Midterm on Dec. 7
(9:10-12:00am, 大勇樓106)

- Lec 1-9, TextBook Ch1-8, 11,12

- How to prepare your midterm:
 - Understand “ALL” the materials mentioned in the slides
 - Discuss with me, your TAs, or classmates
 - Read the text book to help you understand the materials

- You are allowed to bring an A4 size note
 - Prepare your own note; write whatever you think that may help you get better scores in the midterm
Fundamental Algorithms

Divide and Conquer: Merge-sort, Quick-sort, and Recurrence Analysis
Divide-and-Conquer

A general algorithm design paradigm

- **Divide**: divide the input data S in two or more disjoint subsets S_1, S_2, \ldots

- Recursion: solve the sub problems recursively

- **Conquer**: combine the solutions for S_1, S_2, \ldots, into a solution for S

- The base case for the recursion are subproblems of a constant size

- Analysis can be done using recurrence equations
Merge-sort

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm.

- Like heap-sort:
 - It uses a comparator.
 - It has $O(n \log n)$ running time.

- Unlike heap-sort:
 - It does not use an auxiliary priority queue.
 - It accesses data in a sequential manner (suitable to sort data on a disk).
Merge-sort

Merge-sort on an input sequence S with n elements consists of three steps:

- Divide: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
- Recur: recursively sort S_1 and S_2
- Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm $mergeSort(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if $S.size() > 1$

$(S_1, S_2) \leftarrow partition(S, n/2)$

$mergeSort(S_1, C)$

$mergeSort(S_2, C)$

$S \leftarrow merge(S_1, S_2)$
Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences \(A \) and \(B \) into a sorted sequence \(S \) containing the union of the elements of \(A \) and \(B \).

- Merging two sorted sequences, each with \(n/2 \) elements and implemented by means of a doubly linked list, takes \(O(n) \) time.

Algorithm \(merge(A, B) \)

Input sequences \(A \) and \(B \) with \(n/2 \) elements each

Output sorted sequence of \(A \cup B \)

\[
S \leftarrow \text{empty sequence}
\]

while \(\neg A.isEmpty() \land \neg B.isEmpty() \)

 if \(A.first().element() < B.first().element() \)

 \(S.addLast(A.remove(A.first())) \)

 else

 \(S.addLast(B.remove(B.first())) \)

while \(\neg A.isEmpty() \)

 \(S.addLast(A.remove(A.first())) \)

while \(\neg B.isEmpty() \)

 \(S.addLast(B.remove(B.first())) \)

return \(S \)
An execution of merge-sort is depicted by a binary tree
- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1
An execution example
Partition

7 2 9 4 | 3 8 6 1
1 2 3 4 6 7 8 9

7 2 | 9 4
2 4 7 9

7 2 2 7
9 4 4 9
3 8 3 8
6 1 1 6

7 7 2 2
9 9 4 4
3 3 8 8
6 6 1 1
Partition

```
    7 2 9 4 | 3 8 6 1
    ---- | ----
        7 | 2
```

```
   7 2 9 4 2 4 7 9
   ---- | ----
       7 | 2
```

```
  3 8 6 1 1 3 8 6
  ---- | ----
     3 8 | 3 8
```

```
7 2 7 9 7 2 2 2
    ---- | ----
       9 9 | 4 4
```

```
3 3 8 8 3 3 8 8
    ---- | ----
       6 6 | 1 1
```
Recur: base case
Recur: Base case
Recursive call,..., merge

7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 → 7
2 → 2
9 → 9
4 → 4

9 4 → 4 9

3 8
3 8
6 1
6 1

2 → 2
7 → 7
9 → 9
4 → 4

3 3
8 8
6 6
1 1
Merge
Recursive call, … , merge, merge

7 2 9 4 | 3 8 6 1

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

9 4 → 4 9

9 → 9

4 → 4

7 2 9 4 | 3 8 6 1

3 8 6 1 → 1 3 6 8

3 8 → 3 8

3 → 3

8 → 8

6 1 → 1 6

6 → 6

1 → 1
Merge

7 2 9 4 | 3 8 6 1 → 1 2 3 4 6 7 8 9

7 2 | 9 4 → 2 4 7 9

3 8 6 1 → 1 3 6 8

7 | 2 → 2 7

9 4 → 4 9

3 8 → 3 8

6 1 → 1 6

7 → 7

2 → 2

9 → 9

4 → 4

3 → 3

8 → 8

6 → 6

1 → 1
Analysis of Merge-sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,

- The overall amount or work done at the nodes of depth i is $O(n)$
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls

- Thus, the total running time of merge-sort is $O(n \log n)$
Quick-sort

A randomized sorting algorithm based on the divide-and-conquer paradigm:

- Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- Recur: sort L and G
- Conquer: join L, E and G
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element \(y \) from \(S \) and
 - We insert \(y \) into \(L, E \) or \(G \), depending on the result of the comparison with the pivot \(x \)
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time
- Thus, the partition step of quick-sort takes \(O(n) \) time

Algorithm \textit{partition}(\(S, p \))

\begin{itemize}
 \item [Input] sequence \(S \), position \(p \) of pivot
 \item [Output] subsequences \(L, E, G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.
 \item \(L, E, G \leftarrow \) empty sequences
 \item \(x \leftarrow S.remove(p) \)
 \item while \(\neg S.isEmpty() \)
 \item \(y \leftarrow S.remove(S.first()) \)
 \item if \(y < x \)
 \item \(L.addLast(y) \)
 \item else if \(y = x \)
 \item \(E.addLast(y) \)
 \item else \{ \(y > x \) \}
 \item \(G.addLast(y) \)
 \item return \(L, E, G \)
\end{itemize}
An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
Execution Example

- Pivot selection
Partition, recursive call, pivot selection

Quick-Sort
Quick-Sort

- Partition, recursive call, base case
- Recursive call, …, base case, join

Quick-Sort

```
7 2 9 4 3 7 6 1
```

```
2 4 3 1 → 1 2 3 4
```

```
1 1
```

```
4 3 → 3 4
```

```
9 9 4 → 4
```

```
3 8 6 1
```

```
3 3
```

```
8 8
```

```
1 2 3 4 6 7 8 9
```

```
1 2 3 4
```

```
3 4
```

```
9
```

```
4
```

```
8
```
Recursive call, pivot selection

Quick-Sort

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

9 9

4 → 4

7 9 7 → 1 1 3 8 6

8 8

9 9

27
Partition, ..., recursive call, base case

Quick-Sort
Join, join

Quick-Sort
In-place Quick-sort

- Quick-sort can be implemented to run in-place.
- In the partition step, we use replace operations to rearrange the elements.
- The recursive calls consider:
 - elements with rank less than h
 - elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and r

Output sequence S with the elements of rank between l and r rearranged in increasing order

```
if $l \geq r$
    return

i ← a random integer between $l$ and $r$

x ← $S$.elemAtRank($i$)

(h, k) ← inPlacePartition($x$)

inPlaceQuickSort($S$, $l$, $h - 1$)

inPlaceQuickSort($S$, $k + 1$, $r$)
```
In-Place Quick-Sort

- Perform the partition using two indices to split S into L, E, G

Algorithm Quicksort(leftBound, rightBound, S)
- If(leftBound>=rightBound) return;
- Set rightBound as the pivot (x = S[rightBound])
- Set j = leftBound; k = rightBound - 1;
- When j<k:
 - Scan j to the right (j++) until j >= k or the element S[j] > x.
 - Scan k to the left (k--) until j>=k or the element S[k]<=x.
 - Swap elements if j < k
- Swap pivot with j
- Quicksort(leftBound, j-1, S); Quicksort(j+1, rightBound, S)
In-Place Quick-Sort

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 9

(pivot = 6)
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
</table>
| selection-sort | $O(n^2)$ | • in-place
 | | • slow (good for small inputs) |
| insertion-sort | $O(n^2)$ | • in-place
 | | • slow (good for small inputs) |
| quick-sort | $O(n \log n)$ expected | • in-place, randomized
 | | • fastest (good for large inputs) |
| heap-sort | $O(n \log n)$ | • in-place
 | | • fast (good for large inputs) |
| merge-sort | $O(n \log n)$ | • sequential data access
 | | • fast (good for huge inputs) |
The conquer step of merge-sort consists of merging two sorted sequences, each with \(n/2 \) elements and implemented by means of a doubly linked list, takes at most \(bn \) steps, for some constant \(b \).

Likewise, the basis case \((n < 2) \) will take at most \(b \) most steps.

Therefore, if we let \(T(n) \) denote the running time of merge-sort:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}
\]
Recurrence Equation Analysis

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.

- That is, a solution that has $T(n)$ only on the left-hand side.

- We can achieve this by iterative substitution:

- In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern.
Iterative Substitution

\[T(n) = 2T(n/2) + bn \]

\[= 2(2T(n/2^2)) + b(n/2)) + bn \]

\[= 2^2 T(n/2^2) + 2bn \]

\[= 2^3 T(n/2^3) + 3bn \]

\[= 2^4 T(n/2^4) + 4bn \]

\[= \ldots \]

\[= 2^i T(n/2^i) + ibn \]

- Note that base, T(n)=b, case occurs when \(2^i=n\).

- That is, \(i = \log n\). So,

\[T(n) = bn + bn \log n \]

- Thus, T(n) is \(O(n \log n)\).
The Recursion Tree

- Draw the recursion tree for the recurrence relation and look for a pattern:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}
\]

<table>
<thead>
<tr>
<th>depth</th>
<th>T’s</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>n/2</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>n/2^i</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total time = \(bn + bn \log n\)
(last level plus all previous levels)
Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

- For example:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess: \(T(n) < cn \log n \)
Guess-and-Test Method

\[T(n) = 2T(n/2) + bn \log n \]
\[< 2(c(n/2) \log(n/2)) + bn \log n \]
\[= cn(\log n - \log 2) + bn \log n \]
\[= cn \log n - cn + bn \log n \]
\[< cn \log n(?) \]

- Wrong!
- We cannot make this last line be less than \(cn \log n \)
Guess-and-Test Method, (cont.)

- Recall the recurrence equation:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess #2: \(T(n) < cn \log^2 n \).

\[
T(n) = 2T(n/2) + bn \log n
\]

\[
= 2(c(n/2)\log^2(n/2)) + bn \log n
\]

\[
= cn(\log n - \log 2)^2 + bn \log n
\]

\[
= cn \log^2 n - 2cn \log n + cn + bn \log n
\]

\[
\leq cn \log^2 n \quad \text{(if } c > b)\]

So, \(T(n) \) is \(O(n \log^2 n) \).

In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Master Method

- Many divide-and-conquer recurrence equations have the form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]
Master Method

- The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).
Master Method, Example 1

\[T(n) = 4T(n/2) + n \]

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Solution:
 - \(a = 4 \), \(b = 2 \), \(f(n) \) is \(n \)
 - \(\log_b a = 2 \), so case 1 says \(T(n) \) is \(\Theta(n^2) \)
Master Method, Example 2

\[T(n) = 2T\left(\frac{n}{2}\right) + n \log n \]

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT\left(\frac{n}{b}\right) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Solution:
 - \(a = 2, b =2 \)
 - Solution: \(\log_b a = 1 \), so case 2 says \(T(n) \) is \(O(n \log^2 n) \).
Master Method, Example 3

\[T(n) = T(n/3) + n \log n \]

- **The form:**
 \[
 T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases}
 \]

- **The Master Theorem:**
 1. if \(f(n) \) is \(O(n^\log_b a^{-\varepsilon}) \), then \(T(n) \) is \(\Theta(n^\log_b a) \)
 2. if \(f(n) \) is \(\Theta(n^\log_b a \log^k n) \), then \(T(n) \) is \(\Theta(n^\log_b a \log^{k+1} n) \)
 3. if \(f(n) \) is \(\Omega(n^\log_b a + \varepsilon) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- **Solution:**
 - \(a = 1, b = 3 \)
 - \(\log_b a = 0 \), so case 3 says \(T(n) \) is \(O(n \log n) \).
Master Method, Example 4

\[T(n) = 8T(n/2) + n^2 \]

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Solution:
 - \(a = 8, b = 2 \)
 - \(\log_b a = 3 \), so case 1 says \(T(n) \) is \(O(n^3) \).
HW8 (Due on Dec. 14)

Quick sort keywords!

- Implement a quick sort algorithm for keywords
- Add each keyword into an array/linked list inorder
- Sort the keywords upon request
- Output all the keywords
Given a sequence of operations in a txt file, parse the txt file and execute each operation accordingly.

<table>
<thead>
<tr>
<th>operations</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(Keyword k)</td>
<td>Insert a keyword k to an array</td>
</tr>
<tr>
<td>sort()</td>
<td>Sort the keywords using quick sort</td>
</tr>
<tr>
<td>output()</td>
<td>Output all keywords in the array</td>
</tr>
</tbody>
</table>
An input file

Similar to HW7,

1. You need to read the sequence of operations from a txt file
2. The format is firm
3. Raise an exception if the input does not match the format

add Fang 3
add Yu 5
add NCCU 2
add UCSB 1
output
add MIS 4
Sort
output

[Fang, 3][Yu, 5][NCCU, 2][UCSB, 1]

[UCSB, 1][NCCU, 2][Fang, 3][MIS, 4] [Yu, 5]
Midterm on Dec. 7
(9:10-12:00am, 大勇樓106)

- Lec 1-9, TextBook Ch1-8, 11,12

- How to prepare your midterm:
 - Understand “ALL” the materials mentioned in the slides
 - Discuss with me, your TAs, or classmates
 - Read the text book to help you understand the materials

- You are allowed to bring an A4 size note
 - Prepare your own note; write whatever you think that may help you get better scores in the midterm