q:/ }.
. denotes (including
"<" and ">"
e " .-@" should be ".\-Q@"

8/76

Overview Motivation

About This Work

A buggy sanitization routine

[1:<?php

I 2: $Swww = <script ... >;

| 3: $l_otherinfo = "URL";

I

| 4: echo " <td>" . $l_otherinfo . ": " . <script ... > .
"< td>"

| 5:7>

e A buggy sanitization routine used in MyEasyMarket-4.1 that
causes a vulnerable point at line 218 in trans.php [Balzarotti
et al., S&P'08]

e Our string analysis identifies that the segment is vulnerable
with respect to the attack pattern: X* <script™*.

9/76

Overview Motivation

About This Work

Eliminate Vulnerabilities

Input <!sc+rip!t ...> does not match the attack pattern
> * <scriptX*, but still can cause an attack

[1:<?php

I 2: Swww =<Isc+riplt ...>;

| 3: $l_otherinfo = "URL";

| s: $www = ereg_replace(” [*A-Za-z0-9 .-@://]""", <!sc+rip!t
L)

| 4: echo " <td>" . $l_otherinfo .
"< td>"

| 5:7>

" . <script ...> .

Overview Motivation

About This Work

Eliminate Vulnerabilities

e We generate vulnerability signature that characterizes all
malicious inputs that may generate attacks (with respect to
the attack pattern)

e The vulnerability signature for $_GET["www"] is
YF < afsafcatrafiaf pattyi*, where
a & { A-Za-z0-9 .-@:/ } and X is any ASCII character
e Any string accepted by this signature can cause an attack

e Any string that dose not match this signature will not cause
an attack. l.e., one can filter out all malicious inputs using
our signature

Overview Motivation

About This Work

Prove the Absence of Vulnerabilities

Fix the buggy routine by inserting the escape character \.
[1:<?php
I 2: $www = $_GET[" www"];
| 3: $l_otherinfo = "URL";
| s $www = ereg_replace(”’ ["A-Za-z0-9 .\-@://]","" ,$www);
| 4: echo "<td>" . $l_otherinfo . ": " . $www . "< /td>";
| 5:7>

Using our approach, this segment is proven not to be vulnerable
against the XSS attack pattern: ¥* <scriptX*. /

12/76

Overview Motivation

About This Work

Multiple Inputs?

Things can be more complicated while there are multiple inputs.
I 1:<?php
2 $www = $S_GET["www"[;
| 3: $l_otherinfo = $_GET["other"];
| 4: echo "<td>" . $l_otherinfo . ": " . $www . "</td>";
[5:7>

e An attack string can be contributed from one input, another
input, or their combination

e We can generate relational vulnerability signatures and
automatically synthesize effective patches.

Overview Motivation

About This Work

About This Work

We present an automata-based approach for automatic verification
of string manipulating programs. Given a program that
manipulates strings, we verify assertions about string variables.

e Symbolic String Vulnerability Analysis

e Relational String Analysis

e Composite String Analysis

Overview Motivation

About This Work

Summary of Contributions

e An automata-based approach for analyzing string
manipulating programs using symbolic string analysis. The
approach features language-based replacement, fixpoint
acceleration, symbolic automata encoding, and alphabet and
relation abstraction techniques [SPIN'08, ASE’'09]

e An automata-based string analysis tool: STRANGER, can
automatically detect, eliminate, and prove the absence of
XSS, SQLCI, and MFE vulnerabilities (with respect to attack
patterns) in PHP web applications [TACAS'10]

Overview Motivation

About This Work

Summary of Contributions

e A composite analysis technique that combines string analysis
with size analysis showing how the precision of both analyses
can be improved by using length automata [TACAS'09]

o A relational string verification technique using multi-track
automata and abstraction: This approach does not only
enhance the earlier results in string analysis in terms of both
precison and performance, but also enables verification of
properties that depend on relations among string variables

[UCSB-CS-TR]

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Too

Techniques

Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
o Relational String Analysis
o Composite String Analysis

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite g Analysis
STRANGER Tool

Techniques

Symbolic String Vulnerability Analysis

Given a program, types of sensitive functions, and an attack
pattern, we say
e A program is vulnerable if a sensitive function at some

program point can take a string that matches the attack
pattern as its input

e A program is not vulnerable (with respect to the attack
pattern) if no such functions exist in the program

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Symbolic String Vulnerability Analysis

e Converts programs to dependency graphs focusing on string
manipulation operations

e Performs forward symbolic reachability analyses to detect
vulnerabilities

e Performs backward symbolic reachability analysis to generate
vulnerability signatures

4, front forward »|packward
end analysis analysis

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Front End

Consider the following segment.

| <?php
I 1: $www = $_GET[" www"];
| 2: $url = "URL:";

| 3: $www = preg_replace("["A-Z.-Q]","" ,$www);
| 4: echo $url. $www;

[7>

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Front End

A dependency graph specifies how the values of input nodes flow
to a sink node (i.e., a sensitive function)

R] [raz-@ [] [Cswww]

T

NEXT: Compute all possible values of a sink node

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Detecting Vulnerabilities

e Associates each node with an automaton that accepts an over
approximation of its possible values

e Uses automata-based forward symbolic analysis to identify the
possible values of each node
e Uses post-image computations of string operations:

e postConcat(M;, M) returns M, where M=M;.M,
e postReplace(M;, M., Mjs) returns M, where
M=REPLACE(M;, My, M3)

4, front forward »|Packward
end analysis analysis

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

A Language-based Replacement

M=REPLACE(M;, M, Ms)
e My, My, and M3 are Deterministic Finite Automata (DFAs).

e M, accepts the set of original strings,
o M, accepts the set of match strings, and
e M; accepts the set of replacement strings

o Let s € L(My), x € L(Mz), and ¢ € L(M3):

e Replaces all parts of any s that match any x with any c.
e Outputs a DFA that accepts the result.

L(M) L(My) | L(Ms) L(M)
{baaabaa} | {aa} {c} | {bacbc, bcabc}
{baaabaa} at € {bb}

ba*th at {c} beth

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Forward Analysis

o Allows arbitrary values, i.e., £*, from user inputs

e Propagates post-images to next nodes iteratively until a fixed
point is reached

SA-Z-@} \4 \4
M o 0%

“UTL" II [AA-zl.-@]_ll | Il.

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Forward Analysis

e At the first iteration, for the replace node, we call
postReplace(z* s > \ {A 7 — @}’ n n)

N URL: S\A-Z-@} \@ ¢ @Dz

| “UTL:" [[["A-Zl.-@]_ll < | swww Il

URL: \4 {A-Z-@}
preg_r
She R

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Forward Analysis

e At the second iteration, we call postConcat ("URL:",
{(A—Z. —@e})

N URL: S\A-Z-@} \@ ¢ @Dz

| “UTL:" [[["A-Zl.-@]_ll < | swww Il

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Forward Analysis

e The third iteration is a simple assignment

o After the third iteration, we reach a fixed point

\ URL: S\A-Z.-@} \@ \‘®z
I “UFI<L:” I l“A-Zl--CLll " s | B

NEXT: Is it vulnerable?

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite g Analysis
STRANGER Tool

Techniques

Detecting Vulnerabilities

e We know all possible values of the sink node (echo)
e Given an attack pattern, e.g., (X\ <)* < X¥, if the

intersection is not an empty set, the program is vulnerable.

Otherwise, it is not vulnerable with respect to the attack

pattern
h 0> n\o”RL tz-@

- DRosete

{A-Z.-=-@}

NEXT: What are the malicious inputs?

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Generating Vulnerability Signatures

o A vulnerability signature is a characterization that includes all
malicious inputs that can be used to generate attack strings

e Uses backward analysis starting from the sink node

e Uses pre-image computations on string operations:

e preConcatPrefix(M, M) returns M; and
preConcatSuffix(M, M) returns My, where M = My.M,.

e preReplace(M, M,, Ms) retunrs My, where
M=REPLACE(M;, M, M3).

4, front forward »|Packward
end analysis analysis

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Backward Analysis

e Computes pre-images along with the path from the sink node
to the input node

e Uses forward analysis results while computing pre-images

\ %\(A Z.-@}

Rl [rAz-@l II | T

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Backward Analysis

e The first iteration is a simple assignment.

\ S(A-Z-@) \<©

‘R |[(raz-@ | [1 sww |

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Backward Analysis

e At the second iteration, we call
preConcatSuffix(URL : {A—-Z.—;= -0} < {A-Z. - @},
"URL:").

o M = Ml.M2

\ URL: S\A-Z-@} \@

[Core J[Trazza@l | [][swww |

< _{(AZ-@}

jore
eplace Az-=@

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Backward Analysis

e We call preReplace({A—Z.—;= -@}* < {A—-Z. - @}*,
Y\{A-Z.-@}, " at the third iteration.

e M = replace(Ml, /\/Iz, /\/I3)

o After the third iteration, we reach a fixed point.

<~
N URL: NA-Z-@) \@ Z\Q‘/\“VPQJ

oore |[Crazea@l | [[swww |

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Vulnerability Signatures

e The vulnerability signature is the result of the input node,
which includes all possible malicious inputs

e An input that does not match this signature cannot exploit
the vulnerability

NEXT: How to detect and prevent malicious inputs

Symbolic Strii Vulnerablllty Analysis
Relational String Analysis

Composite String Analysis
STRANGER Too

Techniques

Patch Vulnerable Applications

The idea is to modify the input (as little as possible) so that it
does not match the vulnerability signature

e Deletes certain characters (an alphabet cut) in the input

e Given a DFA, an alphabet cut is a set of characters that after
"removing” the edges that are associated with the characters
in the set, the modified DFA does not accept any non-empty

string
Z\< | 2 2 Z\:tz ©22\<

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite g Analysis
STRANGER Tool

Techniques

An Alphabet Cut

e Finding a minimal alphabet cut of a DFA is an NP-hard
problem (one can reduce the vertex cover problem to this
problem)

e We apply a min-cut algorithm to find a cut that separates the
initial state and the final states of the DFA

e The set of characters that are associated with the edges of the
min cut is an alphabet cut
L
D<TAi [AZ

{<} is an alphabet cut

Symbolic String Vulnerability Analysis
Techniques Relational String Analysis

Composite String Analysis
STRANGER Tool

Patch Vulnerable Applications

Patch: If the input matches the vulnerability signature, delete all
characters in the alphabet cut
| <7php
| if (preg-match("/[" <]*<.*/"$_GET["www"]))
| $_GET["www"] = preg_replace(<,”"” ,$_GET["www"]);
I 1: $www = $_GET[" www"];
| 2: $url ="URL:";
| 3: $www = preg_replace("["A-Z.-Q]","" ,$www);
| 4: echo $url. $www;
[7>

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Experiments

We evaluated our approach on five vulnerabilities from three open
source web applications:

e (1) MyEasyMarket-4.1 (a shopping cart program),

e (2) BloggIT-1.0 (a blog engine), and

¢ (3) proManager-0.72 (a project management system).
We used the following XSS attack pattern ¥* < SCRIPTYL*.

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Dependency Graphs

e The dependency graphs of these benchmarks are built for
sensitive sinks

e Unrelated parts have been removed using slicing

| #nodes | #edges | #concat | #replace | #constant | #sinks | #inputs |

1 21 20 6 1 46 1 1
2 29 29 13 7 108 1 1
3 25 25 6 6 220 1 2
4 23 22 10 9 357 1 1
5 25 25 14 12 357 1 1

Table: Dependency Graphs. #constant: the sum of the length of the /
constants 3

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite g Analysis
STRANGER Tool

Techniques

Vulnerability Analysis Performance

Forward analysis seems quite efficient.

|| time(s) | mem(kb) | res. | #states / #bdds | #inputs |

1 0.08 2599 vul 23/219 1
2 0.53 13633 vul 48/495 1
3 0.12 1955 vul 125/1200 2
4 0.12 4022 vul 133/1222 1
5 0.12 3387 vul 125/1200 1

Table: #states /#bdds of the final DFA (after the intersection with the
attack pattern)

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite g Analysis
STRANGER Tool

Techniques

Signature Generation Performance

Backward analysis takes more time. Benchmark 2 involves a long
sequence of replace operations.

| | time(s) | mem(kb) | #states /#bdds |

1 0.46 2963 9/199

2| 41.03 1859767 811/8389

3 2.35 5673 20/302, 20/302
4 2.33 32035 91/1127

5 5.02 14958 20/302

Table: #states /#bdds of the vulnerability signature

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

[Se [1] 2 |3 [4 [5 |
input i i1 i, i2 i i
F#edges 1 8 4,4 4 4
alp-cut [{<} [{S/,"} | & = | {</,"} | {<),"}

Table: Cuts. #edges: the number of edges in the min-cut.

e For 3 (two user inputs), the patch will block everything and
delete everything

e Our analysis over approximates the relations among input
variables (e.g. the concatenation of two inputs contains an
attack)

e There may be no way to prevent it by restricting only one ¥ -
input

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
o Relational String Analysis
o Composite String Analysis

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Relational String Analysis

Instead of multiple single-track DFAs, we use one multi-track DFA,
where each track represents the values of one string variable.

Using multi-track DFAs we are able to:
e l|dentify the relations among string variables

e Generate relational vulnerability signatures for multiple user
inputs of a vulnerable application

e Prove properties that depend on relations among string
variables, e.g., $file = $usr.txt (while the user is Fang, the
open file is Fang.txt)

e Summarize procedures

e Improve the precision of the path-sensitive analysis

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Multi-track Automata

e Let X (the first track), Y (the second track), be two string
variables

e) is a padding symbol
e A multi-track automaton that encodes X = Y.txt

e TSV
(a,a),(b,b),...

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Relational Vulnerability Signature

Performs forward analysis using multi-track automata to
generate relational vulnerability signatures

Each track represents one user input
An auxiliary track represents the values of the current node

o Intersects the auxiliary track with the attack pattern upon
termination

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysi
STRANGER Tool

Techniques

Relational Vulnerability Signature

Consider a simple example having multiple user inputs
| <7php
I 1: $www = $_GET["www"[;
| 2: Surl =$_GET["url"];
| 3: echo $url. $www;
[7>

Let the attack pattern be (X\ <)* < X*

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Relational Vulnerability Signature

Techniques

e A multi-track automaton: ($url, $www , aux)

o Identifies the fact that the concatenation of two inputs
contains <

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Relational Vulnerability Signature

e Projects away the auxiliary track
e Finds a min-cut

e This min-cut identifies the alphabet cuts:

o {<} for the first track ($url)
o {<} for the second track ($www)

@A) ;
b, A N ! ~ (@, N
() (/ ‘\ i v“ \(b, A)
\“ 7
A, a)
= ~3
e
(A, a) (/ AN (A, Q)
(N b)

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Patch Vulnerable Applications with Multi Inputs

Patch: If the inputs match the signature, delete its alphabet cut
| <7php
| if (preg_match(’/[* <]*<.*/', $_GET["url"].$_GET["www"]))
{
$_GET["url"] = preg_replace(" <" ,"" ,$_GET["url"]);
$_GET['www"] = preg_replace(" <","" ,$_GET["www"]);
}
1 $www = $_GET["www"];
2: $url = $_GET["url"];
3: echo $url. Swww;
7>

50/76

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Previous Benchmark: Single V.S. Relational Signatures

| ben. | type | time(s) | mem(kb) | #states /#bdds |
3 Single-track 2.35 5673 20/302, 20/302
Multi-track 0.66 6428 113/1682
| 3 | Single-track | Multi-track |
F#edges 4 3
alp.-cut Y, X {<}, {5}

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Other Technical Issues

To conduct relational string analysis, we need a meaningful
"intersection” of multi-track automata

o Intersection are closed under aligned multi-track automata
e Js are right justified in all tracks, e.g., abA\ instead of aAb\

e However, there exist unaligned multi-track automata that are
not describable by aligned ones

e We propose an alignment algorithm that constructs aligned
automata which under/over approximate unaligned ones

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Other Technical Issues

Modeling Word Equations:

e Intractability of X = c¢Z: The number of states of the
corresponding aligned multi-track DFA is exponential to the
length of c.

e lrregularity of X = YZ: X = YZ is not describable by an
aligned multi-track automata

We have proven the above results and proposed a conservative
analysis.

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
o Relational String Verification

e Composite String Analysis

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Composite Verification

We aim to extend our string analysis techniques to analyze systems
that have unbounded string and integer variables.

We propose a composite static analysis approach that combines
string analysis and size analysis.

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Size Analysis

Integer Analysis: At each program point, statically compute the
possible states of the values of all integer variables.

These infinite states are symbolically over-approximated as linear
arithmetic constraints that can be represented as an arithmetic
automaton

Integer analysis can be used to perform Size Analysis by
representing lengths of string variables as integer variables.

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

What is Missing?

Consider the following segment.

o 1:<?php

e 2: Swww = $_GET["www"];

e 3: $l_otherinfo = "URL";

o 4: $www = ereg_replace("["A-Za-z0-9 ./-@://]","" $www);
o 5: if(strlen($www) < $limit)

e 6: echo”<td>" . $l otherinfo . ": " . $www . "< /td>";
o 77>

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

What is Missing?

If we perform size analysis solely, after line 4, we do not know the
length of $www.

o 1:<?php
e 2: Swww = $_GET["www"];
e 3: $l_otherinfo = "URL";

o 4: Swww = ereg_replace(" ["A-Za-z0-9 ./-@://]","" $www);
o 5: if(strlen($www) < $limit)

e 6: echo”<td>" . $l otherinfo . ": " . $www . "< /td>";
o 77>

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

What is Missing?

If we perform string analysis solely, at line 5, we cannot
check/enforce the branch condition.

o 1:<?php

e 2: Swww = $_GET["www"];

e 3: $l_otherinfo = "URL";

e 4: Swww = ereg_replace("["A-Za-z0-9 ./-@://]","" $www);
o 5: if(strlen($www) < $limit)

e 6: echo”<td>" . $l otherinfo . ": " . $www . "< /td>";
o 77>

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

What is Missing?

We need a composite analysis that combines string analysis with
size analysis.

Challenge: How to transfer information between string automata
and arithmetic automata?

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Some Facts about String Automata

e A string automaton is a single-track DFA that accepts a
regular language, whose length forms a semi-linear set, .e.g.,
{4,6} U{2+3k | k >0}

e The unary encoding of a semi-linear set is uniquely identified
by a unary automaton

e The unary automaton can be constructed by replacing the
alphabet of a string automaton with a unary alphabet

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Some Facts about Arithmetic Automata

e An arithmetic automaton is a multi-track DFA, where each
track represents the value of one variable over a binary
alphabet

o |f the language of an arithmetic automaton satisfies a
Presburger formula, the value of each variable forms a
semi-linear set

e The semi-linear set is accepted by the binary automaton that
projects away all other tracks from the arithmetic automaton

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

An Overview

To connect the dots, we propose a novel algorithm to convert
unary automata to binary automata and vice versa.
More details can be found in [TACAS'09].

\%bc b
String
Automata (Z) Unary Length Automata

i) Arithmetic
Binary Length Automata () Automata

] 1
‘v{.@ 1
0 :§;£\©
0 0 08

0 4

T

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Experiments

In [TACASOQ9], we manually generate several benchmarks from:
e C string library
o Buffer overflow benchmarks (buggy/fixed) [Ku et al., ASE'07]

e Web vulnerable applications (vulnerable/sanitized) [Balzarotti
et al., S&P'08]

These benchmarks are small (<100 statements and < 10 variables)
but demonstrate typical relations among string and integer
variables.

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

Experimental Results

The results show some promise in terms of both precision and

performance

[Test case (bad/ok) | Result | Time (s) [Memory (kb) |
int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T | 0.014/0.018 | 216/252
samba (CVE-2007-0453) F/T | 0.015/0.021 218,252
MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210) F/T 0.021/0.022 496/662
BloggIT 1.0 (admin.php:27) F/T | 0.719/0.721 | 5857/7067

Table: T: The property holds (buffer overflow free or not vulnerable with.
respect to the attack pattern)

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String

STRANGER Tool

Techniques

STRANGER Tool

We have developed STRANGER (STRing AutomatoN
GEneratoR)

e A public automata-based string analysis tool for PHP

e Takes a PHP application (and attack patterns) as input, and
automatically analyzes all its scripts and outputs the possible
XSS, SQL Injection, or MFE vulnerabilities in the application

Techniques
STRANGER Tool

STRANGER Tool

e Uses Pixy [Jovanovic et al., 2006] as a front end
e Uses MONA [Klarlund and Mgller, 2001] automata package
for automata manipulation

PHP Applications (Attack Patterns)
A String/Automata
et (. T —
Stri ipulati
Dependency ualvzey Stranger Library

CFGs \ Graphs_—¥ Automata

N
N MONA Automata
Package
Taint
Analyzer String Analysis Report
P (Patch / Vulnerability Signatures)

Pixy: Stranger: MONA:
Front End Symbolic String Analysis DFA Manipulation

The tool, detailed documents, and several benchmarks are
available: http://www.cs.ucsb.edu/~vlab/stranger.

Symbolic String Vulnerability Analysis
Relational String Analysis

Composite String Analysis
STRANGER Tool

Techniques

STRANGER Tool

A case study on Schoolmate 1.5.4

63 php files containing 8000+ lines of code

Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04

STRANGER took 22 minutes / 281MB to reveal 153 XSS
from 898 sinks

After manual inspection, we found 105 actual vulnerabilities
(false positive rate: 31.3%)

We inserted patches for all actual vulnerabilities

Stranger proved that our patches are correct with respect t?/
the attack pattern we are using

Symbolic Stri 1lnerability Analysis
Relational St nalysis

Composite String Analysis
STRANGER Tool

Techniques

STRANGER Tool

Another case study on SimpGB-1.49.0, a PHP guestbook web
application

e 153 php files containing 44000+ lines of code

e Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04
e For all executable entries, STRANGER took

e 231 minutes to reveal 304 XSS from 15115 sinks,
e 175 minutes to reveal 172 SQLI from 1082 sinks, and
e 151 minutes to reveal 26 MFE from 236 sinks

Publication list
Summary

Related Work on String Analysis

e String analysis based on context free grammars: [Christensen et
al., SAS'03] [Minamide, WWW'05]

e String analysis based on symbolic execution: [Bjorner et al.,
TACAS'09)]

e Bounded string analysis : [Kiezun et al., ISSTA'09]

e Automata based string analysis: [Xiang et al., COMPSAC'07]
[Shannon et al., MUTATION'07] [Barlzarotti et al. S&P’08]

e Application of string analysis to web applications: [Wassermann
and Su, PLDI'07, ICSE'08] [Halfond and Orso, ASE'05, ICSE’06]

Publication list
Summary

Related Work on Size Analysis and Composite Analysis

e Size analysis : [Dor et al., SIGPLAN Notice'03] [Hughes et al., POPL'96]
[Chin et al., ICSE'05] [Yu et al., FSE'07] [Yang et al., CAV'08]
e Composite analysis:
e Composite Framework: [Bultan et al., TOSEM’'00]
e Symbolic Execution: [Xu et al., ISSTA'08] [Saxena et al., UCB-TR'10]
o Abstract Interpretation: [Gulwani et al., POPL'08] [Halbwachs et al.,
PLDI'08]

Publication list
Summary

Related Work on Vulnerability Signature Generation

o Test input/Attack generation: [Wassermann et al., ISSTA'08] [Kiezun
et al., ICSE'09]

e Vulnerability signature generation: [Brumley et al., S&P'06]
[Brumley et al., CSF'07] [Costa et al., SOSP'07]

Publication list
Summary

My Publications

String Analysis:
® STRANGER: An Automata-based String Analysis Tool for PHP [TACAS'10]

® Generating Vulnerability Signatures for String Manipulating Programs Using
Automata-based Forward and Backward Symbolic Analyses [ASE'09]

® Symbolic String Verification: Combining String Analysis and Size Analysis
[TACAS'09]

® Symbolic String Verification: An Automata-based Approach [SPIN’08]

Publication list
Summary

My Publications

Web Service/Application Verification:

® Modular Verification of Web Services Using Efficient Symbolic Encoding and
Summarization [FSE'08]

® Verifying Web Applications Using Bounded Model Checking [DSN'04]

® Securing Web Application Code by Static Analysis and Runtime Protection
[WWW'’04] (best paper nominee)

Size Analysis:

® Automated Size Analysis for OCL [FSE'07]

Publication list
Summary

My Other Publications

Membrane Computing: [UC'06][NC'07]

Verification of Real-time Systems:
e SAT-based Techniques: [FORMATS-FTRTFT'04] [ATVA'04] [IJFCS'06]

e BDD-based Techniques: [CIAA'03] [FORTE'03]
[RTCSA'03a,RTCSA’03b] [JEC'04] [IEEE TSE'04, TSE'06]

Publication list

Summary

Thank you for your attention.

Questions?

	Overview
	Motivation
	About This Work

	Techniques
	Symbolic String Vulnerability Analysis
	Relational String Analysis
	Composite String Analysis
	STRANGER Tool

	Summary
	Publication list

