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Web Application Vulnerabilities

Have contributed the majority of common vulnerabilities.
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Web Application Vulnerabilities

• The top three vulnerabilities of the Open Web Application
Security Project (OWASP)’s top ten list. [OWASP, 2007]

1 Cross Site Scripting (XSS)
2 Injection Flaws (such as SQL Injection)
3 Malicious File Executions

After three years...
• The top two vulnerabilities of the OWASPs top ten list.

[OWASP, 2010]
1 Injection Flaws (such as SQL Injection)
2 Cross Site Scripting (XSS)
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Injection Flaws

• The attacker formulates a malicious command, and sends it as
input to the Web application

• Login / search / registration / etc
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Injection Flaws

• The Web application uses the input to construct commands
without prior sanitization
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Injection Flaws

• Command delivered to OS: Command injection

• Command delivered to database: SQL injection

• Since arbitrary command is executed, this attack may cause
great damage
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SQL Injection
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SQL Injection

Access students’ data by $name (from a user input).

l 1:<?php

l 2: $name =$ GET[”name”];

l 3: $user data = $db->query(”SELECT * FROM students
WHERE (name = ’$name’) ”);

l 4:?>
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SQL Injection

l 1:<?php

l 2: $name = $ GET[”name”];

l 3: $user data = $db->query(”SELECT * FROM students
WHERE (name = ’Robert ’); DROP TABLE students; - -’) ”);

l 4:?>

9 / 69



Overview
Techniques

Experiments
Summary

Motivation
About This Work

XSS Attacks

• Malicious content injected into a web application can also
attack clients

• In XSS, an attacker first inject a malicious script into the Web
applications database

• Through a functionality (e.g., message posting)
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XSS Attacks

• Upon a certain request by a victim, the script is used to
construct output

• E.g., the victim reads the posted message
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XSS Attacks

• The script is delivered on behalf of the Web application to the
client

• It has the right to access client’s cookies and deliver them to
attackers.
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XSS Attack

Another PHP Example:

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• The echo statement in line 4 can contain a Cross Site
Scripting (XSS) vulnerability
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XSS Attack

An attacker may provide an input that contains <script and
execute the malicious script.

l 1:<?php

l 2: $www = <script ... >;

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .<script ... >.
”</td>”;

l 5:?>
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String Related Vulnerabilities

• All of the listed web application vulnerabilities are caused by:
a sensitive function takes an attack string (specified by an
attack pattern) as its input

• It occurs due to improper string manipulations on user
provided inputs

• We develop a formal and fully automatic approach that can:
• detect string related vulnerabilities
• prove the absence of string related vulnerabilities
• generate sanitization statements for patching vulnerable web

applications
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Is it Vulnerable?

A simple taint analysis, e.g., [Huang et al. WWW04], can report
this segment vulnerable using taint propagation.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .$www. ”</td>”;

l 5:?>
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Is it Vulnerable?

Add a sanitization routine at line s.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• Taint analysis will assume that $www is untainted after the
routine, and conclude that the segment is not vulnerable.
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Sanitization Routines are Erroneous

However, ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www); does not
sanitize the input properly.

• Removes all characters that are not in { A-Za-z0-9 .-@:/ }.

• .-@ denotes all characters between ”.” and ”@” (including
”<” and ”>”)

• ”.-@” should be ”.\-@”
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A buggy sanitization routine

l 1:<?php

l 2: $www = <script ... >;

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””, $www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . <script ... > .
”</td>”;

l 5:?>

• A buggy sanitization routine used in MyEasyMarket-4.1 that
causes a vulnerable point at line 218 in trans.php [Balzarotti
et al., S&P’08]

• Our string analysis identifies that the segment is vulnerable
with respect to the attack pattern: Σ∗ <scriptΣ∗.
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Eliminate Vulnerabilities

Input <!sc+rip!t ...> does not match the attack pattern
Σ∗ <scriptΣ∗, but still can cause an attack

l 1:<?php

l 2: $www =<!sc+rip!t ...>;

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””, <!sc+rip!t
...>);

l 4: echo ”<td>” . $l otherinfo . ”: ” . <script ...> .
”</td>”;

l 5:?>
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Eliminate Vulnerabilities

• We generate vulnerability signature that characterizes all
malicious inputs that may generate attacks (with respect to
the attack pattern)

• The vulnerability signature for $ GET[”www”] is
Σ∗ < α∗sα∗cα∗rα∗iα∗pα∗tΣ∗, where
α !∈ { A-Za-z0-9 .-@:/ } and Σ is any ASCII character

• Any string accepted by this signature can cause an attack

• Any string that dose not match this signature will not cause
an attack. I.e., one can filter out all malicious inputs using
our signature
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Prove the Absence of Vulnerabilities

Fix the buggy routine by inserting the escape character \.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s’: $www = ereg replace(”[∧A-Za-z0-9 .\-@://]”,””,$www);

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

Using our approach, this segment is proven not to be vulnerable
against the XSS attack pattern: Σ∗ <scriptΣ∗.
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About This Work

We achieve this by automata-based string analysis techniques.

Our approach consists of three phases:

• Vulnerability Analysis

• Vulnerability Signature Generation

• Sanitization Generation
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Vulnerability Analysis

Given a program, types of sensitive functions, and an attack
pattern, we say

• A program is vulnerable if a sensitive function at some
program point can take a string that matches the attack
pattern as its input

• A program is not vulnerable (with respect to the attack
pattern) if no such functions exist in the program
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Vulnerability Analysis

• Converts programs to dependency graphs focusing on string
manipulation operations

• Performs forward symbolic reachability analyses to detect
vulnerabilities
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Front End

Consider the following segment.

l <?php

l 1: $www = $ GET[”www”];

l 2: $url = ”URL:”;

l 3: $www = preg replace(”[∧A-Z.-@]”,””,$www);

l 4: echo $url. $www;

l ?>
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Front End

A dependency graph specifies how the values of input nodes flow
to a sink node (i.e., a sensitive function)

NEXT: Compute all possible values of a sink node
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Detecting Vulnerabilities

• Associates each node with an automaton that accepts an over
approximation of its possible values

• Uses automata-based forward symbolic analysis to identify the
possible values of each node

• Uses post-image computations of string operations:
• postConcat(M1, M2) returns M , where M=M1.M2

• postReplace(M1, M2, M3) returns M , where
M=replace(M1, M2, M3)
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A Language-based Replacement

M=replace(M1, M2, M3)

• M1, M2, and M3 are Deterministic Finite Automata (DFAs).
• M1 accepts the set of original strings,
• M2 accepts the set of match strings, and
• M3 accepts the set of replacement strings

• Let s ∈ L(M1), x ∈ L(M2), and c ∈ L(M3):
• Replaces all parts of any s that match any x with any c .
• Outputs a DFA that accepts the result.
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M=replace(M1, M2, M3)

Some examples:
L(M1) L(M2) L(M3) L(M)

{baaabaa} {aa} {c} {bacbc, bcabc}
{baaabaa} a+ ε {bb}
{baaabaa} a+b {c} {baacaa, bacaa, bcaa}
{baaabaa} a+ {c} {bcccbcc, bcccbc,

bccbcc, bccbc, bcbcc, bcbc}
ba+b a+ {c} bc+b
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Forward Analysis

• Allows arbitrary values, i.e., Σ∗, from user inputs

• Propagates post-images to next nodes iteratively until a fixed
point is reached

31 / 69



Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Forward Analysis

• At the first iteration, for the replace node, we call
postReplace(Σ∗, Σ \ {A − Z . − @}, "")
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Forward Analysis

• At the second iteration, we call postConcat("URL:",
{A − Z . − @}∗)

33 / 69



Overview
Techniques

Experiments
Summary

Vulnerability Analysis
Vulnerability Signatures
Sanitization Generation
Relational String Analysis

Forward Analysis

• The third iteration is a simple assignment

• After the third iteration, we reach a fixed point

NEXT: Is it vulnerable?
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Detecting Vulnerabilities

• We know all possible values of the sink node (echo)

• Given an attack pattern, e.g., (Σ\ <)∗ < Σ∗, if the
intersection is not an empty set, the program is vulnerable.
Otherwise, it is not vulnerable with respect to the attack
pattern

NEXT: What are the malicious inputs?
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Generating Vulnerability Signatures

• A vulnerability signature is a characterization that includes all
malicious inputs that can be used to generate attack strings

• Uses backward analysis starting from the sink node
• Uses pre-image computations on string operations:

• preConcatPrefix(M, M2) returns M1 and
preConcatSuffix(M, M1) returns M2, where M = M1.M2.

• preReplace(M, M2, M3) returns M1, where
M=replace(M1, M2, M3).
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Backward Analysis

• Computes pre-images along with the path from the sink node
to the input node

• Uses forward analysis results while computing pre-images
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Backward Analysis

• The first iteration is a simple assignment.
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Backward Analysis

• At the second iteration, we call
preConcatSuffix(URL : {A − Z .−; = −@}∗ < {A − Z . − @}∗,

"URL:").
• M = M1.M2
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Backward Analysis

• We call preReplace({A − Z .−; = −@}∗ < {A − Z . − @}∗,

Σ \ {A − Z . − @}, "") at the third iteration.
• M = replace(M1, M2, M3)
• After the third iteration, we reach a fixed point.
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Vulnerability Signatures

• The vulnerability signature is the result of the input node,
which includes all possible malicious inputs

• An input that does not match this signature cannot exploit
the vulnerability

NEXT: How to detect and prevent malicious inputs
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Patch Vulnerable Applications

• Match-and-block: A patch that checks if the input string
matches the vulnerability signature and halts the execution if
it does

• Match-and-sanitize: A patch that checks if the input string
matches the vulnerability signature and modifies the input if it
does
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Sanitize

The idea is to modify the input by deleting certain characters (as
little as possible) so that it does not match the vulnerability
signature

• Given a DFA, an alphabet cut is a set of characters that after
”removing” the edges that are associated with the characters
in the set, the modified DFA does not accept any non-empty
string
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Find An Alphabet Cut

• Finding a minimum alphabet cut of a DFA is an NP-hard
problem (one can reduce the vertex cover problem to this
problem)

• We apply a min-cut algorithm to find a cut that separates the
initial state and the final states of the DFA

• We give higher weight to edges that are associated with
alpha-numeric characters

• The set of characters that are associated with the edges of the
min cut is an alphabet cut
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Patch Vulnerable Applications

A match-and-sanitize patch: If the input matches the vulnerability
signature, delete all characters in the alphabet cut

l <?php

l if (preg match(’/[∧ <]*<.*/’,$ GET[”www”]))

l $ GET[”www”] = preg replace(<,””,$ GET[”www”]);

l 1: $www = $ GET[”www”];

l 2: $url = ”URL:”;

l 3: $www = preg replace(”[∧A-Z.-@]”,””,$www);

l 4: echo $url. $www;

l ?>
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Experiments

We evaluated our approach on five vulnerabilities from three open
source web applications:

• (1) MyEasyMarket-4.1 (a shopping cart program),

• (2) BloggIT-1.0 (a blog engine), and

• (3) proManager-0.72 (a project management system).

We used the following XSS attack pattern Σ∗ < SCRIPTΣ∗.
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Dependency Graphs

• The dependency graphs of these benchmarks are built for
sensitive sinks

• Unrelated parts have been removed using slicing

#nodes #edges #concat #replace #constant #sinks #inputs

1 21 20 6 1 46 1 1
2 29 29 13 7 108 1 1
3 25 25 6 6 220 1 2
4 23 22 10 9 357 1 1
5 25 25 14 12 357 1 1

Table: Dependency Graphs. #constant: the sum of the length of the
constants
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Vulnerability Analysis Performance

Forward analysis seems quite efficient.

time(s) mem(kb) res. #states / #bdds #inputs

1 0.08 2599 vul 23/219 1
2 0.53 13633 vul 48/495 1
3 0.12 1955 vul 125/1200 2
4 0.12 4022 vul 133/1222 1
5 0.12 3387 vul 125/1200 1

Table: #states /#bdds of the final DFA (after the intersection with the
attack pattern)
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Signature Generation Performance

Backward analysis takes more time. Benchmark 2 involves a long
sequence of replace operations.

time(s) mem(kb) #states /#bdds

1 0.46 2963 9/199
2 41.03 1859767 811/8389
3 2.35 5673 20/302, 20/302
4 2.33 32035 91/1127
5 5.02 14958 20/302

Table: #states /#bdds of the vulnerability signature
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Cuts

Sig. 1 2 3 4 5

input i1 i1 i1, i2 i1 i1

#edges 1 8 4, 4 4 4
alp.-cut {<} {<,

′
, ”} Σ, Σ {<,

′
, ”} {<,

′
, ”}

Table: Cuts. #edges: the number of edges in the min-cut.

• For 3 (two user inputs), the patch will block everything and
delete everything
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Multiple Inputs?

Things can be more complicated while there are multiple inputs.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = $ GET[”other”];

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• An attack string can be contributed from one input, another
input, or their combination

• Using single-track DFAs, the analysis over approximates the
relations among input variables (e.g. the concatenation of two
inputs contains an attack)

• There may be no way to prevent it by restricting only one
input
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Relational String Analysis

Instead of multiple single-track DFAs, we use one multi-track DFA,
where each track represents the values of one string variable.

Using multi-track DFAs we are able to:

• Identify the relations among string variables

• Generate relational vulnerability signatures for multiple user
inputs of a vulnerable application

• Prove properties that depend on relations among string
variables, e.g., $file = $usr.txt (while the user is Fang, the
open file is Fang.txt)

• Summarize procedures

• Improve the precision of the path-sensitive analysis
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Multi-track Automata

• Let X (the first track), Y (the second track), be two string
variables

• λ is a padding symbol

• A multi-track automaton that encodes X = Y.txt
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Relational Vulnerability Signature

• Performs forward analysis using multi-track automata to
generate relational vulnerability signatures

• Each track represents one user input

• An auxiliary track represents the values of the current node

• Intersects the auxiliary track with the attack pattern upon
termination
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Relational Vulnerability Signature

Consider a simple example having multiple user inputs

l <?php

l 1: $www = $ GET[”www”];

l 2: $url =$ GET[”url”];

l 3: echo $url. $www;

l ?>

Let the attack pattern be (Σ\ <)∗ < Σ∗
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Relational Vulnerability Signature

• A multi-track automaton: ($url, $www , aux)

• Identifies the fact that the concatenation of two inputs
contains <
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Relational Vulnerability Signature

• Projects away the auxiliary track for the echo statement

• Finds a min-cut
• This min-cut identifies the alphabet cuts:

• {<} for the first track ($url)
• {<} for the second track ($www)
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Patch Vulnerable Applications with Multi Inputs

Patch: If the inputs match the signature, delete its alphabet cut

l <?php

l if (preg match(’/[∧ <]*<.*/’, $ GET[”url”].$ GET[”www”]))
{

l $ GET[”url”] = preg replace(”<”,””,$ GET[”url”]);

l $ GET[”www”] = preg replace(”<”,””,$ GET[”www”]);

l }

l 1: $www = $ GET[”www”];

l 2: $url = $ GET[”url”];

l 3: echo $url. $www;

l ?>
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Previous Benchmark: Single V.S. Relational Signatures

ben. type time(s) mem(kb) #states /#bdds

3 Single-track 2.35 5673 20/302, 20/302
Multi-track 0.66 6428 113/1682

3 Single-track Multi-track

#edges 4 3
alp.-cut Σ, Σ {<}, {<}
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Patching Web Applications

We applied our analysis to three open source PHP web
applications:

• Webchess 0.9.0 (a server for playing chess over the internet)

• EVE 1.0 (a tracker for players activity for an online game)

• Faqforge 1.3.2 (a document management tool)

Application # of PHP files total loc # of sinks
XSS SQLI

1 Webchess 0.9.0 23 3375 421 140
2 EVE 1.0 8 906 114 17
3 Faqforge 1.3.2 10 534 375 133
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Attack Patterns

• For XSS attacks: Σ∗ <scriptΣ∗ (indicating an embedded
script)

• For SQLI attacks: Σ∗ or 1 =1 Σ∗ (indicating a true condition
in a query)
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Vulnerability Analysis Evaluation

# of Vul. Time (seconds) Mem (Kb)
(single, 2, 3, 4) total fwd bwd relational average

XSS Vulnerability Analysis
1 (24, 3, 0, 0) 46.08 1.73 0.92 6.30 16850
2 (0, 0, 8, 0) 288.50 6.80 − 127.80 125382
3 (20, 0, 0, 0) 7.87 0.22 0.22 − 9948

SQLI Vulnerability Analysis
1 (43, 3, 1, 2) 110.7 4.87 12.04 38.03 136790
2 (8, 3, 0, 0) 23.9 1.5 8.47 5.2 17280
3 (0, 0, 0, 0) 6.7 − − − < 1

• (single, 2, 3, 4) indicates the number of detected
vulnerabilities that have single input, two inputs, three inputs
and four inputs
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Cut Evaluation

Find the alphabet cut of each vulnerability signature

XSS SQLI
time (sec) alp.-cut time alp.-cut

1 0.06 {<} 0.07 {=}
2 0.3 {<} 0.1 {=}
3 0.05 {<} none

• time is the average time per automaton to find its
alphabet-cut

• alp.-cut is the deleted character set for each input

63 / 69



Overview
Techniques

Experiments
Summary

Patch Evaluation

• Sanitize the three applications above by placing the
automatically generated sanitization statements at the
beginning of each vulnerable script.

• Run our forward vulnerability analysis which reported zero

vulnerabilities with regard to the attack pattern mentioned
above demonstrating

• Our analysis is sound and guarantees that after the
sanitization statements are inserted, sensitive functions will
not receive any input that matches the attack pattern
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Related Work on String Analysis

• String analysis based on context free grammars: [Christensen et

al., SAS’03] [Minamide, WWW’05]

• String analysis based on symbolic execution: [Bjorner et al.,

TACAS’09]

• Bounded string analysis : [Kiezun et al., ISSTA’09]

• Automata based string analysis: [Xiang et al., COMPSAC’07]

[Shannon et al., MUTATION’07] [Barlzarotti et al. S&P’08]

• Application of string analysis to web applications: [Wassermann

and Su, PLDI’07, ICSE’08] [Halfond and Orso, ASE’05, ICSE’06]
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Publications related to this work

String Analysis:
• Patching Vulnerabilities with Sanitization Synthesis.

Fang Yu, Muath Alkahalf, Tevfik Bultan. Accepted by [ICSE’11]

• Relational String Analysis Using Multi-track Automata.
Fang Yu, Tevfik Bultan, Oscar H. Ibarra. [CIAA’10]

• Stranger: An Automata-based String Analysis Tool for PHP.
Fang Yu, Muath Alkahalf, Tevfik Bultan. [TACAS’10]

• Generating Vulnerability Signatures for String Manipulating Programs Using
Automata-based Forward and Backward Symbolic Analyses.
Fang Yu, Muath Alkahalf, Tevfik Bultan. [ASE’09]

• Symbolic String Verification: Combining String Analysis and Size Analysis
Fang Yu, Tevfik Bultan, Oscar H. Ibarra. [TACAS’09]

• Symbolic String Verification: An Automata-based Approach

Fang Yu, Tevfik Bultan, Marco Cova, Oscar H. Ibarra. [SPIN’08]
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Summary of Contributions

• An automata-based approach for analyzing string
manipulating programs using symbolic string analysis. The
approach combines forward and backward symbolic
reachability analyses, and features language-based
replacement, fixpoint acceleration, and symbolic automata
encoding [SPIN’08, ASE’09]

• An automata-based string analysis tool: Stranger can
automatically detect, eliminate, and prove the absence of
XSS, SQLCI, and MFE vulnerabilities (with respect to attack
patterns) in PHP web applications [TACAS’10]
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Summary of Contributions

• A composite analysis technique that combines string analysis
with size analysis showing how the precision of both analyses
can be improved by using length automata [TACAS’09]

• A relational string verification technique using multi-track
automata: We catch relations among string variables using
multi-track automata, i.e., each track represents the values of
one variable. This approach enables verification of properties
that depend on relations among string variables [CIAA10]

• An automatic approach for vulnerability signature generation
and patch synthesis: We apply multi-track automata to
generate relational vulnerability signatures with which we are
able to synthesize effective patches for vulnerable Web
applications. [ICSE11]
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Thank you for your attention.

Questions?
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