
Overview
Techniques

Experiments
Summary

Introduction to Stranger

Fang Yu

Department of Management Information Systems
National Chengchi University, Taipei, Taiwan

joint work with
Muath Alkhalaf and Tevfik Bultan

University of California, Santa Barbara

March 22, 2011

1 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Web Application Vulnerabilities

Have contributed the majority of common vulnerabilities.

01 02 03 04 05 06

Commom Vulnerability and Exposure [CVE, 2007]

year

%

0

10

20

30

40

Cross.Site.Scripting
SQL.Injection
File.Inclusion

2 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Web Application Vulnerabilities

• The top three vulnerabilities of the Open Web Application
Security Project (OWASP)’s top ten list. [OWASP, 2007]

1 Cross Site Scripting (XSS)
2 Injection Flaws (such as SQL Injection)
3 Malicious File Executions

After three years...
• The top two vulnerabilities of the OWASPs top ten list.

[OWASP, 2010]
1 Injection Flaws (such as SQL Injection)
2 Cross Site Scripting (XSS)

3 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Injection Flaws

• The attacker formulates a malicious command, and sends it as
input to the Web application

• Login / search / registration / etc

4 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Injection Flaws

• The Web application uses the input to construct commands
without prior sanitization

5 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Injection Flaws

• Command delivered to OS: Command injection

• Command delivered to database: SQL injection

• Since arbitrary command is executed, this attack may cause
great damage

6 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

SQL Injection

7 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

SQL Injection

Access students’ data by $name (from a user input).

l 1:<?php

l 2: $name =$ GET[”name”];

l 3: $user data = $db->query(”SELECT * FROM students
WHERE (name = ’$name’) ”);

l 4:?>

8 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

SQL Injection

l 1:<?php

l 2: $name = $ GET[”name”];

l 3: $user data = $db->query(”SELECT * FROM students
WHERE (name = ’Robert ’); DROP TABLE students; - -’) ”);

l 4:?>

9 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

XSS Attacks

• Malicious content injected into a web application can also
attack clients

• In XSS, an attacker first inject a malicious script into the Web
applications database

• Through a functionality (e.g., message posting)

10 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

XSS Attacks

• Upon a certain request by a victim, the script is used to
construct output

• E.g., the victim reads the posted message

11 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

XSS Attacks

• The script is delivered on behalf of the Web application to the
client

• It has the right to access client’s cookies and deliver them to
attackers.

12 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

XSS Attack

Another PHP Example:

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• The echo statement in line 4 can contain a Cross Site
Scripting (XSS) vulnerability

13 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

XSS Attack

An attacker may provide an input that contains <script and
execute the malicious script.

l 1:<?php

l 2: $www = <script ... >;

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .<script ... >.
”</td>”;

l 5:?>

14 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

String Related Vulnerabilities

• All of the listed web application vulnerabilities are caused by:
a sensitive function takes an attack string (specified by an
attack pattern) as its input

• It occurs due to improper string manipulations on user
provided inputs

• We develop a formal and fully automatic approach that can:
• detect string related vulnerabilities
• prove the absence of string related vulnerabilities
• generate sanitization statements for patching vulnerable web

applications

15 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Is it Vulnerable?

A simple taint analysis, e.g., [Huang et al. WWW04], can report
this segment vulnerable using taint propagation.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .$www. ”</td>”;

l 5:?>

16 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Is it Vulnerable?

Add a sanitization routine at line s.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• Taint analysis will assume that $www is untainted after the
routine, and conclude that the segment is not vulnerable.

17 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Sanitization Routines are Erroneous

However, ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www); does not
sanitize the input properly.

• Removes all characters that are not in { A-Za-z0-9 .-@:/ }.

• .-@ denotes all characters between ”.” and ”@” (including
”<” and ”>”)

• ”.-@” should be ”.\-@”

18 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

A buggy sanitization routine

l 1:<?php

l 2: $www = <script ... >;

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””, $www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . <script ... > .
”</td>”;

l 5:?>

• A buggy sanitization routine used in MyEasyMarket-4.1 that
causes a vulnerable point at line 218 in trans.php [Balzarotti
et al., S&P’08]

• Our string analysis identifies that the segment is vulnerable
with respect to the attack pattern: Σ∗ <scriptΣ∗.

19 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Eliminate Vulnerabilities

Input <!sc+rip!t ...> does not match the attack pattern
Σ∗ <scriptΣ∗, but still can cause an attack

l 1:<?php

l 2: $www =<!sc+rip!t ...>;

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””, <!sc+rip!t
...>);

l 4: echo ”<td>” . $l otherinfo . ”: ” . <script ...> .
”</td>”;

l 5:?>

20 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Eliminate Vulnerabilities

• We generate vulnerability signature that characterizes all
malicious inputs that may generate attacks (with respect to
the attack pattern)

• The vulnerability signature for $ GET[”www”] is
Σ∗ < α∗sα∗cα∗rα∗iα∗pα∗tΣ∗, where
α !∈ { A-Za-z0-9 .-@:/ } and Σ is any ASCII character

• Any string accepted by this signature can cause an attack

• Any string that dose not match this signature will not cause
an attack. I.e., one can filter out all malicious inputs using
our signature

21 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

Prove the Absence of Vulnerabilities

Fix the buggy routine by inserting the escape character \.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s’: $www = ereg replace(”[∧A-Za-z0-9 .\-@://]”,””,$www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

Using our approach, this segment is proven not to be vulnerable
against the XSS attack pattern: Σ∗ <scriptΣ∗.

22 / 69

Overview
Techniques

Experiments
Summary

Motivation
About This Work

About This Work

We achieve this by automata-based string analysis techniques.

Our approach consists of three phases:

• Vulnerability Analysis

• Vulnerability Signature Generation

• Sanitization Generation

23 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Vulnerability Analysis

Given a program, types of sensitive functions, and an attack
pattern, we say

• A program is vulnerable if a sensitive function at some
program point can take a string that matches the attack
pattern as its input

• A program is not vulnerable (with respect to the attack
pattern) if no such functions exist in the program

24 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Vulnerability Analysis

• Converts programs to dependency graphs focusing on string
manipulation operations

• Performs forward symbolic reachability analyses to detect
vulnerabilities

25 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Front End

Consider the following segment.

l <?php

l 1: $www = $ GET[”www”];

l 2: $url = ”URL:”;

l 3: $www = preg replace(”[∧A-Z.-@]”,””,$www);

l 4: echo $url. $www;

l ?>

26 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Front End

A dependency graph specifies how the values of input nodes flow
to a sink node (i.e., a sensitive function)

NEXT: Compute all possible values of a sink node

27 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Detecting Vulnerabilities

• Associates each node with an automaton that accepts an over
approximation of its possible values

• Uses automata-based forward symbolic analysis to identify the
possible values of each node

• Uses post-image computations of string operations:
• postConcat(M1, M2) returns M , where M=M1.M2

• postReplace(M1, M2, M3) returns M , where
M=replace(M1, M2, M3)

28 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

A Language-based Replacement

M=replace(M1, M2, M3)

• M1, M2, and M3 are Deterministic Finite Automata (DFAs).
• M1 accepts the set of original strings,
• M2 accepts the set of match strings, and
• M3 accepts the set of replacement strings

• Let s ∈ L(M1), x ∈ L(M2), and c ∈ L(M3):
• Replaces all parts of any s that match any x with any c .
• Outputs a DFA that accepts the result.

29 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

M=replace(M1, M2, M3)

Some examples:
L(M1) L(M2) L(M3) L(M)

{baaabaa} {aa} {c} {bacbc, bcabc}
{baaabaa} a+ ε {bb}
{baaabaa} a+b {c} {baacaa, bacaa, bcaa}
{baaabaa} a+ {c} {bcccbcc, bcccbc,

bccbcc, bccbc, bcbcc, bcbc}
ba+b a+ {c} bc+b

30 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Forward Analysis

• Allows arbitrary values, i.e., Σ∗, from user inputs

• Propagates post-images to next nodes iteratively until a fixed
point is reached

31 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Forward Analysis

• At the first iteration, for the replace node, we call
postReplace(Σ∗, Σ \ {A − Z . − @}, "")

32 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Forward Analysis

• At the second iteration, we call postConcat("URL:",
{A − Z . − @}∗)

33 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Forward Analysis

• The third iteration is a simple assignment

• After the third iteration, we reach a fixed point

NEXT: Is it vulnerable?
34 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Detecting Vulnerabilities

• We know all possible values of the sink node (echo)

• Given an attack pattern, e.g., (Σ\ <)∗ < Σ∗, if the
intersection is not an empty set, the program is vulnerable.
Otherwise, it is not vulnerable with respect to the attack
pattern

NEXT: What are the malicious inputs?
35 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Generating Vulnerability Signatures

• A vulnerability signature is a characterization that includes all
malicious inputs that can be used to generate attack strings

• Uses backward analysis starting from the sink node
• Uses pre-image computations on string operations:

• preConcatPrefix(M, M2) returns M1 and
preConcatSuffix(M, M1) returns M2, where M = M1.M2.

• preReplace(M, M2, M3) returns M1, where
M=replace(M1, M2, M3).

36 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Backward Analysis

• Computes pre-images along with the path from the sink node
to the input node

• Uses forward analysis results while computing pre-images

37 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Backward Analysis

• The first iteration is a simple assignment.

38 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Backward Analysis

• At the second iteration, we call
preConcatSuffix(URL : {A − Z .−; = −@}∗ < {A − Z . − @}∗,

"URL:").
• M = M1.M2

39 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Backward Analysis

• We call preReplace({A − Z .−; = −@}∗ < {A − Z . − @}∗,

Σ \ {A − Z . − @}, "") at the third iteration.
• M = replace(M1, M2, M3)
• After the third iteration, we reach a fixed point.

40 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Vulnerability Signatures

• The vulnerability signature is the result of the input node,
which includes all possible malicious inputs

• An input that does not match this signature cannot exploit
the vulnerability

NEXT: How to detect and prevent malicious inputs

41 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Patch Vulnerable Applications

• Match-and-block: A patch that checks if the input string
matches the vulnerability signature and halts the execution if
it does

• Match-and-sanitize: A patch that checks if the input string
matches the vulnerability signature and modifies the input if it
does

42 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Sanitize

The idea is to modify the input by deleting certain characters (as
little as possible) so that it does not match the vulnerability
signature

• Given a DFA, an alphabet cut is a set of characters that after
”removing” the edges that are associated with the characters
in the set, the modified DFA does not accept any non-empty
string

43 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Find An Alphabet Cut

• Finding a minimum alphabet cut of a DFA is an NP-hard
problem (one can reduce the vertex cover problem to this
problem)

• We apply a min-cut algorithm to find a cut that separates the
initial state and the final states of the DFA

• We give higher weight to edges that are associated with
alpha-numeric characters

• The set of characters that are associated with the edges of the
min cut is an alphabet cut

44 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Patch Vulnerable Applications

A match-and-sanitize patch: If the input matches the vulnerability
signature, delete all characters in the alphabet cut

l <?php

l if (preg match(’/[∧ <]*<.*/’,$ GET[”www”]))

l $ GET[”www”] = preg replace(<,””,$ GET[”www”]);

l 1: $www = $ GET[”www”];

l 2: $url = ”URL:”;

l 3: $www = preg replace(”[∧A-Z.-@]”,””,$www);

l 4: echo $url. $www;

l ?>

45 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Experiments

We evaluated our approach on five vulnerabilities from three open
source web applications:

• (1) MyEasyMarket-4.1 (a shopping cart program),

• (2) BloggIT-1.0 (a blog engine), and

• (3) proManager-0.72 (a project management system).

We used the following XSS attack pattern Σ∗ < SCRIPTΣ∗.

46 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Dependency Graphs

• The dependency graphs of these benchmarks are built for
sensitive sinks

• Unrelated parts have been removed using slicing

#nodes #edges #concat #replace #constant #sinks #inputs

1 21 20 6 1 46 1 1
2 29 29 13 7 108 1 1
3 25 25 6 6 220 1 2
4 23 22 10 9 357 1 1
5 25 25 14 12 357 1 1

Table: Dependency Graphs. #constant: the sum of the length of the
constants

47 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Vulnerability Analysis Performance

Forward analysis seems quite efficient.

time(s) mem(kb) res. #states / #bdds #inputs

1 0.08 2599 vul 23/219 1
2 0.53 13633 vul 48/495 1
3 0.12 1955 vul 125/1200 2
4 0.12 4022 vul 133/1222 1
5 0.12 3387 vul 125/1200 1

Table: #states /#bdds of the final DFA (after the intersection with the
attack pattern)

48 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Signature Generation Performance

Backward analysis takes more time. Benchmark 2 involves a long
sequence of replace operations.

time(s) mem(kb) #states /#bdds

1 0.46 2963 9/199
2 41.03 1859767 811/8389
3 2.35 5673 20/302, 20/302
4 2.33 32035 91/1127
5 5.02 14958 20/302

Table: #states /#bdds of the vulnerability signature

49 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Cuts

Sig. 1 2 3 4 5

input i1 i1 i1, i2 i1 i1

#edges 1 8 4, 4 4 4
alp.-cut {<} {<,

′
, ”} Σ, Σ {<,

′
, ”} {<,

′
, ”}

Table: Cuts. #edges: the number of edges in the min-cut.

• For 3 (two user inputs), the patch will block everything and
delete everything

50 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Multiple Inputs?

Things can be more complicated while there are multiple inputs.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = $ GET[”other”];

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• An attack string can be contributed from one input, another
input, or their combination

• Using single-track DFAs, the analysis over approximates the
relations among input variables (e.g. the concatenation of two
inputs contains an attack)

• There may be no way to prevent it by restricting only one
input

51 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Relational String Analysis

Instead of multiple single-track DFAs, we use one multi-track DFA,
where each track represents the values of one string variable.

Using multi-track DFAs we are able to:

• Identify the relations among string variables

• Generate relational vulnerability signatures for multiple user
inputs of a vulnerable application

• Prove properties that depend on relations among string
variables, e.g., $file = $usr.txt (while the user is Fang, the
open file is Fang.txt)

• Summarize procedures

• Improve the precision of the path-sensitive analysis

52 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Multi-track Automata

• Let X (the first track), Y (the second track), be two string
variables

• λ is a padding symbol

• A multi-track automaton that encodes X = Y.txt

53 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

• Performs forward analysis using multi-track automata to
generate relational vulnerability signatures

• Each track represents one user input

• An auxiliary track represents the values of the current node

• Intersects the auxiliary track with the attack pattern upon
termination

54 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

Consider a simple example having multiple user inputs

l <?php

l 1: $www = $ GET[”www”];

l 2: $url =$ GET[”url”];

l 3: echo $url. $www;

l ?>

Let the attack pattern be (Σ\ <)∗ < Σ∗

55 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

• A multi-track automaton: ($url, $www , aux)

• Identifies the fact that the concatenation of two inputs
contains <

56 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

• Projects away the auxiliary track for the echo statement

• Finds a min-cut
• This min-cut identifies the alphabet cuts:

• {<} for the first track ($url)
• {<} for the second track ($www)

57 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Patch Vulnerable Applications with Multi Inputs

Patch: If the inputs match the signature, delete its alphabet cut

l <?php

l if (preg match(’/[∧ <]*<.*/’, $ GET[”url”].$ GET[”www”]))
{

l $ GET[”url”] = preg replace(”<”,””,$ GET[”url”]);

l $ GET[”www”] = preg replace(”<”,””,$ GET[”www”]);

l }

l 1: $www = $ GET[”www”];

l 2: $url = $ GET[”url”];

l 3: echo $url. $www;

l ?>

58 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Previous Benchmark: Single V.S. Relational Signatures

ben. type time(s) mem(kb) #states /#bdds

3 Single-track 2.35 5673 20/302, 20/302
Multi-track 0.66 6428 113/1682

3 Single-track Multi-track

#edges 4 3
alp.-cut Σ, Σ {<}, {<}

59 / 69

Overview
Techniques

Experiments
Summary

Patching Web Applications

We applied our analysis to three open source PHP web
applications:

• Webchess 0.9.0 (a server for playing chess over the internet)

• EVE 1.0 (a tracker for players activity for an online game)

• Faqforge 1.3.2 (a document management tool)

Application # of PHP files total loc # of sinks
XSS SQLI

1 Webchess 0.9.0 23 3375 421 140
2 EVE 1.0 8 906 114 17
3 Faqforge 1.3.2 10 534 375 133

60 / 69

Overview
Techniques

Experiments
Summary

Attack Patterns

• For XSS attacks: Σ∗ <scriptΣ∗ (indicating an embedded
script)

• For SQLI attacks: Σ∗ or 1 =1 Σ∗ (indicating a true condition
in a query)

61 / 69

Overview
Techniques

Experiments
Summary

Vulnerability Analysis Evaluation

of Vul. Time (seconds) Mem (Kb)
(single, 2, 3, 4) total fwd bwd relational average

XSS Vulnerability Analysis
1 (24, 3, 0, 0) 46.08 1.73 0.92 6.30 16850
2 (0, 0, 8, 0) 288.50 6.80 − 127.80 125382
3 (20, 0, 0, 0) 7.87 0.22 0.22 − 9948

SQLI Vulnerability Analysis
1 (43, 3, 1, 2) 110.7 4.87 12.04 38.03 136790
2 (8, 3, 0, 0) 23.9 1.5 8.47 5.2 17280
3 (0, 0, 0, 0) 6.7 − − − < 1

• (single, 2, 3, 4) indicates the number of detected
vulnerabilities that have single input, two inputs, three inputs
and four inputs

62 / 69

Overview
Techniques

Experiments
Summary

Cut Evaluation

Find the alphabet cut of each vulnerability signature

XSS SQLI
time (sec) alp.-cut time alp.-cut

1 0.06 {<} 0.07 {=}
2 0.3 {<} 0.1 {=}
3 0.05 {<} none

• time is the average time per automaton to find its
alphabet-cut

• alp.-cut is the deleted character set for each input

63 / 69

Overview
Techniques

Experiments
Summary

Patch Evaluation

• Sanitize the three applications above by placing the
automatically generated sanitization statements at the
beginning of each vulnerable script.

• Run our forward vulnerability analysis which reported zero

vulnerabilities with regard to the attack pattern mentioned
above demonstrating

• Our analysis is sound and guarantees that after the
sanitization statements are inserted, sensitive functions will
not receive any input that matches the attack pattern

64 / 69

Overview
Techniques

Experiments
Summary

Related Work on String Analysis

• String analysis based on context free grammars: [Christensen et

al., SAS’03] [Minamide, WWW’05]

• String analysis based on symbolic execution: [Bjorner et al.,

TACAS’09]

• Bounded string analysis : [Kiezun et al., ISSTA’09]

• Automata based string analysis: [Xiang et al., COMPSAC’07]

[Shannon et al., MUTATION’07] [Barlzarotti et al. S&P’08]

• Application of string analysis to web applications: [Wassermann

and Su, PLDI’07, ICSE’08] [Halfond and Orso, ASE’05, ICSE’06]

65 / 69

Overview
Techniques

Experiments
Summary

Publications related to this work

String Analysis:
• Patching Vulnerabilities with Sanitization Synthesis.

Fang Yu, Muath Alkahalf, Tevfik Bultan. Accepted by [ICSE’11]

• Relational String Analysis Using Multi-track Automata.
Fang Yu, Tevfik Bultan, Oscar H. Ibarra. [CIAA’10]

• Stranger: An Automata-based String Analysis Tool for PHP.
Fang Yu, Muath Alkahalf, Tevfik Bultan. [TACAS’10]

• Generating Vulnerability Signatures for String Manipulating Programs Using
Automata-based Forward and Backward Symbolic Analyses.
Fang Yu, Muath Alkahalf, Tevfik Bultan. [ASE’09]

• Symbolic String Verification: Combining String Analysis and Size Analysis
Fang Yu, Tevfik Bultan, Oscar H. Ibarra. [TACAS’09]

• Symbolic String Verification: An Automata-based Approach

Fang Yu, Tevfik Bultan, Marco Cova, Oscar H. Ibarra. [SPIN’08]

66 / 69

Overview
Techniques

Experiments
Summary

Summary of Contributions

• An automata-based approach for analyzing string
manipulating programs using symbolic string analysis. The
approach combines forward and backward symbolic
reachability analyses, and features language-based
replacement, fixpoint acceleration, and symbolic automata
encoding [SPIN’08, ASE’09]

• An automata-based string analysis tool: Stranger can
automatically detect, eliminate, and prove the absence of
XSS, SQLCI, and MFE vulnerabilities (with respect to attack
patterns) in PHP web applications [TACAS’10]

67 / 69

Overview
Techniques

Experiments
Summary

Summary of Contributions

• A composite analysis technique that combines string analysis
with size analysis showing how the precision of both analyses
can be improved by using length automata [TACAS’09]

• A relational string verification technique using multi-track
automata: We catch relations among string variables using
multi-track automata, i.e., each track represents the values of
one variable. This approach enables verification of properties
that depend on relations among string variables [CIAA10]

• An automatic approach for vulnerability signature generation
and patch synthesis: We apply multi-track automata to
generate relational vulnerability signatures with which we are
able to synthesize effective patches for vulnerable Web
applications. [ICSE11]

68 / 69

Overview
Techniques

Experiments
Summary

Thank you for your attention.

Questions?

69 / 69

	Overview
	Motivation
	About This Work

	Techniques
	Vulnerability Analysis
	Vulnerability Signatures
	Sanitization Generation
	Relational String Analysis

	Experiments
	Summary

