Graphs II

Digraphs, Strongly Connective Component, Topological Sorting, and Minimum Spanning Tree
Digraphs

- A digraph is a graph whose edges are all directed
 - Short for “directed graph”

- Applications
 - one-way streets
 - flights
 - task scheduling
Digraph Properties

- A graph $G=(V,E)$ such that
 - Each edge goes in one direction:
 - Edge (a,b) goes from a to b, but not b to a
- If G is simple, $m \leq n \cdot (n - 1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size
Scheduling: edge \((a,b)\) means task \(a\) must be completed before \(b\) can be started.
Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.
- In the directed DFS algorithm, we have four types of edges:
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s.
Reachability

- DFS tree rooted at v: vertices reachable from v via directed paths
Strong Connectivity

- Each vertex can reach all other vertices
Strong Connectivity Algorithm

- Pick a vertex v in G
- Perform a DFS from v in G
 - If there’s a w not visited, print “no”
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there’s a w not visited, print “no”
 - Else, print “yes”
- Running time: $O(n+m)$
Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph

- Can also be done in $O(n+m)$ time using DFS, but is more complicated (similar to biconnectivity).

\[
\begin{align*}
\{ a, c, g \} \\
\{ f, d, e, b \}
\end{align*}
\]
Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G^* such that
 - G^* has the same vertices as G
 - if G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v

- The transitive closure provides reachability information about a digraph
Computing the Transitive Closure

- We can perform DFS starting at each vertex
- $O(n(n+m))$

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm
Floyd-Warshall Transitive Closure

- Idea #1: Number the vertices 1, 2, ..., n.

- Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:
 - Uses only vertices numbered 1, ..., k
 - (add this edge if it’s not already in)

Diagram:

- Vertices numbered 1, 2, ..., n
- Edges between vertices
- Uses only vertices numbered 1, ..., k-1
- Uses only vertices numbered 1, ..., k-1

Graphical representation of a path and transitive closure idea.
Floyd-Warshall’s Algorithm

- Number vertices v_1, \ldots, v_n
- Compute digraphs G_0, \ldots, G_n
 - $G_0=G$
 - G_k has directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in $\{v_1, \ldots, v_k\}$
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
- Running time: $O(n^3)$, assuming areAdjacent is $O(1)$ (e.g., adjacency matrix)

Algorithm $FloydWarshall(G)$

Input digraph G
Output transitive closure G^* of G

$i \leftarrow 1$

for all $v \in G.vertices()$
 denote v as v_i
 $i \leftarrow i + 1$

$G_0 \leftarrow G$

for $k \leftarrow 1$ to n do

 $G_k \leftarrow G_{k-1}$

 for $i \leftarrow 1$ to n ($i \neq k$) do

 for $j \leftarrow 1$ to n ($j \neq i, k$) do

 if $G_{k-1}.areAdjacent(v_i, v_k) \land
 G_{k-1}.areAdjacent(v_k, v_j)$

 if $\neg G_k.areAdjacent(v_i, v_j)$

 $G_k.insertDirectedEdge(v_i, v_j, k)$

 return G_n
Floyd-Warshall Example
Floyd-Warshall, Iteration 1
Floyd-Warshall, Iteration 2
Floyd-Warshall, Iteration 3
Floyd-Warshall, Iteration 4
Floyd-Warshall, Iteration 5
Floyd-Warshall, Iteration 6

Diagram showing connections between airports such as SFO, ORD, JFK, LAX, DFW, MIA, BOS, and v1, v2, v3, v4, v5, v6, v7.
Floyd-Warshall, Conclusion

The image cannot be viewed.
DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
DAGs and Topological Ordering

- A topological ordering of a digraph is a numbering v_1, \ldots, v_n of the vertices such that for every edge (v_i, v_j), we have $i < j$

- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints

Theorem

A digraph admits a topological ordering if and only if it is a DAG
Topological Sorting

- Number vertices, so that \((u,v)\) in \(E\) implies \(u < v\)
Algorithm for Topological Sorting

- **Note:** This algorithm is different than the one in the book

Algorithm TopologicalSort(G)

\[
H \leftarrow G \quad // \text{Temporary copy of } G \\
n \leftarrow G.num\text{Vertices}() \\
\textbf{while } H \text{ is not empty } \textbf{do} \\
\text{Let } v \text{ be a vertex with no outgoing edges} \\
\text{Label } v \leftarrow n \\
n \leftarrow n - 1 \\
\text{Remove } v \text{ from } H
\]

- **Running time:** $O(n + m)$
Implementation with DFS

- Simulate the algorithm by using depth-first search
- \(O(n+m)\) time.

Algorithm \textit{topologicalDFS}(G, v)

\textbf{Input} graph \(G\) and a start vertex \(v\) of \(G\)

\textbf{Output} labeling of the vertices of \(G\) in the connected component of \(v\)

\textit{setLabel}(v, VISITED)

\textbf{for all} \(e \in G\).outEdges\((v)\)

\{ outgoing edges \}

\(w \leftarrow \text{opposite}(v, e)\)

\textbf{if} \(\text{getLabel}(w) = \text{UNEXPLORED}\)

\{ \(e\) is a discovery edge \}

\textit{topologicalDFS}(G, w)

\textbf{else}

\{ \(e\) is a forward or cross edge \}

\textbf{Label} \(v\) with topological number \(n\)

\(n \leftarrow n - 1\)
Topological Sorting Example
A Quiz

- Fang loves CS courses and wants to plan his course schedule. The course prerequisites are:
 - CS15: (none)
 - CS16: CS15
 - CS22: (none)
 - CS31: CS15
 - CS32: CS16, CS31
 - CS126: CS22, CS32, CS16
 - CS127: CS16
 - CS141: CS22, CS16
 - CS169: CS32

Please help Fang to find the sequence of courses that allows him to satisfy all the prerequisites.
Minimum Spanning Trees

Spanning subgraph
- Subgraph of a graph G containing all the vertices of G

Spanning tree
- Spanning subgraph that is itself a tree

Minimum spanning tree (MST)
- Spanning tree of a weighted graph with minimum total edge weight

Applications
- Communications networks
- Transportation networks
Cycle Property

Cycle Property:
- Let T be a minimum spanning tree of a weighted graph G.
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T.
- For every edge f of C, $\text{weight}(f) \leq \text{weight}(e)$.

Proof:
- By contradiction.
- If $\text{weight}(f) > \text{weight}(e)$ we can get a spanning tree of smaller weight by replacing e with f.

Replacing f with e yields a better spanning tree.
Partition Property

- Partition Property:
 - Consider a partition of the vertices of G into subsets U and V
 - Let e be an edge of minimum weight across the partition
 - There is a minimum spanning tree of G containing edge e

Replacing f with e yields another MST
Kruskal’s Algorithm

- Maintain a partition of the vertices into clusters
 - Initially, single-vertex clusters
 - Keep an MST for each cluster
 - Merge “closest” clusters and their MSTs
- A priority queue stores the edges outside clusters
 - Key: weight
 - Element: edge
- At the end of the algorithm
 - One cluster and one MST

Algorithm KruskalMST(G)

```plaintext
for each vertex v in G do
    Create a cluster consisting of v
let Q be a priority queue.
Insert all edges into Q
T ← Ø
{\(T\) is the union of the MSTs of the clusters}
while \(T\) has fewer than \(n - 1\) edges do
    e ← Q.removeMin().getValue()
    [\(u, v\)] ← G.endVertices(e)
    A ← getCluster(u)
    B ← getCluster(v)
    if \(A \neq B\) then
        Add edge \(e\) to \(T\)
        mergeClusters(A, B)
return \(T\)
```
Example
Example (contd.)
Prim-Jarnik’s Algorithm

- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s

- We store with each vertex v label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud

- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label
 - We update the labels of the vertices adjacent to u
Prim-Jarnik’s Algorithm (cont.)

- A heap-based adaptable priority queue with location-aware entries stores the vertices outside the cloud
 - Key: distance
 - Value: vertex
 - Recall that method replaceKey(l,k) changes the key of entry l

- We store three labels with each vertex:
 - Distance
 - Parent edge in MST
 - Entry in priority queue

Algorithm PrimJarnikMST(G)

\[Q \leftarrow \text{new heap-based priority queue} \]
\[s \leftarrow \text{a vertex of } G \]

for all \(v \in G\text{.vertices()} \)

 if \(v = s \)
 \[\text{setDistance}(v, 0) \]
 else
 \[\text{setDistance}(v, \infty) \]
 \[\text{setParent}(v, \emptyset) \]

\[l \leftarrow Q.\text{insert(getDistance}(v), v) \]
\[\text{setLocator}(v,l) \]

while \(\neg Q.\text{isEmpty()} \)

\[l \leftarrow Q.\text{removeMin()} \]
\[u \leftarrow l.\text{getValue()} \]

for all \(e \in G\text{.incidentEdges}(u) \)

\[z \leftarrow G\text{.opposite}(u,e) \]
\[r \leftarrow \text{weight}(e) \]

 if \(r < \text{getDistance}(z) \)
 \[\text{setDistance}(z, r) \]
 \[\text{setParent}(z,e) \]
 \[Q.\text{replaceKey(getEntry}(z, r) \]
Example
Example (contd.)
Baruvka’s Algorithm

- Like Kruskal’s Algorithm, Baruvka’s algorithm grows many clusters at once and maintains a forest \(T \).
- Each iteration of the while loop halves the number of connected components in forest \(T \).
- The running time is \(O(m \log n) \).

Algorithm BaruvkaMST(\(G \))

\[
\begin{align*}
T & \leftarrow V \quad \{\text{just the vertices of } G\} \\
\text{while } T \text{ has fewer than } n - 1 \text{ edges do} \\
\quad \text{for each connected component } C \text{ in } T \text{ do} \\
\qquad \text{Let edge } e \text{ be the smallest-weight edge from } C \text{ to another component in } T \\
\qquad \text{if } e \text{ is not already in } T \text{ then} \\
\qquad \quad \text{Add edge } e \text{ to } T \\
\text{return } T
\end{align*}
\]
Example of Baruvka’s Algorithm (animated)