Recap

- What should you have learned?
 - Basic java programming skills
 - Object-oriented programming
 - Classes and objects
 - Inheritance, exception handling, generics
 - Java class library
 - Basic data structures and their applications
 - Linear data structure: linked list, array, stack, queue
 - Hierarchical data structures: tree and heap
Wrap up

- What are you going to learn in the rest of this semester?
 - Algorithms
 - Analysis of algorithms
 - Brute force, divide and conquer, dynamic programming
 - Sorting
 - Advanced data structures
 - Hash table
 - Map and dictionary
 - Graph
Analysis of Algorithms

How good is your program?
Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics
Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like `System.currentTimeMillis()` to get an accurate measure of the actual running time
- Plot the results
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.

- Results may not be indicative of the running time on other inputs not included in the experiment.

- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Pseudo code

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find the max element of an array

Algorithm $arrayMax(A, n)$

Input array A of n integers

Output the maximum element of A

$\text{currentMax} \leftarrow A[0]$

for $i \leftarrow 1$ to $n - 1$ do

if $A[i] > \text{currentMax}$ then

$\text{currentMax} \leftarrow A[i]$

return currentMax
Pseudo code

Example: find the max element of an array

Algorithm \textit{arrayMax}(A, n)
\begin{itemize}
 \item \textbf{Input} array A of n integers
 \item \textbf{Output} the maximum element of A
\end{itemize}
\begin{itemize}
 \item currentMax $\leftarrow A[0]$
 \item for $i \leftarrow 1$ to $n - 1$ do
 \begin{itemize}
 \item if $A[i] >$ currentMax then
 \begin{itemize}
 \item currentMax $\leftarrow A[i]$
 \end{itemize}
 \end{itemize}
 \item return currentMax
\end{itemize}

Find the min element of an array

Algorithm \textit{arrayMin}(A, n)
\begin{itemize}
 \item \textbf{Input} array A of n integers
 \item \textbf{Output} the minimum element of A
\end{itemize}
\begin{itemize}
 \item currentMin $\leftarrow A[0]$
 \item for $i \leftarrow 1$ to $n - 1$ do
 \begin{itemize}
 \item if $A[i] <$ currentMin then
 \begin{itemize}
 \item currentMin $\leftarrow A[i]$
 \end{itemize}
 \end{itemize}
 \item return currentMin
\end{itemize}
Pseudo code

Find the min element of an array

Algorithm \textit{arrayMin}(A, n)
\begin{itemize}
 \item \textbf{Input} array \textit{A} of \textit{n} integers
 \item \textbf{Output} the minimum element of \textit{A}
\end{itemize}

\texttt{currentMin} \leftarrow A[0]
\textbf{for} \textit{i} \leftarrow 1 \textbf{to} \textit{n} - 1 \textbf{do}
 \textbf{if} \textit{A}[\textit{i}] < \texttt{currentMin} \textbf{then}
 \texttt{currentMin} \leftarrow \textit{A}[extit{i}]
\textbf{return} \texttt{currentMin}

Sum all the elements of an array

Algorithm \textit{arraySum}(A, n)
\begin{itemize}
 \item \textbf{Input} array \textit{A} of \textit{n} integers
 \item \textbf{Output} sum of all the elements of \textit{A}
\end{itemize}

\texttt{currentSum} \leftarrow 0
\textbf{for} \textit{i} \leftarrow 0 \textbf{to} \textit{n} - 1 \textbf{do}
 \texttt{currentSum} \leftarrow \texttt{currentSum} + \textit{A}[extit{i}]
\textbf{return} \texttt{currentSum}
Pseudo code

Sum all the elements of an array

Multiply all the elements of an array

Algorithm arraySum\((A, n)\)

Input array \(A\) of \(n\) integers

Output sum of all the elements of \(A\)

\[
\text{currentSum} \leftarrow 0 \\
\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \\
\quad \text{currentSum} \leftarrow \text{currentSum} + A[i] \\
\text{return currentSum}
\]

Algorithm arrayMultiply\((A, n)\)

Input array \(A\) of \(n\) integers

Output Multiply all the elements of \(A\)

\[
\text{current} \leftarrow 1 \\
\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \\
\quad \text{current} \leftarrow \text{current} \times A[i] \\
\text{return current}
\]
Pseudo code Details

- Control flow
 - if ... then ...
 - [else ...]
 - while ...
 - do ...
 - repeat ...
 - until ...
 - for ...
 - do ...
 - Indentation replaces braces

- Method declaration

 Algorithm method (arg [, arg...])

 Input ...

 Output ...
Pseudo code Details

- Method call

  ```
  var.method (arg [, arg...])
  ```

- Return value

  ```
  return expression
  ```

- Expressions

 \leftarrow Assignment

 (like $=$ in Java)

 $=$ Equality testing

 (like $==$ in Java)

 n^2 Superscripts and other mathematical formatting allowed
The Random Access Machine (RAM) Model

- **A CPU**

- An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.
Seven Important Functions

Seven functions that often appear in algorithm analysis:

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^2$
- Cubic $\approx n^3$
- Exponential $\approx 2^n$
Functions Graphed Using “Normal” Scale

- $g(n) = 1$
- $g(n) = \lg n$
- $g(n) = n$
- $g(n) = n^2$
- $g(n) = n^3$
- $g(n) = n \lg n$
- $g(n) = 2^n$
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm \texttt{arrayMax}(A, n)

\texttt{currentMax} \leftarrow A[0]

\texttt{for } i \leftarrow 1 \texttt{ to } n - 1 \texttt{ do}

\hspace{1em} \text{if } A[i] > \texttt{currentMax} \texttt{ then}

\hspace{2em} \texttt{currentMax} \leftarrow A[i]

\hspace{1em} \{ \text{ increment counter } i \} \\

\texttt{return } \texttt{currentMax}

\begin{tabular}{l|c}

\hline

operations & \\

\hline

2 & 2 \\

2n & 2n \\

2(n - 1) & 2(n - 1) \\

2(n - 1) & 2(n - 1) \\

1 & 1 \\

\hline

Total & 8n - 2 \\

\hline

\end{tabular}
Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

<table>
<thead>
<tr>
<th>Algorithm arrayMultiply(A, n)</th>
<th>#operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>current ← 1</td>
<td></td>
</tr>
<tr>
<td>for i ← 0 to n - 1 do</td>
<td></td>
</tr>
<tr>
<td>current ← current*A[i]</td>
<td>2(n+1)</td>
</tr>
<tr>
<td>{ increment counter i }</td>
<td>3n</td>
</tr>
<tr>
<td>return current</td>
<td>2n</td>
</tr>
</tbody>
</table>

Total 7n+4 => O(n)
Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>ArrayAverage(A, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>current ← 0</td>
<td></td>
</tr>
<tr>
<td>for i ← 0 to n - 1 do</td>
<td></td>
</tr>
<tr>
<td>current ← current + A[i]</td>
<td></td>
</tr>
<tr>
<td>{ increment counter i }</td>
<td></td>
</tr>
<tr>
<td>return current/n</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2(n+1)</td>
</tr>
<tr>
<td>3n</td>
</tr>
<tr>
<td>2n</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Total: \(7n+5\) \(\Rightarrow O(n)\)
Estimating Running Time

- Algorithm \textit{arrayMax} executes $8n - 2$ primitive operations in the worst case. Define:
 \[a = \text{Time taken by the fastest primitive operation} \]
 \[b = \text{Time taken by the slowest primitive operation} \]

- Let $T(n)$ be worst-case time of \textit{arrayMax}. Then
 \[a \ (8n - 2) \leq T(n) \leq b(8n - 2) \]

- Hence, the running time $T(n)$ is bounded by two linear functions
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm `arrayMax`
Why Growth Rate Matters

<table>
<thead>
<tr>
<th>if runtime is...</th>
<th>time for (n + 1)</th>
<th>time for (2n)</th>
<th>time for (4n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \lg n)</td>
<td>(c \lg (n + 1))</td>
<td>(c (\lg n + 1))</td>
<td>(c(\lg n + 2))</td>
</tr>
<tr>
<td>(cn)</td>
<td>(c (n + 1))</td>
<td>(2cn)</td>
<td>(4cn)</td>
</tr>
<tr>
<td>(cn \lg n)</td>
<td>(~ c n \lg n + cn)</td>
<td>(2cn \lg n + 2cn)</td>
<td>(4cn \lg n + 4cn)</td>
</tr>
<tr>
<td>(cn^2)</td>
<td>(~ c n^2 + 2cn)</td>
<td>(4cn^2)</td>
<td>(16cn^2)</td>
</tr>
<tr>
<td>(cn^3)</td>
<td>(~ c n^3 + 3cn^2)</td>
<td>(8cn^3)</td>
<td>(64cn^3)</td>
</tr>
<tr>
<td>(c 2^n)</td>
<td>(c 2^{n+1})</td>
<td>(c 2^{2n})</td>
<td>(c 2^{4n})</td>
</tr>
</tbody>
</table>

runtime quadruples when problem size doubles
Comparison of Two Algorithms

insertion sort is \(\frac{n^2}{4} \)

merge sort is \(2n \lg n \)

sort a million items?

insertion sort takes roughly 70 hours
while
merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it’s 40 minutes versus less than 0.5 seconds
Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms

- Examples
 - $10^2n + 10^5$ is a linear function
 - $10^5n^2 + 10^8n$ is a quadratic function
Big-Oh Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that

\[f(n) \leq cg(n) \text{ for } n \geq n_0 \]

- Example: $2n + 10$ is $O(n)$
 - $2n + 10 \leq cn$
 - $(c - 2) n \geq 10$
 - $n \geq 10/(c - 2)$
 - Pick $c = 3$ and $n_0 = 10$
Big-Oh Example

- Example: the function n^2 is not $O(n)$
 - $n^2 \leq cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant
More Big-Oh Example

- 7n-2 is O(n)
 - need c > 0 and n₀ ≥ 1 such that 7n-2 ≤ c•n for n ≥ n₀
 - this is true for c = 7 and n₀ = 1
- 3n³ + 20n² + 5 is O(n³)
 - need c > 0 and n₀ ≥ 1 such that 3n³ + 20n² + 5 ≤ c•n³ for n ≥ n₀
 - this is true for c = 4 and n₀ = 21
- 3 log n + 5 is O(log n)
 - need c > 0 and n₀ ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n₀
 - this is true for c = 8 and n₀ = 2
Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement “$f(n)$ is $O(g(n))$” means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th></th>
<th>$f(n)$ is $O(g(n))$</th>
<th>$g(n)$ is $O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$ grows more</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$f(n)$ grows more</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Big-Oh Rules

- If $f(n)$ is a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,
 1. Drop lower-order terms
 2. Drop constant factors

- Use the smallest possible class of functions
 - Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”

- Use the simplest expression of the class
 - Say “$3n + 5$ is $O(n)$” instead of “$3n + 5$ is $O(3n)$”
The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:
- We find the worst-case number of primitive operations executed as a function of the input size.
- We express this function with big-Oh notation.
Asymptotic Algorithm Analysis

- Example:
 - We determine that algorithm *arrayMax* executes at most $8n - 2$ primitive operations
 - We say that algorithm *arrayMax* “runs in $O(n)$ time”

- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations
Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages.

- The i-th prefix average of an array X is the average of the first $(i + 1)$ elements of X:

 $$A[i] = (X[0] + X[1] + \ldots + X[i])/(i+1)$$

- Computing the array A of prefix averages of another array X has applications to financial analysis.
Exercise

- Implement prefixAverage

- **Input:**
 - Get n integers from a txt file
 - The first integer indicates the number of integers (the size of X)

- **Output:**
 - Print out a sequence of integers
 - The ith integer indicates the average of the first i+1 input numbers (starting from the second input)

Input: 4 1 2 3 5
Output: 1 2 2
Prefix Average (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition.

Algorithm `prefixAverages1(X, n)`

Input array X of n integers

Output array A of prefix averages of X

A ← new array of n integers

for i ← 0 to n - 1 do

s ← X[0]

for j ← 1 to i do

s ← s + X[j]

A[i] ← s / (i + 1)

return A

#operations

n

n

n

1 + 2 + ... + (n - 1)

1 + 2 + ... + (n - 1)

n

1
Arithmetic Progression

- The running time of `prefixAverages1` is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $n(n + 1)/2$
 - There is a simple visual proof of this fact
- Thus, algorithm `prefixAverages1` runs in $O(n^2)$ time
The following algorithm computes prefix averages in linear time by keeping a running sum.

Algorithm `prefixAverages2` runs in $O(n)$ time.

Algorithm prefixAverages2(X, n)

- **Input** array X of n integers
- **Output** array A of prefix averages of X
- $A \leftarrow$ new array of n integers
- $s \leftarrow 0$
- for $i \leftarrow 0$ to $n - 1$ do
 - $s \leftarrow s + X[i]$
 - $A[i] \leftarrow s / (i + 1)$
- return A
Relatives of Big-Oh

- **big-Omega**
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$
 - and an integer constant $n_0 \geq 1$ such that
 - $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

- **big-Theta**
 - $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that
 - $c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n)$ for $n \geq n_0$
Intuition for Asymptotic Notation

- **Big-Oh**
 - $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically \textbf{less than or equal} to $g(n)$

- **big-Omega**
 - $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically \textbf{greater than or equal} to $g(n)$

- **big-Theta**
 - $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically \textbf{equal} to $g(n)$
Examples of Using Relatives of Big-Oh

- **5n^2 is Ω(n^2)**
 - \(f(n) \) is \(Ω(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)
 - let \(c = 5 \) and \(n_0 = 1 \)

- **5n^2 is Ω(n)**
 - \(f(n) \) is \(Ω(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)
 - let \(c = 1 \) and \(n_0 = 1 \)

- **5n^2 is Θ(n^2)**
 - \(f(n) \) is \(Θ(g(n)) \) if it is \(Ω(n^2) \) and \(O(n^2) \). We have already seen the former, for the latter recall that \(f(n) \) is \(O(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \leq c \cdot g(n) \) for \(n \geq n_0 \)
 - Let \(c = 5 \) and \(n_0 = 1 \)
Coming Up…

- Big O: Read Text Book 4
- Divide and Conquer/Sorting: Read Text Book 11