Fang Yu

Software Security Lab.
Dept. Management Information Systems,
National Chengchi University
Midterm on Dec. 6
(9:10-12:00am, 大勇棟106)

- Lec 1-11, TextBook Ch1-8, 10-12

- How to prepare your midterm:
 - Understand “ALL” the materials mentioned in the slides
 - Discuss with me, your TAs, or classmates
 - Read the text book to help you understand the materials

- You are allowed to bring an A4 size note
 - Prepare your own note; write whatever you think that may help you get better scores in the midterm
Fundamental Algorithms

Divide and Conquer: Merge-sort, Quick-sort, and Recurrence Analysis
Divide-and-Conquer

A general algorithm design paradigm

- **Divide**: divide the input data S in two or more disjoint subsets S_1, S_2, \ldots

- Recursion: solve the sub problems recursively

- **Conquer**: combine the solutions for S_1, S_2, \ldots, into a solution for S

- The base case for the recursion are subproblems of a constant size

- Analysis can be done using recurrence equations
Merge-sort

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm

- Like heap-sort
 - It uses a comparator
 - It has $O(n \log n)$ running time

- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)
Merge-sort

Merge-sort on an input sequence \(S \) with \(n \) elements consists of three steps:

- **Divide:** partition \(S \) into two sequences \(S_1 \) and \(S_2 \) of about \(n/2 \) elements each.
- **Recur:** recursively sort \(S_1 \) and \(S_2 \).
- **Conquer:** merge \(S_1 \) and \(S_2 \) into a unique sorted sequence.

Algorithm `mergeSort(S, C)`

Input sequence \(S \) with \(n \) elements, comparator \(C \)

Output sequence \(S \) sorted according to \(C \)

if \(S.size() > 1 \)

\((S_1, S_2) \leftarrow partition(S, n/2)\)

`mergeSort(S_1, C)`

`mergeSort(S_2, C)`

`S \leftarrow merge(S_1, S_2)`
Merging Two Sorted Sequences

The conquer step of merge-sort consists of merging two sorted sequences \(A\) and \(B\) into a sorted sequence \(S\) containing the union of the elements of \(A\) and \(B\).

Merging two sorted sequences, each with \(n/2\) elements and implemented by means of a doubly linked list, takes \(O(n)\) time.

Algorithm \(merge(A, B)\)

Input sequences \(A\) and \(B\) with \(n/2\) elements each

Output sorted sequence of \(A \cup B\)

\(S \leftarrow\) empty sequence

\(\text{while } \neg A.isEmpty() \land \neg B.isEmpty()\)

if \(A.first().element() < B.first().element()\)

\(S.addLast(A.remove(A.first()))\)

else

\(S.addLast(B.remove(B.first()))\)

\(\text{while } \neg A.isEmpty() \quad S.addLast(A.remove(A.first()))\)

\(\text{while } \neg B.isEmpty() \quad S.addLast(B.remove(B.first()))\)

return \(S\)
An execution of merge-sort is depicted by a binary tree:
- Each node represents a recursive call of merge-sort and stores:
 - Unsorted sequence before the execution and its partition.
 - Sorted sequence at the end of the execution.
- The root is the initial call.
- The leaves are calls on subsequences of size 0 or 1.
An execution example
Partition

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 | 9 4 → 2 4 7 9

7 2 → 2 7
9 4 → 4 9
3 8 → 3 8
6 1 → 1 6
Partition

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 9 4 → 2 4 7 9

7 2 | 9 4 → 2 7

7 | 2 → 2 7

9 4 → 4 9

3 8 6 1 → 1 3 8 6

3 8 → 3 8

6 1 → 1 6

7 3 8 6

2 2 8 1

2 2 8 1

4 4 8 1

4 4 8 1

6 6 1 1

6 6 1 1

1 1 1 1
Recur: base case
Recur: Base case
Merge

\[
\begin{align*}
7 & 2 \ 9 \ 4 & | & 3 \ 8 \ 6 \ 1 & \rightarrow & 1 \ 2 \ 3 \ 4 \ 6 \ 7 \ 8 \ 9 \\
7 \ 2 \ 9 \ 4 & \rightarrow & 2 \ 4 \ 7 \ 9 \\
\end{align*}
\]
Recursive call, ..., merge

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

9 4 → 4 9

3 8 6 1 → 1 3 8 6

3 8 → 3 8

6 1 → 1 6

3 3

8 8

6 6

1 1
Merge

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 | 9 4 → 2 4 7 9

7 2 | 9 4 → 2 4 7 9

7 → 7 2 → 2

9 → 9 4 → 4

3 8 | 3 8 6 1 → 1 3 8 6

6 1 → 1 6

3 → 3 8 → 8

6 → 6 1 → 1
Recursive call, ..., merge, merge

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 | 9 4 → 2 4 7 9

3 8 6 1 → 1 3 6 8

7 | 2 → 2 7

9 4 → 4 9

3 8 → 3 8

6 1 → 1 6

7 → 7

2 → 2

9 → 9

4 → 4

3 → 3

8 → 8

6 → 6

1 → 1
Merge

\[
\begin{array}{cccc|cccc}
7 & 2 & 9 & 4 & 3 & 8 & 6 & 1 \\
\end{array}
\rightarrow
\begin{array}{cccc}
1 & 2 & 3 & 4 & 6 & 7 & 8 & 9 \\
\end{array}
\]

\[
\begin{array}{c|c}
7 & 2 \\
\end{array}
\rightarrow
\begin{array}{c}
2 \\
\end{array}
\]

\[
\begin{array}{l|c}
9 & 4 \\
\end{array}
\rightarrow
\begin{array}{c}
2 & 4 & 7 & 9 \\
\end{array}
\]

\[
\begin{array}{l|c}
3 & 8 & 6 & 1 \\
\end{array}
\rightarrow
\begin{array}{c}
1 & 3 & 6 & 8 \\
\end{array}
\]

\[
\begin{array}{c}
7 \\
\end{array}
\rightarrow
\begin{array}{c}
7 \\
\end{array}
\]

\[
\begin{array}{c}
2 \\
\end{array}
\rightarrow
\begin{array}{c}
2 \\
\end{array}
\]

\[
\begin{array}{c}
9 \\
\end{array}
\rightarrow
\begin{array}{c}
9 \\
\end{array}
\]

\[
\begin{array}{c}
4 \\
\end{array}
\rightarrow
\begin{array}{c}
4 \\
\end{array}
\]

\[
\begin{array}{c}
3 \\
\end{array}
\rightarrow
\begin{array}{c}
3 \\
\end{array}
\]

\[
\begin{array}{c}
8 \\
\end{array}
\rightarrow
\begin{array}{c}
8 \\
\end{array}
\]

\[
\begin{array}{c}
6 \\
\end{array}
\rightarrow
\begin{array}{c}
6 \\
\end{array}
\]

\[
\begin{array}{c}
1 \\
\end{array}
\rightarrow
\begin{array}{c}
1 \\
\end{array}
\]
Analysis of Merge-sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,

- The overall amount or work done at the nodes of depth i is $O(n)$
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls

- Thus, the total running time of merge-sort is $O(n \log n)$
Quick-sort

A randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide**: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- **Recur**: sort L and G
- **Conquer**: join L, E and G
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x

- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time

- Thus, the partition step of quick-sort takes $O(n)$ time

Algorithm \textit{partition}(S, p)

\begin{itemize}
 \item \textbf{Input} sequence S, position p of pivot
 \item \textbf{Output} subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.
 \item L, E, $G \leftarrow$ empty sequences
 \item $x \leftarrow S.remove(p)$
 \item \textbf{while} $\neg S.isEmpty()$
 \begin{itemize}
 \item $y \leftarrow S.remove(S.first())$
 \begin{itemize}
 \item \textbf{if} $y < x$
 \begin{itemize}
 \item \text{L.addLast}(y)
 \end{itemize}
 \item \textbf{else if} $y = x$
 \begin{itemize}
 \item \text{E.addLast}(y)
 \end{itemize}
 \item \textbf{else} \{$y > x$\}
 \begin{itemize}
 \item \text{G.addLast}(y)
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}
\item \textbf{return} L, E, G
Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1
Execution Example

- Pivot selection

```
7  2  9  4  3  7  6  1  →  1  2  3  4  6  7  8  9
```

```
7  2  9  4  →  2  4  7  9
3  8  6  1  →  1  3  8  6
```

```
2  2
9  4  →  4  9
3  3
8  8
```
- Partition, recursive call, pivot selection

Quick-Sort
- Partition, recursive call, base case

```
7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9
```

```
2 4 3 1 → 2 4 7
```

```
3 8 6 1 → 1 3 8 6
```

```
1 → 1
```

```
9 4 → 4 9
```

```
9 9 4 4
```

```
3 3
```

```
8 8
```
- Recursive call, …, base case, join
Recursive call, pivot selection

Quick-Sort

27
- Partition, ..., recursive call, base case

```
7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9
```

```
2 4 3 1 → 1 2 3 4
```

```
7 9 7 1 → 1 3 8 6
```

```
1 → 1
```

```
4 3 → 3 4
```

```
8 8
```

```
9 → 9
```

```
9 9
```

```
4 → 4
```

Quick-Sort
Join, join

Quick-Sort
In-place Quick-sort

- Quick-sort can be implemented to run in-place.
- In the partition step, we use replace operations to rearrange the elements.
- The recursive calls consider:
 - elements with rank less than h
 - elements with rank greater than k

Algorithm $inPlaceQuickSort(S, l, r)$

Input sequence S, ranks l and r

Output sequence S with the elements of rank between l and r rearranged in increasing order

If $l \geq r$

return

$i \leftarrow$ a random integer between l and r

$x \leftarrow S.elemAtRank(i)$

$(h, k) \leftarrow inPlacePartition(x)$

$inPlaceQuickSort(S, l, h - 1)$

$inPlaceQuickSort(S, k + 1, r)$
In-Place Quick-Sort

- Perform the partition using two indices to split S into L, E, G

- Algorithm Quicksort(leftBound, rightBound, S)
 - If(leftBound \geq rightBound) return;
 - Set rightBound as the pivot ($x = S[rightBound]$)
 - Set $j = leftBound; k = rightBound - 1$;
 - When $j < k$:
 - Scan j to the right ($j++$) until $j \geq k$ or the element $S[j] > x$.
 - Scan k to the left ($k--$) until $j \geq k$ or the element $S[k] \leq x$.
 - Swap elements if $j \geq k$ or the element $S[k] \leq x$.
 - Swap pivot with j
 - Quicksort(leftBound, $j-1$, S); Quicksort($j+1$, rightBound, S)
In-Place Quick-Sort

\[\begin{array}{c}
\text{j} \\
3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 9 6
\end{array}\]

\[\begin{array}{c}
k
\end{array}\]

(pivot = 6)
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>- in-place
- slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>- in-place
- slow (good for small inputs)</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$ expected</td>
<td>- in-place, randomized
- fastest (good for large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>- in-place
- fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>- sequential data access
- fast (good for huge inputs)</td>
</tr>
</tbody>
</table>
Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with \(n/2 \) elements and implemented by means of a doubly linked list, takes at most \(bn \) steps, for some constant \(b \).
- Likewise, the basis case \((n < 2) \) will take at most \(b \) most steps.
- Therefore, if we let \(T(n) \) denote the running time of merge-sort:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}
\]
Recurrence Equation Analysis

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
- That is, a solution that has $T(n)$ only on the left-hand side.
- We can achieve this by iterative substitution:
- In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern
Iterative Substitution

\[T(n) = 2T(n/2) + bn \]

\[= 2(2T(n/2^2)) + b(n/2)) + bn \]

\[= 2^2 T(n/2^2) + 2bn \]

\[= 2^3 T(n/2^3) + 3bn \]

\[= 2^4 T(n/2^4) + 4bn \]

\[= ... \]

\[= 2^i T(n/2^i) + ibn \]

- Note that base, \(T(n) = b \), case occurs when \(2^i = n \).

- That is, \(i = \log n \). So,

\[T(n) = bn + bn \log n \]

- Thus, \(T(n) \) is \(O(n \log n) \).
The Recursion Tree

- Draw the recursion tree for the recurrence relation and look for a pattern:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases} \]

<table>
<thead>
<tr>
<th>depth</th>
<th>T’s</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(n/2)</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i)</td>
<td>(n/2^i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total time = \(bn + bn \log n\)
(last level plus all previous levels)
Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

- For example:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases} \]

- Guess: \(T(n) < cn \log n \)
Guess-and-Test Method

\[T(n) = 2T(n/2) + bn \log n \]
\[< 2(c(n/2)\log(n/2)) + bn \log n \]
\[= cn(\log n - \log 2) + bn \log n \]
\[= cn \log n - cn + bn \log n \]
\[< cn \log n (?) \]

- Wrong!
- We cannot make this last line be less than \(cn \log n \)
Guess-and-Test Method, (cont.)

- Recall the recurrence equation:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess #2: \(T(n) < cn \log^2 n \).

\[
T(n) = 2T\left(\frac{n}{2}\right) + bn \log n \\
= 2\left(c \left(\frac{n}{2}\right) \log^2 \left(\frac{n}{2}\right)\right) + bn \log n \\
= cn \left(\log n - \log 2\right)^2 + bn \log n \\
= cn \log^2 n - 2cn \log n + cn + bn \log n \\
\leq cn \log^2 n \quad (\text{if } c > b)
\]

So, \(T(n) \) is \(O(n \log^2 n) \).

In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Master Method

- Many divide-and-conquer recurrence equations have the form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n / b) + f(n) & \text{if } n \geq d
\end{cases}
\]
Master Method

- The Master Theorem:

1. if $f(n) = O(n^{\log_b{a-\epsilon}})$, then $T(n) = \Theta(n^{\log_b{a}})$
2. if $f(n) = \Theta(n^{\log_b{a}} \log^k{n})$, then $T(n) = \Theta(n^{\log_b{a}} \log^{k+1}{n})$
3. if $f(n) = \Omega(n^{\log_b{a+\epsilon}})$, then $T(n) = \Theta(f(n))$, provided $af(n/b) \leq \delta f(n)$ for some $\delta < 1$.
Master Method, Example 1

\[T(n) = 4T(n/2) + n \]

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Solution:
 - \(a = 4, b = 2, f(n) \) is \(n \)
 - \(\log_b a = 2 \), so case 1 says \(T(n) \) is \(O(n^2) \)
Master Method, Example 2

\[T(n) = 2T\left(\frac{n}{2}\right) + n \log n \]

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT\left(\frac{n}{b}\right) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af\left(\frac{n}{b}\right) \leq \delta f(n) \) for some \(\delta < 1 \).

- Solution:
 - \(a = 2 \), \(b = 2 \)
 - Solution: \(\log_b a = 1 \), so case 2 says \(T(n) \) is \(O(n \log^2 n) \).
Master Method, Example 3

\[T(n) = T(n/3) + n \log n \]

- The form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

- The Master Theorem:

 1. If \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
 2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
 3. If \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Solution:

 - \(a = 1, \ b = 3 \)
 - \(\log_b a = 0 \), so case 3 says \(T(n) = O(n \log n) \).
Master Method, Example 4

\[T(n) = 8T(n/2) + n^2 \]

- The form:
 \[
 T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases}
 \]

- The Master Theorem:
 1. if \(f(n) = O(n^{\log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
 2. if \(f(n) = \Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) = \Omega(n^{\log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Solution:
 - \(a = 8, b = 2 \)
 - \(\log_b a = 3 \), so case 1 says \(T(n) = O(n^3) \).
HW8 (Due on Nov. 22)

Quick sort keywords!

- Implement a quick sort algorithm for keywords
- Add each keyword into an array/linked list inorder
- Sort the keywords upon request
- Output all the keywords
Given a sequence of operations in a txt file, parse the txt file and execute each operation accordingly

<table>
<thead>
<tr>
<th>operations</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(Keyword k)</td>
<td>Insert a keyword k to an array</td>
</tr>
<tr>
<td>sort()</td>
<td>Sort the keywords using quick sort</td>
</tr>
<tr>
<td>output()</td>
<td>Output all keywords in the array</td>
</tr>
</tbody>
</table>
An input file

Similar to HW7,

1. You need to read the sequence of operations from a txt file
2. The format is firm
3. Raise an exception if the input does not match the format

add Fang 3
add Yu 5
add NCCU 2
add UCSB 1
output
add MIS 4
Sort
output

[Fang, 3][Yu, 5][NCCU, 2][UCSB, 1]

[UCSB, 1][NCCU, 2][Fang, 3][MIS, 4] [Yu, 5]