Graphs
Definition, Implementation and Traversal
Graphs

- Formally speaking, a graph is a pair \((V, E)\), where
 - \(V\) is a set of nodes, called vertices
 - \(E\) is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
Graphs

- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route
Edge Types

- Directed edge
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight

- Undirected edge
 - unordered pair of vertices \((u,v)\)
 - e.g., a flight route

- Directed graph
 - all the edges are directed
 - e.g., route network

- Undirected graph
 - all the edges are undirected
 - e.g., flight network
Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit

- Transportation networks
 - Highway network
 - Flight network

- Computer networks
 - Local area network
 - Internet
 - Web

- Databases
 - Entity-relationship diagram
Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a

- Edges incident on a vertex
 - a, d, and b are incident on V

- Adjacent vertices
 - U and V are adjacent

- Degree of a vertex
 - X has degree 5

- Parallel edges
 - h and i are parallel edges

- Self-loop
 - j is a self-loop
Terminology (cont.)

- **Path**
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints

- **Simple path**
 - path such that all its vertices and edges are distinct

- **Examples**
 - $P_1 = (V,b,X,h,Z)$ is a simple path
 - $P_2 = (U,c,W,e,X,g,Y,f,W,d,V)$ is a path that is not simple
Terminology (cont.)

- **Cycle**
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints

- **Simple cycle**
 - cycle such that all its vertices and edges are distinct

- **Examples**
 - $C_1 = (V, b, X, g, Y, f, W, c, U, a, \cdots)$ is a simple cycle
 - $C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, \cdots)$ is a cycle that is not simple
Properties

Notation

\(n \) number of vertices
\(m \) number of edges
\(\text{deg}(v) \) degree of vertex \(v \)

Example

- \(n = 4 \)
- \(m = 6 \)
- \(\text{deg}(v) = 3 \)
Properties

- **Property 1**
 - $\sum_v \deg(v) = 2m$
 - **Proof:** each edge is counted twice

- **Property 2**
 - In an undirected graph with no self-loops and no multiple edges
 - $m \leq n \frac{(n - 1)}{2}$
 - **Proof:** each vertex has degree at most $(n - 1)$

- What is the bound for a directed graph?
Main Methods of the Graph ADT

- Vertices and edges
 - are positions
 - store elements

- Accessor methods
 - endVertices(e): an array of the two endvertices of e
 - opposite(v, e): the vertex opposite of v on e
 - areAdjacent(v, w): true iff v and w are adjacent
 - replace(v, x): replace element at vertex v with x
 - replace(e, x): replace element at edge e with x
Main Methods of the Graph ADT

- **Update methods**
 - `insertVertex(o)`: insert a vertex storing element o
 - `insertEdge(v, w, o)`: insert an edge \((v,w)\) storing element o
 - `removeVertex(v)`: remove vertex v (and its incident edges)
 - `removeEdge(e)`: remove edge e

- **Iterable collection methods**
 - `incidentEdges(v)`: edges incident to \(v\)
 - `vertices()`: all vertices in the graph
 - `edges()`: all edges in the graph
Edge List Structure

- Vertex object
 - element
 - reference to position in vertex sequence

- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence

- Vertex sequence
 - sequence of vertex objects

- Edge sequence
 - sequence of edge objects
Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices
- The “old fashioned” version just has 0 for no edge and 1 for edge
Performance

- \(n \) vertices, \(m \) edges
- no parallel edges
- no self-loops

<table>
<thead>
<tr>
<th>Space</th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>incidentEdges((v))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>areAdjacent ((v, w))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insertVertex((o))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insertEdge((v, w, o))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>removeVertex((v))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>removeEdge((e))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance

- n vertices, m edges
- no parallel edges
- no self-loops

<table>
<thead>
<tr>
<th></th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$n + m$</td>
<td>$n + m$</td>
<td>n^2</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>m</td>
<td>$\text{deg}(v)$</td>
<td>n</td>
</tr>
<tr>
<td>areAdjacent (v, w)</td>
<td>m</td>
<td>$\min(\text{deg}(v), \text{deg}(w))$</td>
<td>1</td>
</tr>
<tr>
<td>insertVertex(o)</td>
<td>1</td>
<td>1</td>
<td>n^2</td>
</tr>
<tr>
<td>insertEdge(v, w, o)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>m</td>
<td>$\text{deg}(v)$</td>
<td>n^2</td>
</tr>
<tr>
<td>removeEdge(e)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Graph Traversal

- How to visit all vertices?
Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G
Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.
Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles
 This definition of tree is different from the one of a rooted tree
- A forest is an undirected graph without cycles
- The connected components of a forest are trees
Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- A spanning tree is not unique unless the graph is a tree.
- Spanning trees have applications to the design of communication networks.
- A spanning forest of a graph is a spanning subgraph that is a forest.
Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes $O(n + m)$ time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph

- Depth-first search is to graphs what Euler tour is to binary trees
DFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm $DFS(G)$

Input graph G

Output labeling of the edges of G as discovery edges and back edges

for all $u \in G.\text{vertices}()$

$setLabel(u, \text{UNEXPLORED})$

for all $e \in G.\text{edges}()$

$setLabel(e, \text{UNEXPLORED})$

for all $v \in G.\text{vertices}()$

if $.getLabel(v) = \text{UNEXPLORED}$

$DFS(G, v)$

else

$setLabel(e, \text{BACK})$

Algorithm $DFS(G, v)$

Input graph G and a start vertex v of G

Output labeling of the edges of G in the connected component of v as discovery edges and back edges

$setLabel(v, \text{VISITED})$

for all $e \in G.\text{incidentEdges}(v)$

if $getLabel(e) = \text{UNEXPLORED}$

$w \leftarrow \text{opposite}(v, e)$

if $getLabel(w) = \text{UNEXPLORED}$

$setLabel(e, \text{DISCOVERY})$

$setLabel(e, \text{DISCOVERY})$

$DFS(G, w)$

else

$setLabel(e, \text{BACK})$
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **back edge**
Example (cont.)

Diagram showing network connections and relationships between nodes A, B, C, D, and E.
DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
Properties of DFS

Property 1

$DFS(G, v)$ visits all the vertices and edges in the connected component of v

Property 2

The discovery edges labeled by $DFS(G, v)$ form a spanning tree of the connected component of v
Analysis of DFS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern.

- We call $DFS(G, u)$ with u as the start vertex.

- We use a stack S to keep track of the path between the start vertex and the current vertex.

- As soon as destination vertex z is encountered, we return the path as the contents of the stack.

```plaintext
Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z
    return S.elements()
for all e ∈ G.incidentEdges(v)
    if getLabel(e) = UNEXPLORRED
        w ← opposite(v, e)
        if getLabel(w) = UNEXPLORRED
            setLabel(e, DISCOVERY)
            S.push(e)
            pathDFS(G, w, z)
            S.pop(e)
        else
            setLabel(e, BACK)
        S.pop(v)
```
Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern.

- We use a stack S to keep track of the path between the start vertex and the current vertex.

- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w.

Algorithm $\text{cycleDFS}(G, v, z)$

```
setLabel(v, VISITED)
S.push(v)
for all $e \in G.\text{incidentEdges}(v)$
    if $\text{getLabel}(e) = \text{UNEXPLORED}$
        $w \leftarrow \text{opposite}(v, e)$
        S.push(e)
        if $\text{getLabel}(w) = \text{UNEXPLORED}$
            setLabel(e, DISCOVERY)
            pathDFS(G, w, z)
            S.pop(e)
        else
            $T \leftarrow \text{new empty stack}$
            repeat
                $o \leftarrow S.\text{pop}()$
                $T.\text{push}(o)$
            until $o = w$
            return $T.\text{elements}()$
S.pop(v)
```
Breadth-First Search

- Traverse the graph level by level
Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.
- BFS on a graph with n vertices and m edges takes $O(n + m)$ time.
- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices.
 - Find a simple cycle, if there is one.
BFS Algorithm

The algorithm uses a mechanism for setting and getting “labels” of vertices and edges.

Algorithm $BFS(G)$

Input graph G

Output labeling of the edges and partition of the vertices of G

for all $u \in G\text{.vertices()}$

setLabel(u, UNEXPLORED)

for all $e \in G\text{.edges()}$

setLabel(e, UNEXPLORED)

for all $v \in G\text{.vertices()}$

if getLabel(v) = UNEXPLORED

$\text{BFS}(G, v)$

Algorithm $BFS(G, s)$

$L_0 \leftarrow$ new empty sequence

$L_0\text{.addLast}(s)$

setLabel(s, VISITED)

$i \leftarrow 0$

while $\neg L_i\text{.isEmpty}()$

$L_{i+1} \leftarrow$ new empty sequence

for all $v \in L_i\text{.elements}()$

for all $e \in G\text{.incidentEdges}(v)$

if getLabel(e) = UNEXPLORED

$w \leftarrow$ opposite(v, e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

setLabel(w, VISITED)

$L_{i+1}\text{.addLast}(w)$

else

setLabel(e, CROSS)

$i \leftarrow i + 1$
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **cross edge**
Example (cont.)
Example (cont.)
Properties

Notation

G_s: connected component of s

Property 1

$BFS(G, s)$ visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by $BFS(G, s)$ form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time

- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED

- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS

- Each vertex is inserted once into a sequence L_i

- Method incidentEdges is called once for each vertex

- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
DFS vs. BFS (cont.)

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level
Java Graph Library

- No standard library

- JGraphT
 - An open source library
 - http://www.jgrapht.org/
 - Supports most mentioned Graph functions
 - You can simply download the file and use the library to create your graph
HW13 (Due on Jan. 3)

Webrize BMI!

- Create a web page that takes users’ height and weight and return his/her BMI
- This is the final HW. Use the same skills to webrize your project
Schedule on Jan. 10

<table>
<thead>
<tr>
<th>Time</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00~10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00~11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00~12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schedule on Jan. 10

<table>
<thead>
<tr>
<th>Time</th>
<th>Column I</th>
<th>Column II</th>
<th>Column III</th>
<th>Column III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00-3:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00-5:00</td>
<td>MAKEUP Exam</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Makeup exam on Jan. 17

- Friday 3:10-5:00. College of Commerce 313
- Maximal 80 points
- Dynamic programing on LCS
- Binary Search Tree (AVL)
- Hash Table
- Cycle Detection