Fall 2015

Fang Yu

Software Security Lab.

Dept. Management Information
Systems,

National Chengchi University

Data Structures
Lecture 13 (reference)

Advance ADTs II

Ordered Maps, Dictionaries, Skip Lists, Sets, and Partitions

Ordered Maps

m Recall that a Map stores pairs of (key, value)

= In ordered maps, keys are assumed to come
from a total order and pairs are stored in
order

= New operations:

m firstEntry(): entry with smallest key value null
lastEntry(): entry with largest key value
floorEntry(k):entry with largest key < k
ceilingEntry(k): entry with smallest key = k
m These operations return null if the map is empty

Binary Search

= Binary search can perform operations get, floorEntry
and ceilingEntry on an ordered map implemented by
means of an array-based sequence, sorted by key

= similar to the high-low game

m at each step, the number of candidate items is halved
m terminates after O(log n) steps

Binary Search Trees

Binary Search

= Example: find(7)

Search Tables

m A search table is an ordered map implemented by
means of a sorted sequence

= \We store the items in an array-based sequence,
sorted by key

= \We use an external comparator for the keys

Search Tables

® Performance:
m get, floorEntry and ceilingEntry take O(log n) time, using
binary search

m insert takes O(n) time since in the worst case we have to
shift n items to make room for the new item

® remove take O(n) time since in the worst case we have to
shift n items to compact the items after the removal

® The lookup table is effective only for dictionaries of
small size or for dictionaries on which searches are
the most common operations, while insertions and
removals are rarely performed (e.g., credit card
authorizations)

Dictionary

= A dictionary models a searchable collection of key-
element entries

= The main operations of a dictionary are searching,
inserting, and deleting items

= Multiple items with the same key are allowed

= Applications:
m word-definition pairs
m credit card authorizations

= DNS mapping of host names (e.g., datastructures.net) to
internet IP addresses (e.g., 128.148.34.101)

Dictionary ADT

® Dictionary ADT methods:

m oct(k): if the dictionary has an entry with key k, returns
it, else, returns null

m octAll(k): returns an iterable collection of all entries with
key k
® put(k, 0): inserts and returns the entry (k, o)

® remove(e): remove the entry e from the dictionary

® entrySet(): returns an iterable collection of the entries in
the dictionary

m size(), isEmpty()

Example

Operation
put(5,A)
put(7,B)
put(2,C)
put(8,D)
put(2,E)
get(7)
get(4)
get(2)
getAll(2)
size()

remove(get(5))

get(5)

Output
(5,A)
(7,B)
(2,0
(8,D)
(2/E)
(7,B)
null
(2,0
(2,0),(2,E)
5

(5,A)

Dictionary

(5,A)

(5,A),(7,B)

(5,A),(7,B),(2,C)
(5,A),(7,B),(2,C),(8,D)
(5,A),(7,B),(2,C),(8,D),(2,E)
(5,A),(7,B),(2,C),(8,D),(2,E)
(5,A),(7,B),(2,C),(8,D),(2,E)
(5,A),(7,B),(2,C),(8,D),(2,E)
(5,A),(7,B),(2,C),(8,D),(2,E)
(5,A),(7,B),(2,C),(8,D),(2,E)
(7,B),(2,C),(8,D),(2,E)
(7,B),(2,C),(8,D),(2,E)

A List-Based Dictionary

= A |og file or audit trail is a dictionary implemented by means
of an unsorted sequence

m \We store the items of the dictionary in a sequence (based on a
doubly-linked list or array), in arbitrary order

m Performance:

m put takes O(1) time since we can insert the new item at the
beginning or at the end of the sequence

m get and remove take O(n) time since in the worst case (the item
is not found) we traverse the entire sequence to look for an item
with the given key

® The log file is effective only for dictionaries of small size or
for dictionaries on which insertions are the most common
operations, while searches and removals are rarely
performed (e.g., historical record of logins to a workstation)

The getAll and put Algorithms

Algorithm getAll(k)
Create an initially-empty list L
fore: D do
if e.getKey() =k then
L.addLast(e)

return L

Algorithm put(k,v)
Create a new entry e = (k,v)

S.addLast(e)

return ¢

The remove Algorithm

Algorithm remove(e):
{ We don’t assume here that e stores its position in S }
B = S.positions()
while B.hasNext() do
p = B.next()
if p.element() = e then
S.remove(p)
return e

return null {there is no entry e in D}

Hash Table Implementation

= \We can also create a hash-table dictionary
implementation.

= If we use separate chaining to handle collisions, then
each operation can be delegated to a list-based
dictionary stored at each hash table cell.

Recall that

m A search table is a dictionary implemented by means of a
sorted array

®m We store the items of the dictionary in an array-based sequence,
sorted by key

® We use an external comparator for the keys

® Performance:
m oet takes O(log n) time, using binary search

® put takes O(n) time since in the worst case we have to shift n
items to make room for the new item

® remove takes O(n) time since in the worst case we have to shift
n items to compact the items after the removal

Recall that

® A search table is effective only for dictionaries of small size
or for dictionaries on which searches are the most common
operations, while insertions and removals are rarely
performed (e.g., credit card authorizations)

Skip Lists

® We can do better using skip lists

® Find the entry by jumping

S, [=od—{ 101}

15

What is a Skip List

m A skip list for a set S of distinct (key, element) items is a series of
lists S, S, ..., .S, such that

m Each list S; contains the special keys +o0 and -
m |ist S, contains the keys of S in nondecreasing order

m Each list is a subsequence of the previous one, i.e.,
S$,E8,.,€ ...C5,

m List §, contains only the two special keys
S, B3
S, B3
S, B3
S, =42l

Search

= We search for a key x in a a skip list as follows:
m \We start at the first position of the top list

m At the current position p, we compare x with y <— key(next(p))
x = y: we return element(next(p))
x >y: we “scan forward”
x <y: we “drop down”

= If we try to drop down past the bottom list, we return null

= Example: search for 78

? -
scan forwar
} =
drop down
. }}—:

S, E——as]—ae—{sr—{5a—{4d]

Randomized Algorithms

= \We analyze the expected running
time of a randomized algorithm
under the following assumptions

m the coins are unbiased, and
= It contains statements of the type = the coin tosses are independent
b < random()

= A randomized algorithm performs
coin tosses (i.e., uses random bits)
to control its execution

= The worst-case running time of a

it b =0 randomized algorithm is often large
doA... but has very low probability (e.qg., it
else { h=1} occurs when all the coin tosses give
do B ... “heads”)
= Its running time depends on the = We use a randomized algorithm to

outcomes of the coin tosses insert items into a skip list

Insertion

= To insert an entry (x, o) into a skip list:

= We repeatedly toss a coin until we get tails, and we denote with i the
number of times the coin came up heads

m If i = h, we add to the skip list new lists §,,,, ... , S;,,, each containing only
the two special keys

= We search for x in the skip list and find the positions p,, p,, ..., p;of the
items with largest key less than x in each list §,, S, ..., S;

[/

= Forj<0,...,i, we insert item (x, o) into list §; after position p;

Insertion

m Example: insert key 15, with i =2

15

15

39

15

Deletion

= To remove an entry with key x from a skip list, we proceed as
follows:

= We search for x in the skip list and find the positions p,, p,, ..., p;of the
items with key x, where position p; is in list S;

= \We remove positions p,, p,, ..., p; from the lists §,, S, ..., S;
= We remove all but one list containing only the two special keys

Deletion

= Example: remove key 34

S, (o]
D>
S, [3 [+ s, =4 [+

— s B—E—E
S, [zod— 1223 45 +od

~ L

T

=
=

Implementation

= We can implement a skip list with quad-nodes

= A quad-node stores: quad-node
= entry

link to the node prev
m |ink to the node next
= |ink to the node below
m |ink to the node above

= Also, we define special keys PLUS_INF and
MINUS_INF, and we modify the key comparator to
handle them

Space Usage

= The space used by a skip list
depends on the random bits used by
each invocation of the insertion
algorithm

= We use the following two basic
probabilistic facts:
Fact 1: The probability of getting i
consecutive heads when flipping a coin
is 1/2¢

Fact 2: If each of n entries is present in a
set with probability p, the expected size
of the set is np

= Consider a skip list with n entries

m By Fact 1, we insert an entry in list
S; with probability 1/2

= By Fact 2, the expected size of list §;
IS n/2¢

= The expected number of nodes
used by the skip list is

@ Thus, the expected space usage of a
skip list with n items is O(n)

Height

= The running time of the search an
insertion algorithms is affected by the
height A of the skip list

= We show that with high probability, a
skip list with n items has height O(log

n)

= We use the following additional
probabilistic fact:
Fact 3: If each of n events has probability

p, the probability that at least one event
occurs is at most np

= Consider a skip list with n entries

= By Fact 1, we insert an entry in list S;
with probability 1/2¢

= By Fact 3, the probability that list §;
has at least one item is at most n/2!

By picking i = 3log n, we have that
the probability that §;,.,, has at
least one entry is
at most

n/231°¢" = p/p3 = 1/n?

Thus a skip list with n entries has
height at most 3log n with
probability at least 1 — 1/n?

Search and Update Times

= When we scan forward in a list, the

= The search time in a skip list is destination key does not belong to

proportional to

a higher list
" the number of drop-down steps, plus = A scan-forward step is associated
= the number of scan-forward steps with a former coin toss that gave tails
= The drop-down steps are bounded by = By Fact 4, in each list the expected
the height of the skip list and thus number of scan-forward steps is 2

are O(log n) with high probability
= Thus, the expected number of

= To analyze the scan-forward steps, scan-forward steps is O(log n)
we use yet another probabilistic fact:
The expected number of coin tosses = \We conclude that a search in a skip

required in order to get tails is 2 list takes O(log 1) expected time

= The analysis of insertion and
deletion gives similar results

Summary

= A skip list is a data structure for = Using a more complex
ordered maps/dictionaries that probabilistic analysis, one can
uses a randomized insertion show that these performance
algorithm bounds also hold with high
probability

= In a skip list with » entries
= The expected space used is O(n) = Skip lists are fast and simple to

= The expected search, insertion and implement in practice
deletion time is O(log n)

Sets

= A set is a collection of distinct objects

® The methods a the set ADT
m Add(e)
® Remove(e)
® Contains(e)

m [terator()

= The operations between pairs of sets
" Aunion(B): {x|xisinAorxisin B}
®m A.intersect(B): { x| xisinAand xisin B }

m A.subtract(B) : { x| xi1sin Aand x isnotin B }

Storing a Set in a List

= We can implement a set with a list

= Elements are stored sorted according to some
canonical ordering

= The space used is O(n)

Generic Merging

Generalized merge of
two sorted lists 4 and B

Template method
genericMerge

Auxiliary methods
m alsless

m blsLess

= bothAreEqual

Runs in O(n ,+ny) time
provided the auxiliary
methods run in O(1)
time

Algorithm genericMerge(A, B)

§' < empty sequence
while —A.isEmpty() A = B.isEmpty()
a < A.first().element(); b <— B.first().element()
ifa<b
alsLess(a, S); A.remove(A.first())
elseif b <a
blsLess(b, S); B.remove(B.first())
else {b=a}
bothAreEqual(a, b, S)
A.remove(A.first()); B.remove(B.first())
while -~ A.isEmpty()
alsLess(a, S); A.remove(A.first())
while - B.isEmpty()
blsLess(b, S), B.remove(B.first())
return S

Using Generic Merge for Set
Operations

= Set union:

= Any of the set operations can be = alsLess(a, S)
implemented using a generic S.insertLast(a)
merge m pIsLess(b, S)

= For example: S.insertLast(b)

m pothAreEqual(a, b, S)

m For intersection: only copy S. insertLast(a)

elements that are duplicated in

both list = Set intersection:

= For union: copy every element m alsLess(a, S)
from both lists except for the { do nothing \
duplicates ¢

m blsLess(b, S)

= All methods run in linear time { do nothing }
® pothAreEqual(a, b, S)

S. insertLast(a)

Partitions

= A partition is a collection of disjoint sets

. E'g'l A = {1I 4[7}I B= {21 3[6’ 9}1 C = {51 8[10[
11, 12}

= The methods of the partition ADT

= makeSet(x): Create a singleton set containing the
element x and return the position storing x in this
set

= union(A,B): Return the set A U B, destroying the
old Aand B

= find(p): Return the set containing the element at
position p

List-based Implementation

= Each set is stored in a sequence represented with a linked-list

= Each node should store an object containing the element and a
reference to the set name

dO=0=0) IS OSOR0SR0)
DY DYD DYDYDED

Analysis of List-based
Representation

= When doing a union, always move elements from the
smaller set to the larger set

m Each time an element is moved it goes to a set of size at
least double its old set

m Thus, an element can be moved at most O(log n) times

= Total time needed to do n unions and finds is O(n log n).

Tree-based Implementation

= Each element is stored in a node, which contains a pointer to a
set name

= A node v whose set pointer points back to v is also a set name

= Each set is a tree, rooted at a node with a self-referencing set
pointer

= For example: The sets “17, “2”, and “5”:

o2 G YNNG
OO OP @ @
oG

Union-Find Operations

= To do a union, simply make the
root of one tree point to the
root of the other

= To do a find, follow set-name
pointers from the starting node
until reaching a node whose
set-name pointer refers back to

itself

Union-Find Heuristic 1

= Union by size:

= When performing a union, make the
root of smaller tree point to the root
of the larger

= Implies O(n log n) time for
performing n union-find
operations:

= Each time we follow a pointer, we
are going to a subtree of size at
least double the size of the previous
subtree

= Thus, we will follow at most O(log
n) pointers for any find.

Union-Find Heuristic 2

= Path compression:

m After performing a find, compress all the pointers on the path just
traversed so that they all point to the root

= Implies O(n log™ n) time for performing n union-find operations:

Bonus HW12 (Due on Jan. 8)

Classify webpages by keywords!

= (Given a set of web pages and a set of keywords, classify webpages by whether it
contains the keyword

® For each keyword k, store a set, W(k), of Web pages that contain keyword k
® You can implement the set using an ordered linked list (in an alphabetical order)

= Implement set operations using genericMerge algorithm:

® Intersection, Union, Subtraction

® You can also use the java library that implements java.util.Set, e.g.,
java.util.HashSet

® You can deal with two-word query, 1.e., webpages that contain both k1 and k2, by
returning W(k1) intersect W(k2)

Operations

Given a sequence of operations in a txt file,
parse the txt file and execute each operation

accordingly

Add(set k, webpages) Add webpages that contain a keyword k
to the set k

Union(set k1, set k2) Return all webpages that contain k1 or
k2

Intersect(set k1, set k2) Return all webpages that contain k1 and
k2

Subtract(set k1, set k2) Return all webpages that contain k1 but

do not contain k2

An input file

Similar to HW12,

1. You need to read the sequence of
operations from a txt file

2. The format is firm

3. Raise an exception if the input

does not match the format

AddKey Fang

AddKey Dissertation ICSE Yu
AddWeb www.cs.ucsb.edu/~yuf
AddWeb www3.nccu.edu.tw/~yuf
Intersect Fang ICSE

Union Fang Dissertation

Subtract Fang Yu

Output:

Web Pages that contains Fang and ICSE:
www3.nccu.edu.tw/~yuf

Web Pages that contains Fang or Dissertation:
www.cs.edu.tw/~yuf
www3.nccu.edu.tw/~yuf

Web Pages that contains Fang but does not
contain Yu:

None in the target webpages

