Data Structures
Lecture 6
Announcement

- **Project proposal** (due on Nov. 5) should include the following sections:
 - 1. Introduction /Your topic and motivation
 - 2. Search tricks /Your score formulation
 - 3. System design /Class diagrams [proposal sample]
 - 4. Schedule /How and when to accomplish stages
 - 5. Challenges /Techniques that you need but may have a hard time to learn on your own
Announcement

HWs Review
- BMI
- Generic Progression
- Keyword Counting
- The Ordered List
- HTML Tag Matching
Abstract

Non-linear Data Structures

Trees and their variations
Abstract Data Type (ADT)

- An abstract data type (ADT) is an abstraction of a data structure

- An ADT specifies:
 - Data stored
 - Operations on the data
 - Error conditions associated with operations

- We have discussed Array ADT, List ADT, Stack ADT, and Queue ADT

- All of them are linear ADT
A Hierarchical Structure
Linux/Unix file systems
Tree: A Hierarchical ADT

- A tree (upside down) is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Each element (except the top element) has a parent and zero or more children elements
Tree Terminology

- **Root**: a node without any parent (A)
- **Internal node**: a node with at least one child (A, B, C, F)
- **External node** (a.k.a. leaf): a node without children (E, I, J, K, G, H, D)
- **Subtree**: tree consisting of a node and its descendants
Tree Terminology

- **Ancestors** of a node: parent, grandparent, grand-grandparent, etc.
- **Depth** of a node: number of ancestors
- **Height** of a tree: maximum depth of any node (3)
- **Descendant** of a node: child, grandchild, grand-grandchild, etc.
Tree ADT

- We use positions to define the tree ADT
- The positions in a tree are its nodes and neighboring positions satisfy the parent-child relationships

<table>
<thead>
<tr>
<th>method</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>root()</td>
<td>Return the tree’s root; error if tree is empty</td>
</tr>
<tr>
<td>parent(v)</td>
<td>Return v’s parent; error if v is a root</td>
</tr>
<tr>
<td>children(v)</td>
<td>Return v’s children (an iterable collection of nodes)</td>
</tr>
<tr>
<td>isRoot(v)</td>
<td>Test whether v is a root</td>
</tr>
<tr>
<td>isExternal(v)</td>
<td>Test whether v is an external node</td>
</tr>
<tr>
<td>isInternal(v)</td>
<td>Test whether v is an internal node</td>
</tr>
</tbody>
</table>
Tree ADT

- Generic methods (not necessarily related to a tree structure):

<table>
<thead>
<tr>
<th>method</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>isEmpty()</td>
<td>Test whether the tree has any node or not</td>
</tr>
<tr>
<td>size()</td>
<td>Return the number of nodes in the tree</td>
</tr>
<tr>
<td>iterator()</td>
<td>Return an iterator of all the elements stored in the tree</td>
</tr>
<tr>
<td>positions()</td>
<td>Return an iterable collection of all the nodes of the tree</td>
</tr>
<tr>
<td>replace(v,e)</td>
<td>Replace with e and return the element stored at node v</td>
</tr>
</tbody>
</table>
A Linked Structure for Tree

- A node is represented by an object storing
 - Element
 - A parent node
 - A sequence of children nodes
A Linked Structure for Tree

- Node objects implement the Position ADT
Tree Traversal

- Visit all nodes in a tree
- Do some operations during the visit
Preorder Traversal

- A node is visited (so is the operation) before its descendants

- Application:
 - Print a structured document

Algorithm $preOrder(v)$

$visit(v)$

for each child w of v

$preOrder (w)$
Preorder Traversal

For your project, you can print a structured web site with its sub links using preorder traversal
Postorder Traversal

- A node is visited after its descendants

- Application:
 - Compute space used by files in a directory and its subdirectories

Algorithm `postOrder(v)`

```plaintext
for each child w of v
  postOrder(w)
visit(v)
```
Postorder Traversal

For your project, you can compute the score of a web site and its sub links Using postorder traversal
Binary Tree

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children
 - The children of a node are an ordered pair (left and right)
- We call the children of an internal node left child and right child
Binary Tree

- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree
Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression:

 \[(2 \times (a - 1) + (3 \times b))\]
Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions

- Example: dining decision

```
Want a fast meal?

On a diet?
  - Subway

On expense account?
  - Mc Donald’s
  - 王品台塑
  - 我家牛排
```
Proper Binary Trees

- Each internal node has exactly 2 children
Proper Binary Trees

- n : number of total nodes
- e : number of external nodes
- i : number of internal nodes
- h : height (maximum depth of a node)

Properties:

1. \(e = i + 1 \)
2. \(n = 2e - 1 \)
3. \(h \leq i \)
4. \(h \leq (n - 1)/2 \)
5. \(e \leq 2^h \)
6. \(h \geq \log_2 e \)
7. \(h \geq \log_2 (n + 1) - 1 \)
Properties

- 1. $e = i + 1$
- 2. $n = e + i = 2e - 1 = 2i + 1$
Properties

- 3. $h \leq i$
- 4. $h \leq (n-1)/2$
Properties

- 5. $e \leq 2^h$
- 6. $h \geq \log_2 e$
- 7. $h \geq \log_2 ((n+1)/2) = \log_2(n+1) - 1$
The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT.

Additional methods:
- position left(p)
- position right(p)
- boolean hasLeft(p)
- boolean hasRight(p)

Update methods may be defined by data structures implementing the BinaryTree ADT.
Inorder Traversal

- A node is visited after its left subtree and before its right subtree

Algorithm \(\text{inOrder}(v) \)

if \(\text{hasLeft}(v) \)

\[\text{inOrder}(\text{left}(v)) \]

\[\text{visit}(v) \]

if \(\text{hasRight}(v) \)

\[\text{inOrder}(\text{right}(v)) \]
Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print “(“ before traversing left subtree
 - print “)“ after traversing right subtree

Algorithm `printExpression(v)`

```
if hasLeft (v)
    print("("")
    printExpression (left(v))
print(v.element ())
if hasRight (v)
    printExpression (right(v))
print ("\)
```

```latex
((2 \times (a - 1)) + (3 \times b))
```
Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

Algorithm `evalExpr(v)`

```python
if isExternal(v):
    return v.element()
else:
    x ← evalExpr(leftChild(v))
    y ← evalExpr(rightChild(v))
    ◊ ← operator stored at v
    return x ◊ y
```
Euler Tour Traversal

- Generic traversal of a binary tree

- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)
 - on the right (postorder)
A template method pattern

- A generic computation mechanism
- Specialized for an application by redefining the visit actions

Algorithm eularTour(T,v)
Perform the action for visiting node v on the left
If v has a left child u in T then
eularTour(T, u)
Perform the action for visiting node v from below
If v has a right child w in T then
eularTour(T, w)
Perform the action for visiting node v on the right
An Application of EularTour

- printExpression
 - On the left action: print (
 - From below action: print v
 - On the right action: print)

Algorithm printExpression(T,v)

if T.isInternal(v) then print “(”
If v has a left child u in T then
 printExpression(T, u)
print(v)
If v has a right child w in T then
 printExpression(T, w)
if T.isInternal(v) then print “)”
A Linked Structure for Binary Trees

- A node is represented by an object storing:
 - Element
 - Parent node
 - Left child node
 - Right child node
A Linked Structure for Binary Trees
An Array-Based Representation

- Nodes are stored in an array A
- Node v is stored at $A[\text{rank}(v)]$
 - rank(root) = 1
 - Left in even: if node is the left child of parent(node),
 rank(node) = 2 \cdot \text{rank(parent(node))}
 - Right in odd: if node is the right child of parent(node),
 rank(node) = 2 \cdot \text{rank(parent(node))} + 1
- $A[0]$ is always empty
- $A[i]$ is empty if there is no node in the ith position
- The array size N is $2^{(h+1)}$
An Array-Based Representation
HW 6 (Due on 11/5)

Compute the score of a website!

- Construct a tree and its nodes according to a given website
 - An element (referred by a node) represents one web page and has three fields: (name, url, score)

- Given a keyword and its weight, compute the score of each node
 - Score = number of appearance * weight
 - The score of a node = the score of the content of its url + the scores of its children
 - This can be done by a postorder traversal of a tree

- Output the hierarchy of the website (with names and scores) using parentheses
 - This can be done by an eular tour
An example input

You will be given a website like:

 - Projects, http://soslab.nccu.edu.tw/Projects.html
 - Stranger, https://vlab.cs.ucsb.edu/stranger/
- Member, http://soslab.nccu.edu.tw/Members.html
An example output

Given a set of keywords, (Yu, 1.2), (Fang, 1.8) you shall output something like

(Soslab, 56.6
 (Publication, 18)
 (Projects, 15.6
 (AppBeach, 2.6)
 (Stranger, 8.8)
)
 (Member, 9.2)
 (Course, 4.8)
)

Fang Yu, 56.6 indicates that the sum of the score in the content of the given url (http://soslab.nccu.edu.tw) and its sub links
Coming Up…

- The project proposal is due on Nov. 5

- We will talk about heap (some kind of a tree) on Nov. 5.
 - Read Chapter 8