Announcement

- We will talk about Binary Search Tree today and Hash Table next week as the last two lectures.
- The late HWs can be submitted until Jan 1. TAs will then release all the codes so that you can use them in the project.
- The project demo is scheduled on Jan. 11.
- The makeup exam will also be held on Jan. 11.
 - The questions cover the materials in the midterm and the last three lectures: dynamic programming, binary search tree, maps and hash tables.
Search Trees

Binary Search Trees, AVL trees, and Splay Trees
A binary search tree is a binary tree storing keys (or key-value entries) at its internal nodes and satisfying the following property:

- Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have $\text{key}(u) \leq \text{key}(v) \leq \text{key}(w)$

- External nodes do not store items

An inorder traversal of a binary search trees visits the keys in an increasing order
Search

- To search for a key k, we trace a downward path starting at the root.
- The next node visited depends on the comparison of k with the key of the current node.
- If we reach a leaf, the key is not found.
- Example: get(4):
 - Call TreeSearch(4, root)
- The algorithms for floorEntry and ceilingEntry are similar.

Algorithm TreeSearch(k, v)

```plaintext
if $T.isExternal(v)$
    return $v$
if $k < key(v)$
    return TreeSearch($k$, $T.left(v)$)
else if $k = key(v)$
    return $v$
else {
    $k > key(v)$
}
return TreeSearch($k$, $T.right(v)$)
```
Insertion

- To perform operation put(k, o), we search for key k (using TreeSearch)
- Assume k is not already in the tree, and let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5
Deletion

- To perform operation \text{remove}(k), we search for key \(k \)
- Assume key \(k \) is in the tree, and let \(v \) be the node storing \(k \)
- If node \(v \) has a leaf child \(w \), we remove \(v \) and \(w \) from the tree with operation \text{removeExternal}(w), which removes \(w \) and its parent
- Example: remove 4
Deletion (cont.)

- We consider the case where the key k to be removed is stored at a node v whose children are both internal
 - we find the internal node w that follows v in an inorder traversal
 - we copy $\text{key}(w)$ into node v
 - we remove node w and its left child z (which must be a leaf) by means of operation $\text{removeExternal}(z)$
- Example: remove 3
Performance

- Consider \(n \) ordered set items implemented by means of a binary search tree of height \(h \)
 - the space used is \(O(n) \)
 - methods get, put and remove take \(O(h) \) time

- The height \(h \) is \(O(n) \) in the worst case and \(O(\log n) \) in the best case

We want a balanced binary tree!
AVL Tree Definition

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes:
Height of an AVL Tree

- Fact: The height of an AVL tree storing n keys is $O(\log n)$.

- Proof: Let us bound $n(h)$: the minimum number of internal nodes of an AVL tree of height h.

- We easily see that $n(1) = 1$ and $n(2) = 2$

- For $n > 2$, an AVL tree of height h contains the root node, one AVL subtree of height $n-1$ and another of height $n-2$.

- That is, $n(h) = 1 + n(h-1) + n(h-2)$

- Knowing $n(h-1) > n(h-2)$, we get $n(h) > 2n(h-2)$. So $n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), \ldots$ (by induction), $n(h) > 2^i n(h-2i)$

- Solving the base case we get: $n(h) > 2^{h/2-1}$

- Taking logarithms: $h < 2 \log n(h) + 2$

- Thus the height of an AVL tree is $O(\log n)$
Insertion

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

 Before insertion

 - 44
 - 17
 - 78
 - 32
 - 50
 - 88
 - 48
 - 62

 After insertion

 - 44
 - 17
 - 54
 - 78
 - 32
 - 50
 - 88
 - 48
 - 62

 Signs:
 - c=z
 - a=y
 - b=x
 - w
After Insertion

- All nodes along the path increase their height by 1
- It may violate the AVL property
Search and repair

- Let z be the first violation node from the bottom along the path
- Let y be z's child with the higher height (y is 2 greater than its sibling)
- Let x be y's child with the higher height
- We rebalance z by calling *trinode restructuring* method
Trinode Restructuring

- let \((a,b,c)\) be an inorder listing of \(x, y, z\)
- perform the rotations needed to make \(b\) the topmost node of the three

\[T_0 \quad T_1 \quad T_2 \quad T_3 \]

- case 1: single rotation (a left rotation about \(a\))
- case 2: double rotation (a right rotation about \(c\), then a left rotation about \(a\))

(other two cases are symmetrical)
Restructuring (as Single Rotations)

- Single Rotations:

```
  a = z
  b = y
  c = x

  T_0  T_1  T_2  T_3
```

Single rotation

```
  a = z
  b = y
  c = x

  T_0  T_1  T_2  T_3
```

Single rotation

```
  a = x
  b = y
  c = z

  T_0  T_1  T_2  T_3
```

Single rotation

```
  a = x
  b = y
  c = z

  T_0  T_1  T_2  T_3
```
Restructuring
(as Double Rotations)

- double rotations:

1. **Double Rotation 1:**
 - T_0 to T_1
 - T_2 to T_3

2. **Double Rotation 2:**
 - T_0 to T_1
 - T_2 to T_3
Insertion Example, continued

unbalanced...

...balanced

AVL Trees
Removal

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an unbalance.

- Example:

![Before and after deletion of 32 in an AVL tree](image-url)
Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.

![AVL Trees Diagram](image-url)
AVL Tree Performance

- a single restructure takes $O(1)$ time
 - using a linked-structure binary tree

- get takes $O(\log n)$ time
 - height of tree is $O(\log n)$, no restructures needed

- put takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$

- remove takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$
Splay Tree

- A splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update).

- Deepest internal node accessed is splayed.

- Splay: move the node to the root.

- Splaying costs $O(h)$, where h is height of the tree – which is still $O(n)$ worst-case.
 - $O(h)$ rotations, each of which is $O(1)$.
Splay Tree

- which nodes are splayed after each operation?

<table>
<thead>
<tr>
<th>method</th>
<th>splay node</th>
</tr>
</thead>
<tbody>
<tr>
<td>get(k)</td>
<td>if key found, use that node</td>
</tr>
<tr>
<td></td>
<td>if key not found, use parent of ending external node</td>
</tr>
<tr>
<td>put(k,v)</td>
<td>use the new node containing the entry inserted</td>
</tr>
<tr>
<td>remove(k)</td>
<td>use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)</td>
</tr>
</tbody>
</table>
Searching in a Splay Tree: Starts the Same as in a BST

- Search proceeds down the tree to found item or an external node.

- Example: Search for the item with key 11.
Example Searching in a BST, continued

- search for key 8, ends at an internal node.
Splay Trees do Rotations after Every Operation (Even Search)

- new operation: *splay*
 - splaying moves a node to the root using rotations

- right rotation
 - makes the left child x of a node y into y’s parent; y becomes the right child of x

- left rotation
 - makes the right child y of a node x into x’s parent; x becomes the left child of y
Splaying:

- “x is a left-left grandchild” means x is a left child of its parent, which is itself a left child of its parent
- p is x’s parent; g is p’s parent

1. Start with node x
2. Is x the root?
 - Yes: Stop
 - No: Is x a child of the root?
 - No: Is x the left child of the root?
 - Yes: Zig
 - No: Zig
 - Yes: Zig-zag
 - No: Zig-zig
3. Zig-zag
4. Zig-zag
5. Zig-zig
6. Zig

Splay Trees
Visualizing the Splaying Cases

Splay Trees
Splaying Example

- let \(x = (8,N) \)
 - \(x \) is the right child of its parent, which is the left child of the grandparent
 - left-rotate around \(p \), then right-rotate around \(g \)

1. (before rotating)

2. (after first rotation)

3. (after second rotation)
 - \(x \) is not yet the root, so we splay again
Splaying Example, Continued

- now x is the left child of the root
- right-rotate around root

1. (before applying rotation)

2. (after rotation)

x is the root, so stop
Example Result of Splaying

- tree might not be more balanced
- e.g. splay (40,X)
 - before, the depth of the shallowest leaf is 3 and the deepest is 7
 - after, the depth of shallowest leaf is 1 and deepest is 8

![Splay Trees Diagram](attachment:31.png)
Performance of Splay Trees

- Amortized cost of any splay operation is $O(\log n)$
- This implies that splay trees can actually adapt to perform searches on frequently-requested items much faster than $O(\log n)$ in some cases
Project Hints

- How to call google?
- How to find the reference links?
- How to encode Chinese?
HW10 (Due on Dec. 28)

Use Google and get the links!

- Get a keyword from user
- Return the urls listed in the search result
- Save the results in a hash table (we will discuss it in the next lecture)

- After this HW, you can step to the forth stage of the project
- You can apply the same technique to other search engines
Coming Up

- Recap: Binary Search Trees
 - TB Chapter 10
- Maps and Hash tables
 - TB Chapter 9 and 10

Happy New Year!