Fundamental Algorithms

Brute force, Greedy, Dynamic Programming:
Dynamic Programming Technique

- Primarily for optimization problems

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - **Simple subproblems:** the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - **Subproblem optimality:** the global optimum value can be defined in terms of optimal subproblems
 - **Subproblem overlap:** the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
Matrix Chain-Products

Let's start from a mathematic problem

- Matrix Multiplication.
 - \(C = A \times B \)
 - \(A \) is \(d \times e \) and \(B \) is \(e \times f \)
 - \(A \times B \) takes \(d \times e \times f \) times of basic operations

\[
C[i, j] = \sum_{k=0}^{e-1} A[i, k] \times B[k, j]
\]
Matrix Chain-Products

- Compute $A = A_0 * A_1 * \ldots * A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- Problem: We want to find a way to compute the result with the minimal number of operations
Matrix Chain-Products

- How to put parentheses on matrix?

- Example:
 - B is 3×100
 - C is 100×5
 - D is 5×5
 - $(B*C)*D$ takes $1500 + 75 = 1575$ ops
 - $B*(C*D)$ takes $1500 + 2500 = 4000$ ops
 - The order of computation matters!
 - We want to figure out the way with the minimal cost
Brute-force

- An enumeration approach

Matrix Chain-Product Alg.:
- Try all possible ways to parenthesize \(A = A_0 \cdot A_1 \cdot \ldots \cdot A_{n-1} \)
- Calculate number of ops for each one
- Pick the one that is best

Running time:
- The number of paranethesizations is equal to the number of binary trees with \(n \) nodes
- This is **exponential**!
- It is called the Catalan number, and it is almost \(4^n \).
- This is a terrible algorithm!
Greedy

- Choose the local optimal iteratively
- Repeatedly select the product that uses the fewest operations.

Example:
- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10
- $A \times B$ or $B \times C$ or $C \times D \rightarrow B \times C$
- $A \times ((B \times C) \times D)$ takes $500 + 250 + 250 = 1000$ ops
Another example

- Another example
 - A is 101×11
 - B is 11×9
 - C is 9×100
 - D is 100×99

- The greedy approach gives $A \ast ((B \ast C) \ast D))$, which takes $109989 + 9900 + 108900 = 228789$ ops

- However, $(A \ast B) \ast (C \ast D)$ takes $9999 + 89991 + 89100 = 189090$ ops

- This is a counter example that the greedy approach does not give us an optimal solution
Dynamic Programming

- Simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner

Two key observations:

- The problem can be split into sub-problems

- The optimal solution can be defined in terms of optimal sub-problems
Dynamic Programming

- Find the best parenthesization of $A_i * A_{i+1} * \ldots * A_j$.
- Let $N_{i,j}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $N_{0,n-1}$.
- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $(A_0 * \ldots * A_i) * (A_{i+1} * \ldots * A_{n-1})$.
Dynamic Programming

- Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.

- If the global optimum did not have these optimal subproblems, we could define an even better “optimal” solution.

- We can compute $N_{i,j}$ by considering each k.
A Characterizing Equation

- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $N_{i,j}$ is the following:

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_k d_{k+1} d_{j+1} \}$$

- Note that sub-problems overlap and hence we cannot divide the problem into completely independent sub-problems (divide and conquer)
Bottom-up computation

- \(N(i,i) = 0 \)
- \(N(i,i+1) = N(i,i) + N(i+1,i+1) + d_i d_{i+1} d_{i+2} \)
- \(N(i,i+2) = \min \{ \)
 \(N(i,i) + N(i+1,i+2) + d_i d_{i+1} d_{i+2} \)
 \(N(i,i+1) + N(i+2,i+2) + d_i d_{i+2} d_{i+2} \)
\)
- \(N(i,i+3) \ldots \)
- Until you get \(N(i,j) \)
A Dynamic Programming Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals.
- \(N_{i,j} \) gets values from previous entries in i-th row and j-th column.
- Filling in each entry in the N table takes \(O(n) \) time.
- Total run time: \(O(n^3) \)
- Getting actual parenthesization can be done by remembering “k” for each N entry.

\[
N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}
\]
A Dynamic Programming Algorithm

- Since subproblems overlap, we don’t use recursion.
- Instead, we construct optimal subproblems “bottom-up.”
- \(N_{i,i} \)’s are easy, so start with them
- Then do length 2, 3, … subproblems, and so on.
- The running time is \(O(n^3) \)

Algorithm \(\text{matrixChain}(S) \):

Input: sequence \(S \) of \(n \) matrices to be multiplied

Output: number of operations in an optimal paranethization of \(S \)

for \(i \leftarrow 1 \) to \(n-1 \) do

\[N_{i,i} \leftarrow 0 \]

for \(b \leftarrow 1 \) to \(n-1 \) do

for \(i \leftarrow 0 \) to \(n-b-1 \) do

\[j \leftarrow i+b \]

\[N_{i,j} \leftarrow +\text{infinity} \]

for \(k \leftarrow i \) to \(j-1 \) do

\[N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\} \]
Similarity between strings

- A common text processing problem:
 - Two strands of DNA
 - Two versions of source code for the same program
 - diff (a built-in program for comparing text files)
Subsequences

- A *subsequence* of a character string $x_0x_1x_2\ldots x_{n-1}$ is a string of the form $x_{i_1}x_{i_2}\ldots x_{i_k}$, where $i_j < i_{j+1}$.

- Not necessary contiguous but taken in order

- Not the same as substring!

- Example String: ABCDEFGHIJK
 - Subsequence: ACEGIJK
 - Subsequence: DFGHK
 - Not subsequence: DAGH
The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y.
- Has applications to DNA similarity testing (alphabet is \{A,C,G,T\}).
- Example: ABCDEFG and XZACKDFWGH
 - have ACDFG as a longest common subsequence.
A Poor Approach to the LCS Problem

- A Brute-force solution:
 - Enumerate all subsequences of X
 - Test which ones are also subsequences of Y
 - Pick the longest one.

- Analysis:
 - If X is of length n, then it has 2^n subsequences
 - If Y is of length m, the time complexity is $O(2^{nm})$
 - This is an exponential-time algorithm!
A Dynamic-Programming Approach to the LCS Problem

- Define $L[i,j]$ to be the length of the longest common subsequence of $X[0..i]$ and $Y[0..j]$.

- Allow for -1 as an index, so $L[-1,k] = 0$ and $L[k,-1] = 0$, to indicate that the null part of X or Y has no match with the other.

- Then we can define $L[i,j]$ in the general case as follows:
 1. If $x_i = y_j$, then $L[i,j] = L[i-1,j-1] + 1$ (we can add this match)
 2. If $x_i \neq y_j$, then $L[i,j] = \max\{L[i-1,j], L[i,j-1]\}$ (we have no match here)
A Dynamic-Programming Approach to the LCS Problem

Case 1:

\[L[8,10] = 5 \]

Case 2:

\[L[9,9] = 6 \]

\[L[8,10] = 5 \]
An LCS Algorithm

Algorithm LCS(X,Y):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0,…,n-1, j = 0,…,m-1, the length L[i, j] of a longest string that is a subsequence of both the string X[0..i] = x0x1x2…xi and the string Y [0.. j] = y0y1y2…yj

for i =0 to n-1 do
 L[i,-1] = 0
for j =0 to m-1 do
 L[-1,j] = 0
for i =0 to n-1 do
 for j =0 to m-1 do
 if x_i = y_j then
 L[i, j] = L[i-1, j-1] + 1
 else
 L[i, j] = max{L[i-1, j] , L[i, j-1]}
return array L
Visualizing the LCS Algorithm

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
<td>222</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>111</td>
<td>122</td>
<td>222</td>
</tr>
</tbody>
</table>

$X = \text{GTTCCCTAATA}$

$Y = \text{CGATAATTGAGA}$
Analysis of LCS Algorithm

- We have two nested loops
 - The outer one iterates \(n \) times
 - The inner one iterates \(m \) times
 - A constant amount of work is done inside each iteration of the inner loop
 - Thus, the total running time is \(O(nm) \)

- Answer is contained in \(L[n,m] \) (and the subsequence can be recovered from the L table).
Exercise

Given two strings, output the LCS

- Example:
 - Inputs: “Fang Yu” and “Shannon Yu”
 - Output: “an Yu”
if $x_i = y_j$ then
 $L[i, j] = L[i-1, j-1] + x_i$;
else
 $L[i, j] = (L[i-1, j].size() <= L[i, j-1].size())?L[i, j-1]:L[i-1, j]$;

return $L[n-1,m-1]$;
HW9 (Due on Dec. 21)

Find the most similar keyword!

- Implement the LCS algorithm for keywords
- Add each keyword into an array/linked list
- Given a string s, output the keyword k, such that k’s value and s have the longest common sequence among all the added keywords.
Operations

Given a sequence of operations in a txt file, parse the txt file and execute each operation accordingly

<table>
<thead>
<tr>
<th>operations</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(Keyword k)</td>
<td>Insert a keyword k to an array</td>
</tr>
<tr>
<td>find(String s)</td>
<td>Find and output the most similar keyword by using the LCS algorithm</td>
</tr>
</tbody>
</table>
An input file

Similar to HW9,

1. You need to read the sequence of operations from a txt file
2. The format is firm
3. Raise an exception if the input does not match the format

add Fang 3
add Yu 5
add NCCU 2
add UCSB 1
add Management 4
add Information 5
find NTU
find Manager

NTU: [NCCU, 2]
Manager: [Management, 4]