
Characterize	 and	 Detect	
Malicious	 Behaviors	 in	 Apps	

Fang	 Yu	
Advance	 So;ware	 Security	 	

April	 2,	 2013	

Analyzing	 iOS	 executable	

References	 of	 system	 method	 calls	 	 (IDA	 Pro)	 	

Resolving	 the	 class	 name	 of	 system	 calls	 	 (IDA	 Pro)	 	

...
[classRef_GAD_GTMStringEncoding sel_rfc4648Base64WebsafeStringEncoding]: 1
[classRef_NSURL sel_setObject:forKey:]: 3
[classRef_NSString sel_stringWithUTF8String:]: 16
[classRef_GADBrowserController_0 sel_init]: 1
[classRef_NSCharacterSet sel_linebreaksCharacterSet]: 4
[classRef_GADMNSURLConnectionFactory sel_sharedFactory]: 3
[classRef_NSString sel_isKindOfClass:]: 2
[classRef_NSDate sel_dateWithYear:month:day:]: 13
[classRef_NSDictionary sel_serializeArray:]: 2
[classRef_GADLocation sel_class]: 1
[classRef_NSDateFormatter sel_alloc]: 4
[classRef_GADImpressionTicketGestureRecognizer_0 sel_touchesCancelled:withEvent:]: 1
[classRef_GADBrowserWebViewDelegate_0 sel_init]: 1
[classRef_NSNull sel_appendString:]: 2
[classRef_NSURLResponse sel_alloc]: 2
[classRef_NSDictionary sel_class]: 19
[classRef_NSDictionary sel_addObject:]: 2
...

An	 example	 of	 the	 analysis	 result	

Characterizing	 Malicious	 Behaviors	

highest privileges. So we jailbreak our iDevice. There is
much information about jailbreaking on the Internet and
many jailbreaking approaches are provided. We adopted
Absinthe [1] to detect and jailbreak the connected iDevice.
After the jailbreak process succeeded, on the iDevices desk-
top we can find the icon of Cydia [6], from which we
download MobileTerminal [20]. The application enables us
to connect to the iDevice as root administrator using ssh
command. All of the installed applications are placed under
/var/mobile/Applications/, where we can find and
extract the targeted binary files with the scp command.
Based on this method, we have developed an app that can
be installed in an jailbroken device to upload the installed
apps of the device.

b) Data Decryption: Every mobile application avail-
able on AppStore, a part of its binary code is encrypted,
which will not be decrypted until the application is about
to launch. To obtain the complete binary code, we should
decrypt these applications before further analysis. Firstly, we
get to know which part of the binary is encrypted by inspect-
ing the load command LC ENCRYPTION INFO with otool
utility. Secondly, otool also allows us to retrieve the program
entry point via viewing TEXT section. Instead of resolving
the hashing methodology ourselves, we simply execute the
application and dump the decrypted code to patch since all
the binary code ought to be decrypted while running. This
can be done by launching the application in the GDB (The
GNU Project Debugger) [22] and setting a breakpoint to the
program entry point; once the breakpoint is reached, which
indicating the decryption is performed, we can dump the
targeted part calculated by previous information and replace
the encrypted binary with it. Note that the otool utility is
provided by Xcode SDK so the information about encryption
and entry point can be gathered on OS X machines, while
the GDB debugger must be installed and executed on the
iOS devices.

VI. EVALUATION AND DISCUSSION

We evaluate AppBeach against hundreds of popular apps
downloaded from Apple app store. At current phrase, we
have examined and analyzed iOS applications along with 6
highly-hazard behaviors. For each behavior, we implement a
pair of normal and abnormal apps that are identical except
the instead sensitive function. The patterns that we learned
from the differences of their method call counts of these
pairs are listed in Table VII. Event indicates the access of the
events of your calendar. FTP indicates building connection
with the external machine through ftp. Location means access
your current location. Screenshot takes the screen shot of
your app. URL(ASIHTTP) means a request connection with
URL(ASIHTTP). Both build Internet connection.

We have analyzed hundreds of online apps. Some of the
results are listed in Table VIII and Table IX. The listed
percentage indicates the percentage of covered method calls
in the malicious pattern. For example, 100% means that the
app includes all the method calls of the pattern and is able to

TABLE VII: Patterns of sensitive behaviors
Behavior Class Method Count

Event EKEventStore alloc 1
init 1

eventsMatchingPredicate 1
eventstore 3

predicateForEventsWithStartDateendDatecalendars 1
defaultCalendarForNewEvents 1

setEventstore 1
FTP WRRequestUpload alloc 1

setUsername 1
start 1

setHostname 1
setSentData 1

init 1
setDelegate 1
setPassword 1

release 1
setPath 1

NSData dataWithContentsOfFile 1
NSString stringWithFormat 1

Location CLLocationManager init 1
alloc 1

setManager 1
Screenshot UIScreen window 1

renderInContext 1
layer 1
view 1

URL NSURLRequest requestWithURL 1
NSURL URLWithString 1

NSURLConnection connectionWithRequestdelegate 1
ASIHTTP NSURL URLWithString 1

ASIHTTPRequest requestWithURL 1
startAsynchronous 1

setDelegate 1
NSInputStream close 1

perform the behavior. Apps that have less than 100% percent-
age may perform similar behaviors using different method
calls (part of them are the same) under the same class.
According to the inclusion of sensitive behavior patterns of
mobile applications listed in Table VII, we can see that most
of these applications make the best usage of functionalities
that mobile devices offer, such as GPS location and wireless
Internet, to provide users with better service quality and
generate more user experiences. The major part of these
applications collects information as reasonable as necessary
and is respectful toward user privacy. However, few of them
are still ambiguous. In the case that the reasonability of
collecting such private data is unclear and should be clarified,
we leave the judgments to users so that the users may make
the decisions of whether to use the applications.

In sum, the proposed approach enables the analysis reports
to portray how the analyzed mobile applications behaved
whereas the reasons behind the actions are kept concealed.
For instance, an application communicating with the server
might be normal situation if the application was expected
to offer instant and timely information. On the other hand,
it would be weird and worth to be further investigation
when the application was merely a stand-alone mobile game.
Whats more, since the determination of malignant functions
is based on the inclusion of the instance in the malicious
pattern library, the patterns compared with shall be defined
carefully and meticulous. In this case, each pattern would
consist of more than one action. For example, it should be
considered highly doubtful if the analysis reports depict that
the application accessing the calendar event and commu-
nicating with the server simultaneously. In short, not only
should we keep an eye on the individual behavior but also
the permutation combination of those actions.

As the final remark, the proposed approach counts on the
number of systems calls but overlooks their execution se-

Malicious	 	
PaMerns	

•  PaMern	

	
•  Class	 &	 method	 count	 of	 Apps

Class	 name	 &	 method	 name	 of	 sensiOve	 funcOon	 Times	 of	 such	
funcOon	 been	 called	

Go	 through	 the	 file	
looking	 for	 the	 same	
name	 with	 larger	
count	

IdenOfying	 Malicious	 Behaviors	

