Fundamental Algorithms

Brute force, Greedy, Dynamic Programming:
Dynamic Programming Technique

- Primarily for optimization problems

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - **Simple subproblems**: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - **Subproblem optimality**: the global optimum value can be defined in terms of optimal subproblems
 - **Subproblem overlap**: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
Matrix Chain-Products

Lets start from a mathematic problem

- Matrix Multiplication.
 - \(C = A * B \)
 - \(A \) is \(d \times e \) and \(B \) is \(e \times f \)
 - \(A * B \) takes \(d \times e \times f \) times of basic operations

\[
C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j]
\]
Matrix Chain-Products

- Compute $A = A_0 * A_1 * \ldots * A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- Problem: We want to find a way to compute the result with the **minimal** number of operations
Matrix Chain-Products

- How to put parentheses on matrix?

- Example:
 - B is 3×100
 - C is 100×5
 - D is 5×5
 - $(B*C)*D$ takes $1500 + 75 = 1575$ ops
 - $B*(C*D)$ takes $1500 + 2500 = 4000$ ops
 - The order of computation matters!
 - We want to figure out the way with the minimal cost
Brute-force

- An enumeration approach

Matrix Chain-Product Alg.:
- Try all possible ways to parenthesize $A = A_0 * A_1 * \ldots * A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best

Running time:
- The number of parenthesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4^n.
- This is a terrible algorithm!
Greedy

- Choose the local optimal iteratively

- Repeatedly select the product that uses the fewest operations.

Example:
- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10
- A*B or B*C or C*D \rightarrow B*C
- A*($((B*C)*D)$ takes $500+250+250 = 1000$ ops
Another example

- A is 101×11
- B is 11×9
- C is 9×100
- D is 100×99

- The greedy approach gives $A\times((B\times C)\times D))$, which takes $109989+9900+108900=228789$ ops

- However, $(A\times B)\times(C\times D)$ takes $9999+89991+89100=189090$ ops

- This is a counter example that the greedy approach does not give us an optimal solution
Dynamic Programming

- Simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner

Two key observations:

- The problem can be split into sub-problems

- The optimal solution can be defined in terms of optimal sub-problems
Dynamic Programming

- Find the best parenthesization of $A_i * A_{i+1} * \ldots * A_j$.

- Let $N_{i,j}$ denote the number of operations done by this subproblem.

- The optimal solution for the whole problem is $N_{0,n-1}$.

- There has to be a final multiplication (root of the expression tree) for the optimal solution.

- Say, the final multiply is at index i: $(A_0 * \ldots * A_i) * (A_{i+1} * \ldots * A_{n-1})$.

Dynamic Programming

- Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.

- If the global optimum did not have these optimal subproblems, we could define an even better “optimal” solution.

- We can compute $N_{i,j}$ by considering each k.
A Characterizing Equation

- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $N_{i,j}$ is the following:

\[
N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}
\]

- Note that sub-problems overlap and hence we cannot divide the problem into completely independent sub-problems (divide and conquer)
Bottom-up computation

- \(N(i,i) = 0 \)
- \(N(i,i+1) = N(i,i) + N(i+1,i+1) + d_i d_{i+1} d_{i+2} \)
- \(N(i,i+2) = \min \{ \)
 \[
 N(i,i) + N(i+1,i+2) + d_i d_{i+1} d_{i+2} \\
 N(i,i+1) + N(i+2,i+2) + d_i d_{i+2} d_{i+2}
 \]
 \}
- \(N(i,i+3) \ldots \)
- Until you get \(N(i,j) \)
The bottom-up construction fills in the \(N \) array by diagonals.

\(N_{i,j} \) gets values from previous entries in i-th row and j-th column.

Filling in each entry in the \(N \) table takes \(O(n) \) time.

Total run time: \(O(n^3) \)

Getting actual parenthesization can be done by remembering “k” for each \(N \) entry.

\[
N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}
\]
A Dynamic Programming Algorithm

- Since subproblems overlap, we don’t use recursion.
- Instead, we construct optimal subproblems “bottom-up.”
- $N_{i,i}$’s are easy, so start with them.
- Then do length 2,3,… subproblems, and so on.
- The running time is $O(n^3)$

Algorithm `matrixChain(S)`:

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal paranethization of S

```plaintext
for $i \leftarrow 1$ to $n-1$ do 
    $N_{i,i} \leftarrow 0$

for $b \leftarrow 1$ to $n-1$ do 
    for $i \leftarrow 0$ to $n-b-1$ do 
        $j \leftarrow i+b$
        $N_{i,j} \leftarrow +\text{infinity}$
        for $k \leftarrow i$ to $j-1$ do 
            $N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$
```
Similarity between strings

- A common text processing problem:
 - Two strands of DNA
 - Two versions of source code for the same program
 - `diff` (a built-in program for comparing text files)
Subsequences

- A *subsequence* of a character string $x_0x_1x_2\ldots x_{n-1}$ is a string of the form $x_{i_1}x_{i_2}\ldots x_{i_k}$, where $i_j < i_{j+1}$.

- Not necessary contiguous but taken in order

- Not the same as substring!

- Example String: ABCDEFGHIJK
 - Subsequence: ACEGIJK
 - Subsequence: DFGHK
 - Not subsequence: DAGH
The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y.
- Has applications to DNA similarity testing (alphabet is $\{A,C,G,T\}$).
- Example: $ABCDEF$ and $XZACKDFWGH$.
 - have $ACDFG$ as a longest common subsequence.
A Poor Approach to the LCS Problem

- A Brute-force solution:
 - Enumerate all subsequences of X
 - Test which ones are also subsequences of Y
 - Pick the longest one.

- Analysis:
 - If X is of length n, then it has 2^n subsequences
 - If Y is of length m, the time complexity is $O(2^{nm})$
 - This is an exponential-time algorithm!
A Dynamic-Programming Approach to the LCS Problem

- Define $L[i,j]$ to be the length of the longest common subsequence of $X[0..i]$ and $Y[0..j]$.

- Allow for -1 as an index, so $L[-1,k] = 0$ and $L[k,-1]=0$, to indicate that the null part of X or Y has no match with the other.

- Then we can define $L[i,j]$ in the general case as follows:
 1. If $x_i=y_j$, then $L[i,j] = L[i-1,j-1] + 1$ (we can add this match)
 2. If $x_i\neq y_j$, then $L[i,j] = \max\{L[i-1,j], L[i,j-1]\}$ (we have no match here)
A Dynamic-Programming Approach to the LCS Problem

Case 1:

\[L[8,10] = 5 \]

\[Y = CGATAATTGAGA \]

\[X = GTTCCTAATA \]

Case 2:

\[Y = CGATAATTGAG \]

\[X = GTTCCTAATA \]

\[L[9,9] = 6 \]

\[L[8,10] = 5 \]
An LCS Algorithm

Algorithm LCS (X, Y):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string that is a subsequence of both the string X[0..i] = x_0x_1x_2...x_i and the string Y[0..j] = y_0y_1y_2...y_j

for i =0 to n-1 do
 L[i,-1] = 0
for j =0 to m-1 do
 L[-1,j] = 0
for i =0 to n-1 do
 for j =0 to m-1 do
 if x_i = y_j then
 L[i, j] = L[i-1, j-1] + 1
 else
 L[i, j] = max{L[i-1, j] , L[i, j-1]}
return array L
Visualizing the LCS Algorithm

<table>
<thead>
<tr>
<th>L</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Analysis of LCS Algorithm

- We have two nested loops
 - The outer one iterates n times
 - The inner one iterates m times
 - A constant amount of work is done inside each iteration of the inner loop
 - Thus, the total running time is $O(nm)$

- Answer is contained in $L[n,m]$ (and the subsequence can be recovered from the L table).
Exercise

Given two strings, output the LCS

- Example:
 - Inputs: “Fang Yu” and “Shannon Yu”
 - Output: “an Yu”
for i = 1 to n-1 do
 L[i,-1] = NULL;
for j = 0 to m-1 do
 L[-1,j] = NULL;
for i = 0 to n-1 do
 for j = 0 to m-1 do
 if x_i = y_j then
 L[i, j] = L[i-1, j-1] + x_i;
 else
 L[i, j] = (L[i-1, j].size() <= L[i, j-1].size())?L[i,j-1]:L[i-1,j];
return L[n-1,m-1] ;
HW9 (Due on Nov. 29)

Find the most similar keyword!

- Implement the LCS algorithm for keywords
- Add each keyword into an array/linked list
- Given a string s, output the keyword k, such that k’s value and s have the longest common sequence among all the added keywords.
Operations

Given a sequence of operations in a txt file, parse the txt file and execute each operation accordingly

<table>
<thead>
<tr>
<th>operations</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(Keyword k)</td>
<td>Insert a keyword k to an array</td>
</tr>
<tr>
<td>find(String s)</td>
<td>Find and output the most similar keyword by using the LCS algorithm</td>
</tr>
</tbody>
</table>
An input file

Similar to HW9,

1. You need to read the sequence of operations from a txt file
2. The format is firm
3. Raise an exception if the input does not match the format

add Fang 3
add Yu 5
add NCCU 2
add UCSB 1
add Management 4
add Information 5
find NTU
find Manager

NTU: [NCCU, 2]
Manager: [Management, 4]
Midterm on Dec. 6
(9:10-12:00am, 大勇樓106)

- Lec 1-11, TextBook Ch1-8, 10-12

- How to prepare your midterm:
 - Understand “ALL” the materials mentioned in the slides
 - Discuss with me, your TAs, or classmates
 - Read the text book to help you understand the materials

- You are allowed to bring an A4 size note
 - Prepare your own note; write whatever you think that may help you get better scores in the midterm