Recap

- What should you have learned?
 - Basic java programming skills
 - Object-oriented programming
 - Classes and objects
 - Inheritance, exception handling, generics
 - Java class library
 - Basic data structures and their applications
 - Linear data structure: linked list, array, stack, queue
 - Hierarchical data structures: tree and heap
Midterm on Dec. 7

- Lec 1-9, TextBook Ch1-8, 11,12
- 大勇樓 106, 9:00-12:00am, Dec 7.

- How to prepare your midterm:
 - Understand “ALL” the materials mentioned in the slides
 - Discuss with me, your TAs, or classmates
 - Read the text book to help you understand the materials

- You are allowed to bring an A4 size note
 - Prepare your own note; write whatever you think that may help you get better scores in the midterm
Wrap up

- What are you going to learn in the rest of this semester?
 - Algorithms
 - Analysis of algorithms
 - Brute force, divide and conquer, dynamic programming
 - Sorting
 - Advanced data structures
 - Hash table
 - Map and dictionary
 - Graph
Analysis of Algorithms

How good is your program?
Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics
Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like `System.currentTimeMillis()` to get an accurate measure of the actual running time
- Plot the results
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.

- Results may not be indicative of the running time on other inputs not included in the experiment.

- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, \(n \).
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Pseudo code

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find the max element of an array

Algorithm arrayMax(A, n)

Input array A of n integers
Output the maximum element of A

\[\text{currentMax} \leftarrow A[0] \]

\[\text{for } i \leftarrow 1 \text{ to } n - 1 \text{ do} \]

\[\text{if } A[i] > \text{currentMax} \text{ then} \]

\[\text{currentMax} \leftarrow A[i] \]

\[\text{return currentMax} \]
Pseudo code

Example: find the max element of an array

Algorithm `arrayMax(A, n)`
Input array `A` of `n` integers
Output the maximum element of `A`

`currentMax ← A[0]`
for `i ← 1` to `n - 1` do
 if `A[i] > currentMax` then
 `currentMax ← A[i]`
return `currentMax`

Find the min element of an array

Algorithm `arrayMin(A, n)`
Input array `A` of `n` integers
Output the minimum element of `A`

`currentMin ← A[0]`
for `i ← 1` to `n - 1` do
 if `A[i] < currentMin` then
 `currentMin ← A[i]`
return `currentMin`
Pseudo code

Find the min element of an array

Algorithm $\text{arrayMin}(A, n)$

Input array A of n integers
Output the minimum element of A

$\text{currentMin} \leftarrow A[0]$
for $i \leftarrow 1$ to $n - 1$ do
 if $A[i] < \text{currentMin}$ then
 $\text{currentMin} \leftarrow A[i]$
return currentMin

Sum all the elements of an array

Algorithm $\text{arraySum}(A, n)$

Input array A of n integers
Output sum of all the elements of A

$\text{currentSum} \leftarrow 0$
for $i \leftarrow 0$ to $n - 1$ do
 $\text{currentSum} \leftarrow \text{currentSum} + A[i]$
return currentSum
Pseudo code

Sum all the elements of an array

Algorithm $array\text{Sum}(A, n)$
Input array A of n integers
Output sum of all the elements of A

$current\text{Sum} \leftarrow 0$
for $i \leftarrow 0$ to $n - 1$ do
 $current\text{Sum} \leftarrow current\text{Sum} + A[i]$
return $current\text{Sum}$

Multiply all the elements of an array

Algorithm $array\text{Multiply}(A, n)$
Input array A of n integers
Output Multiply all the elements of A

$current \leftarrow 1$
for $i \leftarrow 0$ to $n - 1$ do
 $current \leftarrow current * A[i]$
return $current$
Pseudo code Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces

- Method declaration

 Algorithm method (arg [, arg...])

 Input ...

 Output ...
Pseudo code Details

- Method call
 \[\textit{var.method} \ (\textit{arg} [, \textit{arg}…]) \]

- Return value
 \[\textit{return} \ \textit{expression} \]

- Expressions
 \[\leftarrow \text{Assignment} \]

 \[\text{like } = \text{ in Java} \]

 \[= \text{ Equality testing} \]

 \[\text{like } == \text{ in Java} \]

\[n^2 \text{ Superscripts and other mathematical formatting allowed} \]
The Random Access Machine (RAM) Model

- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time.
Seven Important Functions

Seven functions that often appear in algorithm analysis:

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^2$
- Cubic $\approx n^3$
- Exponential $\approx 2^n$
Functions Graphed Using “Normal” Scale

- $g(n) = 1$
- $g(n) = \log n$
- $g(n) = n$
- $g(n) = n^2$
- $g(n) = 2^n$
- $g(n) = n^3$
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm arrayMax(A, n)

```
currentMax ← A[0]
for i ← 1 to n - 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
    { increment counter i }
return currentMax
```

<table>
<thead>
<tr>
<th># operations</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2n</td>
<td></td>
</tr>
<tr>
<td>2(n - 1)</td>
<td></td>
</tr>
<tr>
<td>2(n - 1)</td>
<td></td>
</tr>
<tr>
<td>2(n - 1)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total: \(8n - 2\)
Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

<table>
<thead>
<tr>
<th>Algorithm arrayMultiply(A, n)</th>
<th>#operations</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>current ← 1</code></td>
<td>1</td>
</tr>
<tr>
<td><code>for i ← 0 to n - 1 do</code></td>
<td>2(n+1)</td>
</tr>
<tr>
<td><code>current ← current*A[i]</code></td>
<td>3n</td>
</tr>
<tr>
<td>{ increment counter i }</td>
<td>2n</td>
</tr>
<tr>
<td><code>return current</code></td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 7n+4 => O(n)
Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

<table>
<thead>
<tr>
<th>Algorithm arrayAverage(A, n)</th>
<th>#operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$current \leftarrow 0$</td>
<td>1</td>
</tr>
<tr>
<td>for $i \leftarrow 0$ to $n - 1$ do</td>
<td></td>
</tr>
<tr>
<td>$current \leftarrow current + A[i]$</td>
<td>2($n+1$)</td>
</tr>
<tr>
<td>{ increment counter i }</td>
<td>$3n$</td>
</tr>
<tr>
<td>return $current/n$</td>
<td>$2n$</td>
</tr>
</tbody>
</table>

Total $7n+5 = \mathcal{O}(n)$
Estimating Running Time

- Algorithm **arrayMax** executes $8n - 2$ primitive operations in the worst case. Define:

 $a = \text{Time taken by the fastest primitive operation}$

 $b = \text{Time taken by the slowest primitive operation}$

- Let $T(n)$ be worst-case time of **arrayMax**. Then

 $a (8n - 2) \leq T(n) \leq b(8n - 2)$

- Hence, the running time $T(n)$ is bounded by two linear functions
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm $arrayMax$
Why Growth Rate Matters

<table>
<thead>
<tr>
<th>if runtime is...</th>
<th>time for n + 1</th>
<th>time for 2 n</th>
<th>time for 4 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \lg n$</td>
<td>$c \lg (n + 1)$</td>
<td>$c (\lg n + 1)$</td>
<td>$c(\lg n + 2)$</td>
</tr>
<tr>
<td>$c n$</td>
<td>$c (n + 1)$</td>
<td>$2c n$</td>
<td>$4c n$</td>
</tr>
<tr>
<td>$c n \lg n$</td>
<td>$\sim c n \lg n + c n$</td>
<td>$2c n \lg n + 2cn$</td>
<td>$4c n \lg n + 4cn$</td>
</tr>
<tr>
<td>$c n^2$</td>
<td>$\sim c n^2 + 2c n$</td>
<td>$4c n^2$</td>
<td>$16c n^2$</td>
</tr>
<tr>
<td>$c n^3$</td>
<td>$\sim c n^3 + 3c n^2$</td>
<td>$8c n^3$</td>
<td>$64c n^3$</td>
</tr>
<tr>
<td>$c 2^n$</td>
<td>$c 2^{n+1}$</td>
<td>$c 2^{2n}$</td>
<td>$c 2^{4n}$</td>
</tr>
</tbody>
</table>

runtime quadruples when problem size doubles
Comparison of Two Algorithms

- **insertion sort** is \(\frac{n^2}{4} \)
- **merge sort** is \(2n \log n \)

sort a million items?

- insertion sort takes roughly **70 hours**
- merge sort takes roughly **40 seconds**

This is a slow machine, but if 100 x as fast then it’s **40 minutes** versus less than **0.5 seconds**
Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms

- Examples
 - $10^2n + 10^5$ is a linear function
 - $10^5n^2 + 10^8n$ is a quadratic function
Big-Oh Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that

\[f(n) \leq cg(n) \text{ for } n \geq n_0 \]

- Example: $2n + 10$ is $O(n)$
 - $2n + 10 \leq cn$
 - $(c - 2) n \geq 10$
 - $n \geq 10/(c - 2)$
 - Pick $c = 3$ and $n_0 = 10$
Example: the function n^2 is not $O(n)$
- $n^2 \leq cn$
- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant
More Big-Oh Example

- 7n-2 is $O(n)$
 - need $c > 0$ and $n_0 \geq 1$ such that $7n-2 \leq c \cdot n$ for $n \geq n_0$
 - this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq c \cdot n^3$ for $n \geq n_0$
 - this is true for $c = 4$ and $n_0 = 21$

- $3 \log n + 5$ is $O(\log n)$
 - need $c > 0$ and $n_0 \geq 1$ such that $3 \log n + 5 \leq c \cdot \log n$ for $n \geq n_0$
 - this is true for $c = 8$ and $n_0 = 2$
Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.

- The statement “\(f(n) \) is \(O(g(n)) \)” means that the growth rate of \(f(n) \) is no more than the growth rate of \(g(n) \).

- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th></th>
<th>(f(n)) is (O(g(n)))</th>
<th>(g(n)) is (O(f(n)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(n)) grows more</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(f(n)) grows more</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Big-Oh Rules

- If $f(n)$ is a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,
 1. Drop lower-order terms
 2. Drop constant factors

- Use the smallest possible class of functions
 - Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”

- Use the simplest expression of the class
 - Say “$3n + 5$ is $O(n)$” instead of “$3n + 5$ is $O(3n)$”
Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

- To perform the asymptotic analysis:
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - We express this function with big-Oh notation.
Asymptotic Algorithm Analysis

- Example:
 - We determine that algorithm $arrayMax$ executes at most $8n - 2$ primitive operations
 - We say that algorithm $arrayMax$ “runs in $O(n)$ time”

- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations
Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages.

- The i-th prefix average of an array X is average of the first $(i + 1)$ elements of X:

$$A[i] = (X[0] + X[1] + \ldots + X[i])/(i+1)$$

- Computing the array A of prefix averages of another array X has applications to financial analysis.
Exercise

- Implement prefixAverage

- **Input:**
 - Get n integers from a txt file
 - The first integer indicates the number of integers (the size of X)

- **Output:**
 - Print out a sequence of integers
 - The ith integer indicates the average of the first i+1 input numbers (starting from the second input)

Input: 4 1 2 3 5
Output: 1 2 2
Prefix Average (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm \textit{prefixAverages1}(X, n)

\textbf{Input} array X of \textit{n} integers

\textbf{Output} array A of prefix averages of X

$A \leftarrow$ new array of \textit{n} integers

\textbf{for} \textit{i} \leftarrow 0 to \textit{n} $-$ 1 \textbf{do}

\hspace{1em} $s \leftarrow X[0]$

\hspace{1em} \textbf{for} \textit{j} \leftarrow 1 to \textit{i} \textbf{do}

\hspace{2em} $s \leftarrow s + X[j]$

\hspace{1em} $A[i] \leftarrow s / (i + 1)$

\textbf{return} A

#operations

\textit{n}

\textit{n}

\textit{n}

$1 + 2 + \ldots + (n - 1)$

$1 + 2 + \ldots + (n - 1)$

\textit{n}

1
Arithmetic Progression

- The running time of `prefixAverages1` is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $\frac{n(n + 1)}{2}$
- There is a simple visual proof of this fact
- Thus, algorithm `prefixAverages1` runs in $O(n^2)$ time
Prefix Average (Linear)

- The following algorithm computes prefix averages in linear time by keeping a running sum.

- Algorithm `prefixAverages2` runs in $O(n)$ time.

```
Algorithm `prefixAverages2(X, n)`
  Input array $X$ of $n$ integers
  Output array $A$ of prefix averages of $X$
  $A \leftarrow$ new array of $n$ integers
  $s \leftarrow 0$
  for $i \leftarrow 0$ to $n - 1$ do
    $s \leftarrow s + X[i]$
    $A[i] \leftarrow s / (i + 1)$
  return $A$
```

Relatives of Big-Oh

- **big-Omega**
 - \(f(n) \) is \(\Omega(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)

- **big-Theta**
 - \(f(n) \) is \(\Theta(g(n)) \) if there are constants \(c' > 0 \) and \(c'' > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n) \) for \(n \geq n_0 \)
Intuition for Asymptotic Notation

- **Big-Oh**
 - $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$

- **big-Omega**
 - $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$

- **big-Theta**
 - $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
Examples of Using Relatives of Big-Oh

- $5n^2$ is $\Omega(n^2)$
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$
 - let $c = 5$ and $n_0 = 1$

- $5n^2$ is $\Omega(n)$
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$
 - let $c = 1$ and $n_0 = 1$

- $5n^2$ is $\Theta(n^2)$
 - $f(n)$ is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$
 - Let $c = 5$ and $n_0 = 1$
Coming Up…

- Big O: Read Text Book 4
- Divide and Conquer/Sorting: Read Text Book 11