
CS595C Fang Yu

'

&

$

%

Goldilocks: Efficiently computing the Happens-Before
Relation Using Locksets

• Authors: T. Elmas, S. Qadeer, and S. Tasiran

• Proceedings of the Workshop on Formal Approaches to Testing
and Runtime Verification, 2006

• Presented in CS595C: Architectural Support for Dynamic
Software Analysis



CS595C Fang Yu

'

&

$

%

Goal

• A new dynamic race detection algorithm which is

– efficient as simple lockset-based algorithms and

– precise as vector-clock-based algorithms



CS595C Fang Yu

'

&

$

%

More Precisely...

• Checks race freedom in constant time and

• Captures the happens-before relation precisely, i.e., declare a
race exactly when two accesses to a shared variable are not
ordered by the happens-before relation.

• Reports a data race on an execution if and only if there exists a
data race in that execution (sufficient and necessary conditions)



CS595C Fang Yu

'

&

$

%

Lockset based algorithm

Checks whether a given execution σ has a data-race.

• LH(t): the set of locks held by t

• LS(x): the set of locks that the system thinks the shared
variable x can be accessed without raising data races.

• A data race is declared if LH(t) ∩ LS(x) is empty.



CS595C Fang Yu

'

&

$

%

Motivation Example

T1: acq(m1); acq(m2); x=1; rel(m1); rel(m2)

T2: acq(m2); acq(m3); x=2; rel(m2); rel(m3)

T3: acq(m1); acq(m3); x=3; rel(m1); rel(m3)

• Simple lockset-based race detection algorithm

– Each shared variable is protected by a fixed unique lock
(LS(x) = m2)

– Consider the execution T1;T2; T3, a data race is reported
since LH(T3) = {m1,m3} and LH(T3) ∩ LS(x) = ®.



CS595C Fang Yu

'

&

$

%

Motivation Example

T1: acq(m1); acq(m2); x=1; rel(m1); rel(m2)

T2: acq(m2); acq(m3); x=2; rel(m2); rel(m3)

T3: acq(m1); acq(m3); x=3; rel(m1); rel(m3)

• Less-conservative algorithm

– Each shared variable is protected by a dynamic lock set.
(LS(x) is updated to LH(t) after a race free access to x by
a thread t)

– Consider the execution T1;T2; T3, no data race reported
since LH(T3) = {m1,m3}, LS(x) = {m2,m3} and
LH(T3) ∩ LS(x) 6= ®.



CS595C Fang Yu

'

&

$

%

Motivation Example II

Class IntBox{ int x;}

Inbox a=new IntBox(); // IntBox o1 created

Inbox b=new IntBox(); // IntBox o2 created

T1: acq(m1); a.x=++; rel(m1);

T2: acq(m1); acq(m2); tmp=a; a=b; b=tmp; rel(m1); rel(m2)

T3: acq(m2); b.x=++; rel(m2);

• Less-conservative algorithm

• Consider the execution T1; T2;T3;

– Initiall, LS(o1) = LS(o1.x) = {m1} and
LS(o2) = LS(o2.x) = {m2}.

– after T1, LS(o1.x) is assigned by LH(T1), which is {m1}
– after T2, LS(o1), LS(o2) are assigned by LH(T2), which is



CS595C Fang Yu

'

&

$

%

{m1,m2}, but LS(o1.x) = {m1} and LS(o2.x) = {m2}
remain the same, since they are not directly accessed.

– a data race is reported since LH(T3) = {m2},
LS(o1.x) = {m1} and LH(T3) ∩ LS(o1.x) = ®.
(Note that b points to o1)

• However, none of them violate happens-before relations.

• Previous lockset-based algorithms are sound but raise false
alarms.

• The Goldilocks algorithm is the first sound and complete
lockset-based algorithm.



CS595C Fang Yu

'

&

$

%

Preliminaries

• An object o has data and volatile fields denoted as d and v

respectively.

• A data variable is (o, d).

• A synchronization variable is (o, v), and each object o has a
special synchronization variable (o, l) referred to itself.

• An execution is σ = s1 →α1
t1 s2 →α2

t2 . . . sn →αn
tn

sn+1

• si is some system state, and αi is one of the following actions
executed by thread ti:

– acq(o): acquire a lock on object o. acq executed by t is
blocked until (o, l) is null and then set (o, l) to t.

– rel(o): release a lock on object o. rel is failed if o.l = null;
o.w., set o.l = null.



CS595C Fang Yu

'

&

$

%

– read(o, d), write(o, d): access the data field of object o.

– read(o, v), write(o, v): read and write the volatile field of o.

– fork(u): create a new thred with id u.

– join(u): blocks until thread u terminates.

– alloc(o):create a new object.



CS595C Fang Yu

'

&

$

%

Happens-before relation

• Given σ = s1 →α1
t1 s2 →α2

t2 . . . sn →αn
tn

sn+1

• The happens-before relation is the smallest transitively-closed
relation on the set {1, 2, ..., n}, such that k ↪→ l if 1 ≤ k ≤ l ≤ n

and one of the following holds:

– tk = tl

– αk = rel(o) and αl = acq(o)

– αk = write(o, v) and αl = read(o, v)

– αk = fork(tl)

– αl = join(tk)



CS595C Fang Yu

'

&

$

%

Data-race free execution

• σ is data-free on a data variable (o, d) if

– for all αk, αl ∈ {read(o, d), write(o, d)}, k ↪→ l or l ↪→ k.

• How to define ”concurrent read and exclusive write”?



CS595C Fang Yu

'

&

$

%

Goldilocks Algorithm

• LS(o, d) is a set of locks and thread ids, which is updated
according to the actions along the execution.

• Locks refer to the lockset having any of them may access (o, d)
without raising races.

• Thread ids refer to those threads may access (o, d) without
raising races.

• Initially, LS(o, d) = Ø.

• Update rules

– α = read(o, d) or α = write(o, d):
if LS(o, d) 6= Ø and t 6∈ LS(o, d), report data race on (o, d);
o.w., LS(o, d) := {t}

– α = read(o, v):



CS595C Fang Yu

'

&

$

%

for each (o, d), if (o, v) ∈ LS(o, d), add t to LS(o, d)

– α = write(o, v):
for each (o, d), if t ∈ LS(o, d), add (o, v) to LS(o, d)

– α = acq(o):
for each (o, d), if (o, l) ∈ LS(o, d), add t to LS(o, d)

– α = rel(o):
for each (o, d), if t ∈ LS(o, d), add (o, l) to LS(o, d)

– α = fork(u):
for each (o, d), if t ∈ LS(o, d), add u to LS(o, d)

– α = join(u):
for each (o, d), if u ∈ LS(o, d), add t to LS(o, d)

– α = alloc(o):
for each d, LS(o, d) := Ø.

• Invariants maintained by Goldilocks

– If (o′, l) ∈ LS(o, d), the last access to (o, d) happens before a



CS595C Fang Yu

'

&

$

%

subsequent acq(o′)

– If (o′, v) ∈ LS(o, d), the last access to (o, d) happens before
a subsequent read(o′, v)

– If t ∈ LS(o, d) at an access to (o, d), the last access to (o, d)
happens before this access performed by t.

• Behind the algorithm:

– Compute the transitive closure of happens-before edges

– t is in LS(o, d) if and only if there exists a sequence of
happens-before edges between the last access to (o, d) and
the next action performed by t.

– t is added as soon as such sequence is established.



CS595C Fang Yu

'

&

$

%

Theorem

Consider σ = s1 →α1
t1 s2 →α2

t2 . . . sn →αn
tn

sn+1. tn ∈ LSn(o, d) if
and only if i ↪→ n, where i ∈ [1..n− 1], αi and αn access (o, d), and
for all j ∈ [i + 1, n− 1], αj does not access (o, d).



CS595C Fang Yu

'

&

$

%

Come back to our example

Class IntBox{ int x;}

Inbox a=new IntBox(); // IntBox o1 created

Inbox b=new IntBox(); // IntBox o2 created

T1: acq(m1); a.x=++; rel(m1);

T2: acq(m1); acq(m2); tmp=a; a=b; b=tmp; rel(m1); rel(m2)

T3: acq(m2); b.x=++; rel(m2);

Consider the execution T1; T2; T3;



CS595C Fang Yu

'

&

$

%

Thread ID Action rule LS(o1, x)

T1 a:=IntBox() Ø

T1 b:=IntBox()

T1 acq(m1)

T1 a.x++ First access to (o1, x) {T1}
T1 rel(m1) T1 ∈ LS(o1.x), add m1 {T1, m1}
T2 acq(m1) m1 ∈ LS(o1.x), add T2 {T1, m1, T2}
T2 acq(m2)

T2 tmp:=a

T2 a:=b

T2 b:=tmp

T2 rel(m1) T2 ∈ LS(o1, x), add m1 {T1, m1, T2}
T2 rel(m2) T2 ∈ LS(o1, x), add m1 {T1, m1, T2, m2}
T3 acq(m2) m2 ∈ LS(o1, x), add T3 {T1, m1, T2, m2, T3}
T3 b.x++ access to (o1, x), T3 ∈ LS(o1, x), no race {T3}
T3 rel(m2) T3 ∈ LS(o1, x), add m2 {T3, m2}



CS595C Fang Yu

'

&

$

%

Implementation

• Short circuit checks: constant time look up

• Lazy evaluation of lockset update rules: maintain an update
list and update only when the data is accessing



CS595C Fang Yu

'

&

$

%

More about implementation

Handle−Action(t, α)

• if(α ∈ {read(o, d), write(o, d)}){
if((o, d).owner 6= t and (o, d).alock is not held by t){
Apply − Lockset−Rules(t, α);
Randomly assign (o.d).alock to a lock held by t;}}

• else append (t, α) to the update list;



CS595C Fang Yu

'

&

$

%

Evaluation

• Run the instrumented version of the Kaffe JVM

• Benchmarks: 220 lines-6000 lines with 7 to 3 threads

• Extra running time(Overhead) = uninstrumented running time
× slowdown

Un VC BE Gold

running time 1.9s-28.2s 51.3s-243.8s 46.1s-157.5s 33.1s-117.5s

slowdown 0 0.8-63.1 0.6-40.6 0.1-25.1


