CHAPTER 3

Vector and Matrix Concepts
from a Geometric Viewpoint

3.1 INTRODUCTION

This chapter is, in part, designed to provide conceptual background for many of the
vector and matrix operations described in Chapter 2. Here we are interested in “what goes
on” when a scalar product, for example, is computed. Since geometry often provides a
direct intuitive appeal to one’s understanding, liberal use is made of diagrams and
geometric reasoning.

To set the stage for the various geometric descriptions to come, we define a Euclidean
space—the comerstone of most multivariate procedures. This provides the setting in
which point representations of vectors and such related concepts as vector length and
angle are described. The operations of vector addition, subraction, multiplication by a
scalar, and scalar product are then portrayed geometrically.

We next turn to a discussion of the meaning of linear independence and the
dimensionality of a vector space. The concept of a basis of a vector space is described,
and the process by which a basis can be changed is also iflustrated geometrically. Special
kinds of bases—orthogonal and orthonormal—are illustrated, as well as the Gram-Schmidt
process of orthonormalizing an arbitrary basis. Some comments are also made regarding
general (oblique) Cartesian coordinate systems.

Our discussion then tums to one of the most common types of transformations—
orthogonal transformations (i.e., rotations) of axes. These transformations are portrayed
in terms of simple geometric figures and also serve as illustrations of matrix multiplication
in the context of Chapter 2.

We conclude the chapter with a geometric description of some commonly used
association measures, such as covariance and correlation. Moreover, the idea of viewing a
determinant of a matrix of association coefficients (e.g., a covariance or a correlation
matrix) as a generalized scalar measure of dispersion is also described geometrically and
tied in with counterpart material that has already been covered in Chapter 2. In brief,
presentation of the material in this chapter covers some of the same ground discussed in
Chapter 2. Here, however, our emphasis is on the geometry rather than the algebra of
vectors.”

! In this chapter (and succeeding chapters as well) we shall typically present the material in terms
of row vectors a’, b’, etc., particularly when explicit forms of the vectors are used, such as
a’ = (1, 2, 2). This is strictly to conserve on space. The reader should get used to moving back and
forth between column vectors (as emphasized in Chapter 2) and row vectors as emphasized here.
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78 3. VECTOR AND MATRIX CONCEPTS FROM A GEOMETRIC VIEWPOINT

3.2 EUCLIDEAN SPACE AND RECTANGULAR CARTESIAN
COORDINATES

Before moving right into a discussion of the geometric aspects of vectors, it is useful to
establish some preliminaries, even though they may be familiar to many readers. These
preliminaries involve the construction of a coordinate system and a description of
standard basis vectors.

3.2.1 Coordinate Systems

For illustrative purposes let us review a system that is familiar to most, namely, a
three-dimensional coordinate system.? To do this, we need three things:

1. A point called the origin of the system, that will be identified by 0', the zero
vector.

2. Three lines, called the coordinate axes, that go through the origin. We shall assume
for the time being that each line is perpendicular to the other two, and we shall call these
lines rectangular Cartesian axes, denoted by x, y, and z

3. One point, other than the origin, on each of the three axes. We need these points
to establish scale units and the notion of direction, positive or negative, relative to the
origin. Here we assume that the unit of length on each axis is the same.

Figure 3.1 shows a simple illustration of the type of coordinate system that we can set up.
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Fig. 3.1 A three-dimensional coordinate system with illustrative points.

? Later on we shall refer to two-dimensional as well as to three-dimensional systems. However, this
particularization should cause no problems in interpretation.
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By convention we have marked the positive directions of x, y, and z. Note further that
three coordinate planes are also established:

1. The xy plane containing the x and y axes; this is the plane perpendicular to the z
axis and containing the origin.

2. The xz plane containing the x and z axes; this is the plane perpendicular to the y
axis and containing the origin.

3. The yz plane containing the y and z axes; this is the plane perpendicular to the x
axis and containing the origin.

These planes cut the full space into eight octants. The first octant, for example, is the one
above the xy plane in which all coordinates are positive.

Having established a coordinate system and the idea of signed distances along the axes,
we can assign to each point in the space an ordered triple of real numbers:

a' = (al’a27a3)

where a; is the coordinate associated with the projection of a’ onto the x axis, a, is the
coordinate associated with the projection of a’ onto the y axis, and a3 is the coordinate
associated with the projection of a’ onto the z axis.

The (perpendicular) projection of a point onto a line is a vector on the line whose
terminus or arrowhead is at the foot of the perpendicular dropped from the given point
to the line. With the x, y, and z axes that have been set up in Fig. 3.1, the length of each
projection is described on each axis by a single number, its coordinate. The coordinate is
a signed distance from the origin; the sign is plus if the projection points in the positive
direction and minus if the projection points in the negative direction. Figure 3.1 shows a
few illustrative cases in different octants of the space.

In Chapter 2 we talked about a vector as a mathematical object having direction and
magnitude. We need both characteristics since we can have an infinity of vectors, all
having the same direction (but varying in length or magnitude), or all having the same
length (but varying in direction). Furthermore, before we can talk meaningfully about
direction, we need to fix a set of reference axes so that “direction” is considered relative
to some standard.

In one sense vectors can originate and terminate anywhere in the space, as illustrated
in Fig. 3.2. However, as also illustrated in Fig. 3.2, we can always move some arbitrary
vector in a parallel direction so that the vector’s tail starts at the origin. All vectors that
start from the origin are called position vectors, and we essentially confine our attention
to these. Since we have not changed either the direction or the length of the arbitrary
vector by this parallel displacement, any vector can be portrayed as a position vector.

By concentrating our interest on position vectors, it turns out that any such vector can
also be represented by a triple of numbers that we called components of a vector in
Chapter 2. In the present context these components are also coordinates. By convention,
the ith component of a vector is associated with the ith coordinate axis. This is illustrated
in Fig. 3.3, by the projection of the terminus of a’ onto x, y and z, the coordinate axes.
Notice that each projection lies along the particular axis of interest. The (signed) length
of each of these projections is, of course, described by a single number that is plus or
minus, depending upon its direction along each axis relative to the origin.
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Fig. 3.2 Parallel displacement of arbitrary vectors.
Fig. 3.3 Vector components shown as signed lengths of projections.

Thus, given a fixed origin that is called 0', we can always make a one-to-one
correspondence between position vectors and points. For each point P we can find a
corresponding position vector from the origin to P; for each position vector with its tail at
0’ we can locate a point P at the vector’s terminus.

By restricting our attention to vectors emanating from the origin, any vector is both a
geometric object, possessing length and direction, and an n-tuple of numbers (three
numbers in this case). Since the vectors that we shall discuss will have their tails at the
origin, two vectors are equal if and only if they terminate at the same point. If it were the
case that two vectors had their tails at two different points, then they would be equal if
and only if one of the vectors could be moved, without changing its direction or length,
so that it coincided with the other.

In summary, then, by making sure that all of the vectors are position vectors (i.e., start
at the origin of the coordinate system), we can pass freely back and forth between the
geometric character of a vector (length and direction) and its algebraic character (an
ordered n-tuple of scalars). The length of a vector’s projection is given by the vector’s
coordinate on the x, y, and 2 axes, respectively, and the sign of its projection on x, y, and
z depends on where the projection terminates, relative to the origin.

3.2.2 Standard Basis Vectors

Continuing on with the preliminaries, let us next consider Fig. 3.4. This figure shows a
three-dimensional space with the vector a’ = (1, 2, 2) appearing as a directed line segment.
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Fig. 3.4 Vector representation in three-dimensional space.

To set up this coordinate space, we define a special set of zero—one coordinate vectors,
denoted ¢;, as

1. vector e, of unit length in the positive (by convention) x direction:

&' =(1,0,0)

2. vector e, of unit length in the positive y direction:
e2, = (0, 1 , O)

3. vector es’ of unit length in the positive z direction:
e;' =(0,0,1)

We shall continue to let 0', the zero vector, denote the origin of the space. As suggested in
the discussion of vector addition and scalar multiplication of a vector in Chapter 2, we
can now write the vector a’ = (1, 2, 2) as a linear combination of the coordinate vectors:

le, + 2e, +2e3'=1(1,0,0) + 2(0,1,0) + 2(0,0,1)
=(1,0,0) +(0,2,0) +(0,0,2)
a'=(1,2,2)

Note that what we have done is to perform scalar multiplication followed by vector
addition, relative to the coordinate vectors ¢;'. We shall call the e;' vectors a standard basis
and comment later on the meaning of basis vectors, generally.

Note, further, that if we had the oppositely directed vector —a’, this could also be
represented in terms of the standard basis vectors as the linear combination:

_lel' —262' _263, = (_1307 0) + (O: ~2,0) + (O’Oa —2) = (_l’ _25 _2)

In this case —a’ would extend in the negative directions of x, y, and z.
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What is shown above in particularized form can be generalized in accordance with the
discussion of linear combinations of vectors in Chapter 2. As recalled:

Given p n-component vectorsb,’,b,", ..., bp' the n-component vector
p
a'= 2 kb =kiby + kb, + -+ kyby
i=1

is a linear combination of p vectors, b;', b,', ..., bp' for any set of scalars k;
(i=1,2,...,p)

In the illustration above we have p=3 basis vectors, each containing n=3
components. The components of the vector a' = (1,2, 2) involve p = 3 scalars. The b;’
vectors in the more general expression above correspond to the specific e; vectors in the
preceding numerical illustration.

The introduction of a set of standard basis vectors allows us to write any n-component
vector a, relative to a standard basis of n-component e;’ vectors, as

where g; denotes the ith component of a’, and each of the n basis vectors has a 1
appearing in the ith position and zeros elsewhere. In this special case of a linear
combination, the number of vectors p equals the number of components in a’, namely, .

Figure 3.5, incidentally, shows a’ in terms of the triple of numbers (1, 2, 2). This point
representation, as we now know, is equally acceptable for representing a’ since the vector
is already positioned with its tail at the origin.

The important point to remember is that a’, itself, can be represented as a linear
combination of other vectors—in this case, the standard basis vectors e;'. In a sense the e;’

Fig. 3.5 Point representation in three-dimensional space.
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represent a standard scale unit across the three axes. Any projection of a', then, can be
considered as involving (signed) multiples of the appropriate €;' vector.

With these preliminaries out of the way, we can now introduce the central concept of
the chapter, namely, the Euclidean space and the associated idea of the distance between
two points, or vector termini, in Euclidean space. This idea, in turn, leads to the concepts
of angle and length.

3.2.3 Definition of Euclidean Space

A Euclidean space of n dimensions is the collection of all n-component vectors for
which the operations of vector addition and multiplication by a scalar are permissible.
Moreover, for any two vectors in the space, there is a nonnegative number, called the
Euclidean distance between the two vectors.®

The function® that produces this nonnegative number is called a Euclidean distance
function and is defined as

fla"—b'll = [(a; —b1)* +(ay — by)* + -+ - + (2, — bn)*]?

Alternatively, we can define |la’ — b'|| in terms of a function of the now-familiar scalar
product of (a — b) with itself:

lla’~b'll = [(a —b)'(a —b)]""

where the vector (a — b) is a difference vector.

To get some geometric view of the Euclidean distance between two position vector
termini (i.e., between two points), let us first examine Panel I of Fig. 3.6. Here in two
dimensions are the two points

a'=(1,1); b =(15,2)

Note that their straight-line distance can be represented by the square root of the
hypotenuse of the right triangle, as sketched in the chart. In terms of the distance
formula, we have

lla"—b'll=[(1 — 1.5)*+ (1 —2)*]¥2 =4/T25 = 1.12
Panel II of Fig. 3.6 merely extends the same idea to three dimensions for two new points:
a'=(1,1,-2); b'=(2,1,2)
la' bl = [(1 —=2)* + (1 = 1) + (-2 —-2)*] V2 =/17 = 4.12
* A more formal definition considers a Euclidean space as a finite-dimensional vector space on

which a real-valued scalar or inner product is defined.

* The Euclidean metric is, itself, a special case of the Minkowski metric. The Minkowski metric
also obeys the three distance axioms (positivity, symmetry, and triangle inequality). Since we have
used the single bars |A| to denote the determinant of a matrix in Chapter 2, we use the double bars
lla’" ~ b')l to denote the distance between two vectors, taken here to mean Euclidean distance.
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Illustrations of Euclidean distances between pairs of points. Key: I, two dimensions
II, three dimensions.

Euclidean distance, then, entails adding up the squared differences in projections of each
point on each axis in tum, and then taking the square root of the sum

As might be surmised from either panel in Fig. 3.6, the Euclidean distance function
possesses the following properties

la'—b'll>0  unless a —b =0";  positivity
fla" —bll = IIb" —a'll; symmetry
la’ = bl +1b" — Il > Jla’ —<'lI; triangle inequality

The first of the above properties, positivity, precludes the possibility of negative
distances. Symmetry, the second property, means that the distance from a’ to b’ is the
same as the distance from b’ to a'. The third property, triangle inequality, states that the
sum of the distances between a' and b’ and between b’ and some third point ¢’ is no less
than the direct distance between a’ and ¢'. If b’ lies on the line connecting a’ and ¢', then
the sum of the distances of a’ to b" and b’ to ¢’ equals the direct distance from a’ to ¢

. 14 ’
We next define the concept of vector length or magnitude. The length of a vector
a'=(ay, ay,...,a,)is defined as

lta'll = (
Ll

"M=
IA_._l
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Note that this is a special case of the Euclidean distance function in which the second
vector is the origin of the space, or the 0" vector. That is,

fa'll={la'—0']|= [(a;—0)* + (g, -0)* + - - - + (a, —0)*]"?

Furthermore, we can also observe that the squared vector length equals the scalar product
of a with itself:

fla'l?=a'a

Thus, in the case of a' = (1, 2, 2), we see that
3

fla'lP = 2 a2=(1)* + (2)* + (2)°

i=1
= [(@—0)* + (22-0)* + (a5~ 0)’] = (1)* + (2)* + (2)°
=a'a=(1,2,2)'(1,2,2) = (1) + (2> +(2)* =9

are all equivalent ways of finding the squared length of a’. The square root of ||a[|?, that
is, /9 = 3, is, of course, the Euclidean distance or vector length of the vector terminus as
measured from the origin 0'.

We now discuss some of these notions in more detail. Since it will be intuitively easier
to present the concepts in terms of the standard basis vectors e;/—that is, where
rectangular (mutually perpendicular) Cartesian coordinates are used—we discuss this case
first and later briefly discuss more general coordinate systems in which the axes are not
necessarily mutually perpendicular, although the space is still assumed to be Euclidean.

3.3 GEOMETRIC REPRESENTATION OF VECTORS

We have already commented on the fact that a vector can be equally well represented
by the directed line segment, starting from the origin (Fig. 3.4), or the triple of point
coordinates (Fig. 3.5). In both representations, the coordinate on each axis is the foot of
the perpendicular dropped from a' to each axis.

Our interest now is in expanding some of these geometric notions so as to come up
with graphical counterparts to the various algebraic operations on vectors that were
described in Chapter 2.

3.3.1 Length and Direction Angles of a Single Vector

Let us again examine vector a’' = (1, 2, 2), represented as the directed line segment in
Fig. 3.4. As shown earlier, the length or Euclidean distance, denoted |a’[l, of a' from the
origin 0’ is

la"ll = [(@;—0)* + (a,—0)" + (a3—0)*]"*
= (1) + @7 + (2] =3
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Fig. 3.7 Vector length and direction cosines.

Our interest now focuses on various aspects of length and direction angles. First, observe
from Fig. 3.7 that a’ makes angles of a, §, and y with the three reference axes x, y, and z.
The cosines of these angles are called direction cosines relative to the reference axes and
are computed as ratios of each vector component to the vector’s length.

Since the length of a' is 3 and the components of a’ are 1, 2, and 2, the cosines of @, f3,
and v, respectively, are

cosa=14; cos f=%; cosy=3%
Notice that these can be written out in full as

cos a = 4 .

fa)® +a* +as?]V? 3

cos = % -2

[0, +a,% +a3']? 3

cos 25 2

Y= =—

a2 +a° +a32]? 3

The angles corresponding to these cosines are
a=71° B=48°; v =48°

Notice that our use of the cosine is in accordance with basic trigonometry. For example,
the cosine of the angle «, which the vector a’ makes with the x axis, is equal to the length
of the adjacent side of the right triangle, formed by projection of a' onto the x axis,
divided by the hypotenuse of that right triangle. The adjacent side has length 1, or unit
distance from the origin, and the hypotenuse is of length 3. Hence, the cosine of ais 1.
By similar reasoning the cosine of § is § with respect to the y axis, and that of vy is § with
respect to the z axis.
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We can also discuss some of these notions in somewhat more general terms. Once a
coordinate system is chosen, any position vector that emanates from the origin can be
represented by

1. the angles a, 8, v, made by the line with respect to the x, y, and z axes, where
0<aB,vy<180% and
2. the vector’s length or magnitude.

We have already discussed the case of vectors that emanate from locations other than
the origin of the space. Therefore, by appropriate parallel displacement to a position
vector, any vector in the space can be represented by its direction angles and length.

If we had a vector —a' = (-1, —2, —2) that was oppositely directed from a’, this would
cause no problems since the direction cosines and angles would then be

cosa=—%;  a=109°=180°-71°
cos f=-%; B=132°=180°-48°
cosy=—%; y=132°=180"°-48°

It is also useful to examine the sum of the squared cosines of ¢, §, and 7. Since
ai? +a,? +a5® = ||a' |2, we have

cos?a+cos?B+cos?y=1

We can state the above result in words: The sum of the squares of the direction cosines of
some vector a', originating at the origin, is equal to I. This fact holds true in any
dimensionality, not just three dimensions.

Furthermore, it is a simple matter to work backward to find the components of a
vector if we know its direction angles and length. Continuing with the illustrative vector,

a' =(1,2,2)
with direction angles and cosines,
a=71° cosa=%; =48, cosf=%; y=48°, cosy=3%
y
3_—
a=(-31 ¥
B
-
-x —4 t t i—H + — x
38 /N 3
/C
T ¢=0,-2
=23 °T

-y
Fig. 3.8 Direction angles and lengths of illustrative vectors.
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and length [|a’|i = 3, we have, by simple algebra, the vector components:
a=33)=1 2=33)=2 a=33)=2

In the case of negative coordinates, the cosines, of course, would be negative for those
axes involving negative projections.

Working with negative cosines is most easily shown in two dimensions, as illustrated in
Fig. 3.8. Here are portrayed three different vectors, terminating in three different
quadrants. We first note the smaller angle (<180°) made by each vector with each axis.
Then, by means of the formulas shown earlier, the direction cosines of each vector are
computed as follows:

' —3 1
i e (A ) L A (&) RY ()
b'| cosay= =2 =—-0.55; cosPp= -3 =-0.83
S O O S R P+ (3P
' 1 -2
C cos o, = W = 0.45; cOs Bc = W/’{ =—0.89

with correspondent direction angles:

IR

161°%, B, = 71°
ap =123% B, =146°
63°; , 2= 153°

Qg

R

R

Q

as shown in Fig. 3.8.

Notice, in particular, that as any angle becomes obtuse, the formulas for finding
direction cosines still hold since changes in the sign of the cosine are taken care of by
corresponding changes in the appropriate vector components.

In summary, then, any position vector is uniquely determined by knowledge of its
magnitude and direction. In tum, its direction is given by the angles it makes with the
reference axes. These angles are obtained from the cosines that are computed by the
expression

a;

la'l|

cos ¥; =

where ¥; denotes the angle between the vector and the ith reference axis
(0° < ¥; < 180°), g; denotes the ith component of a’, and ||a’|| denotes its length.

Note, in particular, that if cos ¥; = 0, then the angle is 90° and the vector is said to be
orthogonal or perpendicular to the ith reference axis.

3.3.2 Geometric Aspects of Vector Addition and Multiplication
by a Scalar

While we have earlier discussed in Chapter 2 the rules of vector addition and
subtraction and multiplication of a vector by a scalar, it is useful now to show these
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operations geometrically. First consider the two vectors a’=(1,2,2) and b’ =(0, 1, 2)

shown in Panel I of Fig. 3.9. As already known from Chapter 2, their vector sum is
(140,2+1,2+2)=(1,3,4)

We can formalize this by saying that if a' and b’ are I x n vectors, their vector sum is
defined by

a'+tb' =(a;+by,ay+b,,...,a;+b;...,an+by)

As noted from Panel 1 of the figure, vector addition proceeds on a component-by-
component basis. Geometrically, ¢'=a’+b’ is represented by the diagonal of a
parallelogram determined by a’ and b'.

Panel II of Fig. 3.9 shows a case for three vectors in two dimensions, a’, b’ and ¢'.
When a' and b’ are added, their sum is represented by d', the diagonal of a parallelogram.
The parallelogram rule also applies as d' is added to ¢, resulting in their vector sum,
shown by e'.

Vector subtraction presents no major additional complications. Suppose, for exampie,
that we wish to show the difference

d'=a'-b'=(1-0,2-1,2-2)=(1,1,0)

geometrically. Figure 3.10 shows the difference vector, denoted by d', as a vector
emanating from the origin with the same length and direction as that indicated by the line
connecting the arrowheads of a’ and b'. Notice, then, that we maintain the concept of
position vector by making a parallel displacement of the difference between a’ and b’ so
that d’ starts from the origin.

If we had the vector a’ and another vector —a’, it would, of course, be the case that

al + (_ar) = 0:

b’ =(0,1,2)

Difference: a'-b’

a'=1(1,22

o

Fig. 3.10 [llustrations of vector subtraction.
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Note also that the vector subtraction
¢ =b'—a'=(0—1,1-2,2—2) = (~1,—1,0)
is handled analogously and, furthermore, that —le’ =d’, as should be the case. We find

that d' and e’ are merely oppositely directed vectors of equal length.®
Multiplication of a vector a by a scalar k is formally defined as

k(@)= (kay, kay, . .. ka;, . . ., kay)

and is also illustrated in Fig. 3.10 for the special case in which k¥ = —1. That is,
e =—1(d)=-1(1,1,0)=(-1,-1,0)
As a more general example, Fig. 3.11 shows the case of multiplying the vector
a'=(2,3,2)

by k =—1, ky =3, k3 = 2. We note that the sign of k determines the direction of ka’
while the magnitude of k determines how far ka' extends in the appropriate direction
from the origin, relative to ||a||, the length of a’ when k = 1.

As a concluding example we combine the operations of addition and scalar
multiplication of a vector by considering the case of a linear combination:

32 +2b'=14(1,2,2)+2(0,1,2) = (3,1,1)+(0,2,4) = (3.3,5)

24
2a
1__
a
Va
-y —4 { + — v
-2 -1 1 2 3
_a' 1
~14F
2
24
X 3 -Z

Fig. 3.11 Illustrations of vector multiplication by a scalar.

® The vector €' is used here as an arbitrary vector and is not to be confused with the standard basis
vectors e;, introduced earlier in the chapter.



92 3. VECTOR AND MATRIX CONCEPTS FROM A GEOMETRIC VIEWPOINT

%a' +2b' = (%, 3, 5)

b
1
|
a1 {
at 20'=1(0,2,4" f |
4 1
1 ,/ |
v/ :
! I
(0 i
I
I 1
//‘ i
31 s 1 1
S
S !
1
7/ 1 1
/ | i
/
' 1
/ 1 |
/ i t
24 / i !
/ 1 '
/ ! '
/ ! i
’ i '
/ i 1
’ ' 1
/ 1 i
/ | i
1+ / I |
/ t I
/ 1 t
/o 1 i
1 Yea' = (%, 1, 1} 1 !
i
| i :
! ! 1
! 1 1
! | ) 1
]
i/" /‘2

yd

e
X

Fig. 3.12  An illustration of the combined operations of scalar multiplication and addition.

The result of these operations appears in Fig. 3.12. This same idea can, of course, be
extended to more than two vectors. For example, in three dimensions the sum of three
three-component vectors would be represented by the diagonal of a parallelepiped formed
from the three contributing vectors. As long as we confine the number of components of
each vector to at most three, it becomes quite straightforward to picture the operations
of addition, subtraction, scalar multiplication of a vector, and their generalization, a
linear combination of vectors.

The properties of addition, subtraction, and multiplication of a vector by a scalar were
listed in Chapter 2. These properties, of course, apply here since our current purpose is
simply to portray the same vector relations geometrically rather than algebraically.

3.3.3 Distance and Angle between Two Vectors

In Section 3.3.1 we considered the special case of the angle between two vectors when
one of those vectors was a coordinate axis. We can now discuss the general situation of
the angle between any pair of position vectors in Euclidean space. Suppose we continue
to consider the case of the two vectors a’ = (1,2, 2) and b’ = (0, 1, 2). As shown earlier,
vector a’ has length 3. Vector b’ has length

”b’“ = [(0)2 + (1)2 + (2)2]1/2 - \/g
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24 b'=1(0,1,2)

a'=1(1,2,2)

c? =d? +e2 - 2de cos 0,

N

X 2

Fig. 3.13 Finding the angle between the two vectors. Key: I, position vectors; II, arbitrary
triangle.

with direction cosines and angles, with respect to x, , and z, of
cos a* =0//5=0; a*=90°
cos B* = 1/5=045;  p*=63°
cos y* =2/\/5=0.89; v =27°

So far, nothing new. Now we ask: What is the Euclidean distance between a'and b'?
Again, as we know, the distance between a’ and b’ can be computed as

lla'=b'|l= [(1-0)* + (2—1)* + 2-2)*]V2 =2 = 1 41

That is, we find the difference between the two vectors on a component-by-component
basis, square each of these differences, sum the squared differences, and then take the
square root of the result. Notice that this is similar to finding a vector’s length in which
the origin, or zero vector, plays the role of the second vector.

Again, nothing new. However, at this point we can note from Panel I of Fig. 3.13 that
a’ and b’ make some angle § with each other. The problem, now, is to determine what
this angle is. That is, analogous to the case of finding the angle that a single vector makes
with each of the reference axes, we now wish to find the angle between two different
vectors referred to the same set of coordinate axes. To do so, we make use of the cosine
law of trigonometry.

As the reader may recall from basic trigonometry, the law of cosines states:

For any triangle with sides c, d, and e, the square of any side is equal to the sum of the
squares of the other two sides minus twice the product of the other two sides and the
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cosine of their included angle 8. Or, to illustrate (see arbitrary triangle in Panel II of
Fig. 3.13),

2 =d*+e*—2de cos 04,

Similarly, we could find d* or €?, as the case may be.
Returning to our specific example in Panel I of Fig. 3.13, by simple algebra we can
first express the law of cosines in terms of the cosine of

cos B = a2 +Ib' 12— fja’—b'I1?
*b all- o

where the above formula represents the particularized version of

d2+e?_c?

cos 04, = >de

as applying to any triangle of interest.

In terms of our specific problem, the cosine of the angle 6 between the vectors a’ and
b’ is expressed as a ratio in which the numerator is the squared length of a’ plus the
squared length of b’ minus the squared length of the difference vector a’ —b'; the
denominator of the ratio is simply 2 times the product of the lengths of a’ and b'.

If we then substitute the appropriate numerical quantities, we have

08 Burns = Ha'l2 + b2 —la'—b"|> _ 9+5-2 _ 12
ab 2012’1~ 11611 235 13416

with the correspondent angle

=0.894

Oy =27°

Notice further that we can turn this procedure around. If we know the angle that two
vectors make with each other and their lengths, another way of finding the squared
distance between them makes use of a rearrangement of the above formula to

lla'—b'11? = {]a"|I* + [Ib'1I* ~2 cos By lla’ il - 11b]]

The concepts illustrated here for two dimensions also hold true in higher dimensions
since two noncollinear vectors will entail a (plane) triangle embedded in higher
dimensionality.® The vector lengths, of course, will be based on projections on all axes of
the higher-dimensional space.

A few other observations are of interest. First, if the angle 6 between two vectors is
90°, then cos 6 =0, and one has the familiar Pythagorean theorem for a right triangle in
which the square of the hypotenuse is equal to the sum of the squares of the sides. In the
case where cos 8 =0, the two vectors are said to be orthogonal (as mentioned earlier). If
cos Oyy =1, then a’ and b’ are collinear in the same direction, and the sum of the

¢ By noncollinear is meant that the vectors are not superimposed so that all points of one vector
fall on the other vector.
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squared lengths of a’ and b’ is appropriately reduced by 2lia’ll- | b'll. If cos 8,7y =1,
then a' and b’ are oppositely directed, and the sum of the squared lengths of a’ and b’ is
increased by 2jla’l| - |[b'}|.

These latter two relationships are easily seen by recalling that for scalars we have the
identities

(x-y)?=x>+y>—2xy

and

- =(x+y)=x*+y*+2xy

Figure 3.14 shows geometrical examples of all three of the preceding cases.

Later on, when we discuss some of the more common measures of statistical
association, we shall find that the above relationships are useful in portraying various
statistical measures from a geometric standpoint. At this point, however, we proceed to a
geometric description of still another concept of vector algebra, namely, the scalar
product of two vectors and its relationship to Euclidean distance.

3.3.4 The Scalar Product of Two Vectors

In Chapter 2 we defined the scalar (or inner or dot) product of two vectors a and b (of
conformable order) as

a'b
in which, if a' = (2, @5, .. . ,ax, ..., a,)and b =(by, by, ..., by, ..., by), then
n
ab= z akbk
k=1

and the result was a single number, or scalar.

A geometrically motivated (and more general) definition of scalar product, which
takes into consideration the angle 8 made between the two vectors and their respective
lengths, can now be presented. This definition of scalar product is given by the expression

a’b = |lall - {[bll cos fap

In the above example in which a' = (1, 2, 2) and b’ = (0, 1, 2), we have
a'b = 3(v/3)(0.894) = 6

We also recall that a'b = b'a. The geometric counterpart of this is

b'a=||bll - lalicos O,
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Moreover, the counterpart to a'a, the scalar product of a vector with itself, is simply

1all - llall cos 855 = llalf* - 1

This is the vector’s squared length, inasmuch as the angle # that a vector makes with itself
is, of course, zero; hence cos 0,, = 1.

3.3.5 Vector Projections and Scalar Products

Still another way of looking at the scalar product of two vectors is in terms of the
signed length of a projection of one vector along another. At the beginning of this
chapter, we talked informally about the projection of a vector onto the coordinate axes
x, ¥, and z. Its projection on some axis, say x, was referred to as the signed distance from
the origin, along x, to the foot of a perpendicular dropped from the vector onto x.
Similar interpretations pertained to the vector’s projections on axes y and z.

However, suppose we have two arbitrary position vectors in the space. Clearly, we
could consider the projection of one vector onto the other, in a fashion analogous to
coordinate projections. This concept is most simply described in two dimensions.
Accordingly, let us select two arbitrary vectors

a'=(1,2) and b’ =(0,2)

These vectors are shown in Panel I of Fig. 3.15. We now project b’ onto a’ by dropping a
perpendicular from b"s terminus to a’. The number

a'b
Hal

b, Il = |nb'ucos Ba'b’

is defined as the length” of the projection of the vector b’ along the vector a'. The length
of the projection is also frequently called the component of b’ along a’.

This concept is most easily understood by first recalling that the cosine can be viewed
in terms of the length of the projection of a unit length vector, in this case one in the
direction of b, onto the adjacent side (vector a') of a right triangle. Here, the unit length
is multiplied by [|b'll. In this example [Ib'll= [(0)* + (2)*] 2 =2.

The cosine 0, is next found from the cosine law:

la'IP+ D12l b1 S+4-1 oo
20a’If - 11|l VA [(VZI

cos Oy =

7 Note that in defining |b,'ll we use the ebsolute value of the expression (b’ cos 65’y since
lengths are taken to be nonnegative. However, the signed distance is in the direction of a’ if cosy'py’ is
positive (i.e., the angle 6,5’y is acute) and in the direction of —a' if cos 6/}’ is negative (i.e., the angle
04'p’ is obtuse).
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Fig. 3.15 Geometric interpretation of vector projection.

Panel I of Fig. 3.15 shows the prOJectlon vector b, ' along the direction of a’. We note
that b’ makes an angle of 27° with a’. First, let us con51der the projection vector bp, and
then let us consider its length. The projection vector is found by the formula

| 1Bl cos yp |
b { T Ja

In terms of the problem, we have

b,’ F(f/ﬁgqa 2)= (0.8, 1.6)

Panel II of Fig. 3.15 shows the coordinates of b, = (0.8, 1.6). Since the angle 63y = 27°
is acute, by, is in the same direction as a’.
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The length of b, is given by

(15, 11=111b' [l cos O | = 2(0.89) = 1.78

and this also appears in Panel I of Fig. 3.15.

Should we desire the length of the projection of a along b, this is obtained analogousty
as
=/5(0.89) =2

lla,'[1=1lla"|| cos Bz

Notice that if a’ and b’ are each of unit length, the length of the projection of b’ along a'
(or a’ along b") is simply [cos 8 ;'

If the two vectors should make an obtuse angle with each other, the procedure remains
the same, but the direction of the projection vector is opposite to that of the reference
vector. Panel 111 of Fig. 3.15 shows a case in which ¢’ = (1, 1) and d’ = (=1, 0.5) make an
angle of 108° with each other. The cosine of this angle is —0.316, and we have

”dp'll=}Hd'Hcos bea =035

=!1.12(—0.316)

as shown in Panel II1. However, since cos 8.'q’ is negative, the direction of d;, is opposite
to that of c'.

The idea of (orthogonal) projection can, of course, be extended to the projection of a
vector in three dimensions into a subspace, such as the xp plane in Panel IV of Fig. 3.15.
For example, the vector g can be projected into the xy plane by dropping a perpendicular
from the terminus of g to the xy plane. The distance between the foot of the projection
(represented by the terminus of g*) and g must be the minimum distance between g and
the xy plane. Any other vector in the xy plane, such as h, must have a terminus that is
farther away from g since the hypotenuse of a right triangle must be longer than either
side. Subspace projections are discussed later (in Section 4.6.4).

All of this discussion can be straightforwardly related to the geometric aspects of a
scalar product. The scalar product a'b was earlier defined in general terms as

a'b = cos O, l{al} - 1ibi)

which can now be expressed in absolute-value terms as the product of two scalars:
la'bl=1Ib, || - [la'l|= 1.78(\/5) =4

Furthermore, the preceding definition of projection length is fully consistent with an
informal description presented at the beginning of the chapter. For example, if we have
the vector a’ = (1, 2), its projection lengths onto the standard basis vectors e, and e, are
found as follows:

oo e |, _tlalleosbye | ) (1,2)(1,0) |
1 [ne’lluie;u}"[ el }1{ r | B9=10




100 3. VECTOR AND MATRIX CONCEPTS FROM A GEOMETRIC VIEWPOINT

It follows that

llapyll =1
, a'e, .1 (1,2)(, 1)}
Apy =| 5 |e; =|———(0,1)=(0,2
p2 \:”ezu'”ez“il 2 l: 1 ( ) ( )
and
“3272”:2

Incidentally, we shall always take 8, to be the smaller angle between a’ and b'. If
the vectors are oppositely directed, the direction of the projection will be the negative of
the reference vector’s direction since cos 8, will be negative, as illustrated in Panel III
of Fig. 3.15.

3.3.6 Recapitulation

At this point we have provided geometric interpretations of all the various algebraic
operations on vectors that were illustrated in Chapter 2. In particular, the addition of two
vectors followed a parallelogram rule, as illustrated in Fig. 3.9. Subtraction of two vectors
also involved a parallelogram rule, in which the difference vector was displaced so as to
start at the origin; this is shown in Fig. 3.10.

Multiplication of a vector by a scalar k involves stretching the vector if k> 1 and
compressing it if 0 < k < 1. These cases are illustrated in Fig. 3.11. If k =1, the vector
remains unchanged. If £ =0 the vector becomes 0, the zero vector. If k is negative, the
vector is stretched and oppositely directed if |k| > 1 and compressed and oppositely
directed if 0 < |k| < 1, as shown in Fig. 3.11.

The operations of sum and difference between two (or more) vectors and
multiplication of a vector by a scalar are summarized in terms of the concept of linear
combination, as illustrated in Fig. 3.12.

The definition of a Euclidean space enabled us to consider the distance and angle
between two vectors. By means of the cosine law, illustrated in Fig. 3.13, the cosine of
the angle formed by two vectors and their lengths were related to the (squared) Euclidean
distance between them. This concept, in turn, led to the geometric portrayal of the
projection of one vector onto another, as illustrated in Fig. 3.15. From here it was a short
step toward portraying the scalar product of two vectors as a signed distance involving the
product of the component (projection length) of one vector along some reference vector
and the reference vector’s length. In short, all of the algebraic operations of Chapter 2
involving vectors were given geometric interpretations here.

We can summarize the various formulas involving aspects of the scalar product as
follows:

L. [la=bli* = {lall* + {[bI>—2{lall - libll cos B4 = [lali*+ |Ib]|>—2[a'b]

_ llal® +1Ib|>—|la=bl> _ a'b
2. cosOy = =
2llall - Il llali - 1Bl




3.4. LINEAR DEPENDENCE OF VECTORS 101

a'b
3. b ||='~’='ubucose
LA TN ab

l{all cos O,

a'b
llayll =l~} =
P lIbll

It is worth noting that the scalar product plays a central role in all of these formulas.

3.4 LINEAR DEPENDENCE OF VECTORS

In the beginning of the chapter we chose a set of reference vectors e;, called standard
basis vectors, that in three dimensions were defined as follows:

el'=(1y0’0); 62,:((),1’0); e3’=(05051)

As we shall see in a moment this set of vectors is linearly independent. The concept of
linear independence plays a major role in vector algebra and multivariate analysis. As we
know from elementary geometry, a line is one-dimensional, an area is two-dimensional,
and a volume is three-dimensional. By analogy, a space of n dimensions entails
“hypervolume.”

Loosely speaking, linear independence of vectors has to do with the minimum number
of vectors in terms of which any given vector in the space can be expressed and, in effect,
is related to the *“volume” of the space spanned by the vectors. Linearly dependent
vectors display a kind of redundancy or superfluity in the sense that at least one vector of
a linearly dependent set can be written as a linear combination of the other vectors.

Somewhat more formally, if a,’, a,", ..., a," denote a set of p vectors and k;, k.,
..., kp denote a set of p scalars, it may be the case that the following linear equation is
satisfied:

klall+k232,+' . '+kpap’=0’

where 0’ is the zero vector.

For example, if k4 =k, =... =k, =0, any set of p vectors trivially satisfies the above
equation. If, however, the equation can be satisfied without all k; being equal to zero, the
solution is called “nontrivial.”

If a nontrivial solution can be found, then we say that the set of vectors is linearly
dependent. If only the trivial solution is satisfied, the set of vectors is said to be linearly
independent.
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To illustrate the case of nontrivial satisfaction of the above equation, let us assume
three four-component vectors:

a, =(1,2,0,4); a,’ =(-1,0,5,1); ay'=(1,6,10,14)
and let
ky=3; ky=2; ky=—1
Since

3(1,2,0,4) +2(—1,0,5,1)—1(1,6, 10, 14)
=(3,6,0,12)+(-2,0,10,2) + (-1, -6,—10, —14) = (0,0,0,0)

it is seen that a,’, a,’, and a;” are linearly dependent and at least one of the vectorsisa
linear combination of the remaining p — 1 vectors. To see that this is so, we note that

] k 1 k !
a,'=— ﬁ(az ) k—j(aa)

=—3(-1,0,5,1) +4(1,6,10,14)
= (%’0,_139,_7%) + (%’2?%)%&)
al'=(1,25034)

and a, " is, indeed, a linear combination of a," and a,". It is also pertinent to note that any
set of p vectors is always linearly dependent if p > n, where n is the number of vector
components in an n by 1 column vector or a 1 by n row vector, as the case may be.

While no proof of this assertion is given, the statement relates to the fact that if one
wished to solve n equations for n unknowns, one could take the first n vectors, assuming
they are linearly independent, and solve for any of the other vectors as linear
combinations of these n linearly independent vectors.

The concept of linear independence is of particular importance to multivariate
analysis. A set of linearly independent vectors is said to span some Euclidean space of
interest. Ultimately the idea of linear independence relates to the dimensionality of the
space in which the researcher is working. And, as we shall see, once a set of such vectors is
found, all other vectors can be expressed as linear combinations of these.

In brief, then, two ideas are involved in the study of linear independence. First, we
wish to find a set of nonredundant vectors. Second, we wish to make sure that we have
enough linearly independent vectors to span some space of interest or, as indicated
earlier, to contain some hypervolume of interest.

3.4.1 Dimensionality of a Vector Space and the Concept of Basis

In line with our earlier discussions involving geometric analogy, we can now examine
the dimensionality of a vector space. The dimensiondlity of a vector space is equal to the
maximum number of linearly independent vectors in that space. To illustrate for the case
of three dimensions, we return to the e;’ standard coordinate vectors:

e1,=(170,0); e2'=(09170); e3,=(0909 1)
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If we set up the equation
kie,'+koe, +kie' =0

we find that the above equation is satisfied only if k; = k, = k3 =0. Hence, e,, e,’, and
e;  are linearly independent, and the dimensionality of the space is three. In general, if
a,’, a,, ..., a, denote a set of n linearly independent n-component vectors, then any
other vector of that n-space can be written as

b =kya, +kya, t---+k,a,

and thea,’, a,’, ..., a,,' vectors are said to constitute a basis of the n-space. In a space of
n dimensions, any set of n linearly independent vectors can constitute a basis of the
space. Thus the basis vectors e;" above represent only one type of basis, one that we have
called the standard basis.

The e; standard basis vectors, however, are particularly convenient. Indeed, unless
stated otherwise we shall assume that the particular basis being chosen is the standard
basis. Still, we should indicate that any other set of n linearly independent vectors could
qualify as the reference set. Accordingly, we spend some time on the process by which
one can change one set of basis vectors to some other set, for example, to a set of
standard basis vectors.

3.4.2 Change of Basis Vectors

Up to this point we have emphasized rectangular Cartesian coordinates, where it is
natural to view the coordinate vectors e;' as both (a) mutually orthogonal (i.e., exhibiting
pairwise scalar products of zero) and (b) of unit length. This type of basis is called
orthonormal. In this intuitively simple case, the vector a' = (a;, a3, . . . , @,) can be easily
written as

!
a' =a.e, taze, +- - taue,

where e;'=(1,0,...,0), e,’=(0,1,0,...,0), and e, =(0,0,...,1). Hence
(@1, a5, ...,a,) are the coordinates of a' relative to the orthonormal basis
e e, ... ,e,.

An equally satisfactory way of showing this concept is to represent the standard
coordinate vectors in columnar form. A given vector a can then be written as

rlﬂ —OT TO— (11T
0 1 0 as

aza;| 0 \va | 0|t tan) 07| a4

0 1 ay |

- L L-J L

and we have an illustration of a linear combination of standard basis vectors in which the
components of a (i.e., a;, a,, etc.) are the scalars of interest.
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Orthonormal bases are easy to work with, and we shall usually assume that this type of
basis, more specifically, the standard basis vectors e;, underlies the coordinate
representation of interest. However, as indicated above, any set of linearly independent
vectors, unit length or not, orthogonal or not, can be used to define a basis. Hence, it is
pertinent to point out how one can move from one basis of a space to some other basis of
that space. '

Accordingly, let us now illustrate the idea of general coordinate systems whose basis
vectors need not be mutually orthogonal or of unit length. Suppose we start with two sets
of basis vectors—first, the more familiar e;' standard basis vectors, e;' = (1, 0) and
e,' = (0, 1), and second, another set of basis vectors f;' =ce,’ +ce, and f," =d e,  +
d2 62' .

To be specific, we let ¢; = 0.707, ¢, =0.707,d; = 0.940, and d, = 0.342. Then

f,'=0.707e," + 0.707e," = (0.707, 0.707)
f,' = 0.940e,’ + 0.342¢,’ = (0.940, 0.342)

Note that f,’ and f,’ are each of unit length but are not orthogonal; that is, f; 'f, # 0.
Note further that we can write the preceding equations in columnar form as

€, 82
fil] (1] 0] [0.707
f, = =0.707 +0.707 =
Jaa | 10| 1] 0.707
€ €2
fia) (1] 0] [0940
f, = =0.940 +0.342 =
Jaz | L0 1 0.342

Figure 3.16 shows a plot of f; and f, relative to the standard basis e; and e,. By
finding their projections on e, and e, , we can note that their coordinates are given by the
preceding equations.

Now let us select a new vector a=a,f, +a,f,. That is, we shall assume that a is
referred to the new (and nonorthogonal) basis, f; and f,. To be specific, we assume that
the coordinates of a relative to f, and f, are

a; =0.5; a, =0.5

We can find these coordinates by extending lines parallel to f, and f, and noting the
coordinates of OQ and OR, respectively, on f; and f,. The basis vectors f; and f, are
often called oblique Cartesian axes since the angle that they make with each other is not
equal to 90°. Notice, however, that a is still given by the (parallelogram) law for vector
addition:

a=a1f1 +d2f2

and that a,f;, and a,f, are scalar multiples of f; and f,, respectively. Since we have
chosen f; and f, to be of unit length, the coordinates a, and a4, are merely the lengths
OQ and OR. Had f; and f, not been of unit length, 4; and a, would still be regarded as
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Fig. 3.16 An illustration of generalized coordinates and change of basis.

coordinates, but they would correspond to lengths of QQ/|If;|l and OR/If, 1,
respectively.

We now seek a set of coordinates for the vector a, referred to the oblique basis f; and
f,, in terms of the original (and standard) basis e; and e,. This can be done by the
following substitution:

a=q,f, ta,f,
But, since f; and f, have been defined in terms of ¢, and e,, we can write
a=a,(ciey tca0y) tay(diey +daey)
={c1a1 + d1az)ey (201 + draz)e;
However, since e; and e, denote a basis, we can also represent a in terms of e; and e, as
a=q,%e; tay¥e,
Hence, through substitution of ¢;a, + d,a, fora, *, and c,a, +d,a, fora,*, we find
ai* =ca, +dya, =0.707(0.5) + 0.940(0.5) = 0.82
ay* = cya, + dya, =0.707(0.5) + 0.342(0.5) = 0.52

As can be observed from Fig. 3.16, the length of the projection of a on e, is, indeed,
0.82, and its projection length on e, is 0.52.

Thus, one can work “backward” to relate a vector described in terms of one set of
basis vectors to a description of that same vector in terms of another set of basis vectors,
assuming we know how the basis vectors themselves are connected. And, as a matter of
fact, one can always find an orthonormal set of axes (mutually orthogonal and of unit
length) by which a set of arbitrary basis vectors can be represented, even though the
original axes might be oblique and not of unit length. The next section illustrates one
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procedure for finding an orthonormal basis from an initial set of nonorthonormal basis
vectors.

3.4.3 Finding an Orthonormal Basis

As indicated earlier, a special kind of basis in a vector space—one of particular value in
multivariate analysis—is an orthonormal basis. This basis is characterized by the facts that
(2) the scalar product of any pair of basis vectors is zero and (b) each basis vector is of
unit length. As we know, the standard basis vectors e; represent one such orthonormal
basis.

In multivariate data analysis, it is usually the case that multiple measurements on a set
of objects will be associated; for example, weight will be correlated with height.
Sometimes we may want to transform the original (and correlated) variables to a set of
uncorrelated variables. As will be shown later, this process can be viewed as transforming
a set of n nonorthogonal vectors into a set of n orthogonal vectors. In the process we may
also want to make all of these vectors unit length; this is the “norming” aspect of the
process.

We have already observed that the scalar product is a central concept in vector algebra
and is a function that assigns a real number to each pair of vectors in the Euclidean space
of interest. In particular, the concepts of vector length, distance, and cosine can all be
expressed in terms of the single idea of a scalar product:

flall = [a'a]??

lla—bll = [|al)® +||b}|>—2(a'b)]
a'b

ltall - 1Ib]]

i

1}

cOs Gab

As we shall see in a moment, the scalar product also provides a simple representation
of vectors that are mutually orthogonal (perpendicular):

a and b are orthogonal
if and only if
a’b=0

We can now proceed to construct an orthonormal basis, one whose vectors are mutually
orthogonal and of unit length.

Any arbitrary basis can be transformed to an orthonormal basis by a procedure known
as Gram-Schmidt orthonormalization. To illustrate the process, consider the three
arbitrary row vectors:

a, =(2,1,2); a, =(3,-1,5); a;’ =(0,1,-1)
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The Gram-Schmidt process starts out by selecting (arbitrarily) one of the vectors, say a,
as the first reference vector.® The idea here is to keep this vector fixed and then find
other vectors, two other vectors in this case, so that the resultant sets are mutually
orthogonal. As a final step each of the orthogonal vectors is normalized to unit length. To

start off the process we first set
blr - 31’

and then find

, “az'lebl, : ((3x2)+(—1x1)+(5x2)}1,

e N N AT Ty
by’ = (=033, -2.67,1.67)

Let us now examine the expression

[az',b‘J b, = (15/9)(2,1,2) = (10/3,5/3,10/3)
byb;

This expression is the orthogonal projection of a,’ onto by’ (as discussed in
Section 3.3.5).
The “residual” is then equal to the difference

b,'b,

! ! ,b '
b, =a, — P" ‘J b, =(3,-1,5)—(10/3,5/3,10/3)
and should be orthogonal to b, ', as is shown illustratively in two dimensions, in Fig. 3.17.
That is,

2
b,'by = (~1/3,-8/3,5/3)[ 1 |=0

Fig. 3.17 Finding the orthogonal projection of a,’onto b, (illustrated in two dimensions).

* It should be mentioned that the specific results of the Gram-Schmidt process depend on the
order on which the vectors are selected; however, in any case the resulting set will be orthogonal and
of unit length.
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We encountered orthogonal projections, both in the beginning of the chapter and in
Section 3.3.5. Accordingly, there is nothing new here, except for the fact that we are now
interested in the orthogonal complement or that part of the a," vector that does not lie
along the reference vector. In this case it is the vector

b, =(-0.33,-2.67,1.67)

As we noted above, the scalar product of b;'b; is indeed zero. Thus, b,” is now
orthogonal to b, = a,". We now have to orthogonalize a;" with regard to the two, already
orthogonal, vectors b, and b, ":

., lag'by’! ,'—a'b_ ,

=(0,1, 1)+ (1/3 8/3,5/3)+%(2,1,2)

=(0,1,—1) + (=13/90, —104/90, 65/90) + (2/9,1/9,2/9)
= (7/90,—4/90, —5/90)
= (0.08,-0.04, -0.06)

And, in general for r vectors, we would have

ra a b1
br,= ! r rl lbr * e — r \
aan o L e

After the b"s are obtained, we would find that they are mutually orthogonal. Each set is
then normalized by its respective divisor ||b;'||. That is, we find the length of each of the
b”s and divide each vector component by the length of that vector. In the above example,
the lengths of b;’, b,’, and by’, respectively, are 3, 3.17, and 0.108. The normalized
vectors then become

b’ = (1/3)(2,1,2) = (0.67,0.33,0.67)
b}’ =(1/3.17)(—0.33,-2.67,1.67) = (~0.10, —0.84,0.53)
b3’ =(1/0.108)(0.08,-0.04, —0.06) = (0.74,-0.37,—0.56)

Within rounding error, we first note that all three vectors have unit length. If we then find
the scalar product of each pair of vectors, we observe, again within rounding error, that
all three scalar products equal zero.

We conclude by saying that the vectors bf', bi’, b} form a three-dimensional
orthonormal basis—one whose axes are mutually orthogonal and of unit length.

It is rather difficult to show the Gram-Schmidt procedure for the specific vectors
utilized in our example. This being the case, Fig.3.18 shows a more stylized
conceptualization of the procedure. The pictures first show orthonormalization of the
first two vectors in two dimensions and then orthonormalization of all three in three
dimensions. (In the figure the orthonormalized vectors are expressed as column vectors.)
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Starting vectors
ay, a,, 8

First two vectors

a
a, '

e 4

Before After

Third vector

Before After

Fig. 3.18 Conceptualization of Gram—Schmidt orthonormalization procedure.

3.4.4 Scalar Products in Oblique Coordinate Systems

Now that we have discussed both oblique and orthonormal bases, it is of interest to
point out that vector addition and subtraction as well as multiplication of a vector by a
scalar are carried out the same way under either oblique or orthonormal basis conditions.
However, this correspondence does not hold in the case of the scalar product.

The reason why the usual scalar product formula does not work in the nonorthogonal
case is most easily seen by observing the two basis vectors a and b in the diagram of
Fig. 3.19. Note that the angle they make with each other is 45° rather than 90°. If we

Fig. 3.19 Scalar product in oblique coordinate system.
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(incorrectly) assumed that these basis vectors were orthogonal, their scalar product would
be zero by application of the special case of a scalar product that entails a'b.’
However, using the formula described in Section 3.3.4, we find the following:

a'b = Jfall - lIbl| cos 4 = 1(1)(0.707) = 0.707

As noted above, this form of computing the scalar product is nos dependent on referring
vectors to an orthonormal basis. Still, as can be observed from this section, orthonormal
bases simplify calculations quite a lot.

In more general terms, if we have two column vectors a and b referred to oblique unit
length basis vectors f;, this situation can be represented as

a=g,f; ta,f, +---+a,f,
and
b=bfy + b, +---+b,1f,

In this case the scalar product between a and b is given by

n n
ab=) . a;bj cos by
i=1j=1

where 6,-,~ is the angle between the pair of basis vectors f; and f,- fori,j=1,2,...,n.
However, if f,, f,,. .., f, are also orthogonal, cos 6;;=0 for all pairs of basis vectors in
which j # i and, hence, we have the special case, discussed earlier, of

n
a'b = Z aibi
i=1

What if the oblique f; and f; are not of unit length? If this is the case, then the scalar
product becomes

n n
ab=2 Y ab; cos 01l 151
i=1 j=1

Thus, if we need to account for basis vectors whose lengths are not equal to unity, the
more general expression above is applicable '

® It is important to note that the definition of scalar product as a'b = £/% g;b; in Chapter 2 has
implicitly assumed that both vectors are referred to standard basis vectors e;. In general, this will
indeed be the case; however, in oblique coordinate systems the geometrically oriented definition
a'b = {lali- |bll cos 6ap should be used.

® The computation of scalar products in an oblique coordinate system entails the concept of a
(positive definite) quadratic form, a topic that is discussed in Chapter 5. Throughout the book,
however, we shall emphasize the simpler case in which the standard basis vectors e; are assumed to be
applicable.
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3.5 ORTHOGONAL TRANSFORMATIONS

Up to this point we have presented geometric interpretations of all of the principal
algebraic operations that were performed on vectors in Chapter 2, such as addition,
subtraction, the scalar product of two vectors, and so on. So far, matrices have been
ignored for the most part, except in our discussion of basis vectors.

It is now appropriate to discuss some preliminary aspects of a matrix transformation
of a vector or set of vectors. In this chapter we limit our discussion to a special but quite
important case, namely, orthogonal transformations or rotations.

Most readers probably have an intuitive idea about what is meant by a rigid rotation of
a set of points. Often in multivariate analysis we wish to perform a transformation on a
set of points that will preserve their angles, lengths, and interpoint distances, while at the
same time referring them to a new, perhaps simpler, coordinate system. Since rotations,
as a special type of linear transformation, play such a key role in understanding more
general kinds of matrix transformations, this concept is introduced here and related to
earlier discussions of distance and angle.

The definition of an orthogonal matrix as used in multivariate analysis differs
somewhat from researcher to researcher. We shall use the term “orthogonal” to refer to a
square matrix A that exhibits the property

AA=AA'=1

That is, any two column vectors or any two row vectors in the matrix A are mutually
orthogonal and, furthermore, each vector is of unit length. Some authors call this type of
matrix “square, orthonormal,” but we shall use the more common term of orthogonal
matrix.

3.5.1 Axis and Point Rotations

To motivate the discussion let us consider the column vector a = [}] in the diagram of
Fig. 3.20. We adopt a set of standard basis vectors e; for the space in order to simplify

e,
f?
2_—
f1
3
Uyo— 2 ’Lll 2
1+ “ea-
0.867\() - 1
1 -~
E 0.5k - -2 P
( “T0 1554
! 127 10,4, =30
} +— > 1 . e
-2 -1 o " 2
0.5 0.867

Fig. 3.20 Rotation of reference axes.
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subsequent discussion. Now suppose we wish to apply an orthogonal transformation to
the vector a. Geometrically, this can mean one of two things:

1. we can rigidly rotate the axes, either counterclockwise or clockwise, from their
original e; orientation, while leaving the point fixed, or

2. we can leave the original e; axes fixed and rigidly rotate the vector a = [3l1toa
new location.

Let us consider the first case. Suppose we wish to rotate the original axes e; and e,
counterclockwise through an angle of 30°, as shown in Fig. 3.20. To do this we shall need
a set of direction cosines for each angle made by the (new) f; and f, axes with the
(original) e; and e, axes. Let us first find the cosines that we shall need. From basic
trigonometry we have

cos 30° =+/3/2=0.867; cos 60° =4 =0.5; cos 120°=—4=-05

Next, we shall use the symbol 6;; to denote angles between pairs of axes, where i denotes
the original axis and j denotes the new axis. If we examine the four angles 044, 012, 021,
6042, in which the first subscript refers to the old axis and the second to the new axis in
Fig. 3.20, we see that

1. 8, involves a 30° counterclockwise rotation with cos 30° = 0.867.
2. 6,, involves a 120° counterclockwise rotation with cos 120° = —0.5.
3. 0, involves a 60° clockwise rotation with cos 60° =0.5.

4. 6, involves a 30° counterclockwise rotation with cos 30° = 0.867.

The angle of 30° that f, makes with e; involves a cosine that is equal to 0.867. And,
since f; makes an angle of 60° (with a cosine of 0.5) with e,, we have the linear

combination
[1} (OJ [O.Séq
f, = cos 04,e; + cos 8,,e, = 0.867 +0.5 =
1 11%1 212 0 L_l 0‘5

as the coordinates of f, .
Similarly, we can compute the coordinates of f, as follows:

cos ] cos € . .
2 12%1 22%2 1 ]

As can be seen from Fig. 3.20, f, and f, display the coordinates indicated above. We also
note that the sum of squares of each set of direction cosines is unity. That is,

(0867)2+(0.5)2=1;  (—0.5)*+(0.867)* =1

At this point we have expressed f, and f, in terms of e; and e, . We also know that the
(assumed fixed) point a is expressed in terms of e, and e,, the original basis vectors, as

=2 L]
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Our problem, now, is to find the coordinates of that same point—which we can call a*~in
terms of the new basis vectors f;.

We can express this transformation in the form of a matrix postmultiplied by a vector.
That is, we can let a* = [Z::] denote the new coordinates of the point a by the following

substitution:
cosflyy cosBy ||y
cos b, c¢osOy || as

( 2.23] { 0867 0.5 ] (2]
. —0.13 -0.5 0.867] L1
These are the coordinates of the point with respect to the new basis f; in Fig. 3.20.

Let us examine the transformation somewhat more closely in Fig. 3.20. First, as noted
above, we see that the unit length portion of f; has coordinates of f; = [$:3¢7) with respect
to e, and e,, respectively. Similarly, the unit length portion of f, has coordinates of
f, = ["3:367] with respect to e, and e,, respectively.

However, we can tum the coin over and look at the coordinates of e; in terms of the
new axes f;. If we project e; and e, onto f, and f,, we have, from Fig. 3.20,

[ 0.867 0.5 J
87 os I 0867

where we use g; and g, to denote the fact that the reference vectors are now the f;. Since
a has been defined originally in terms of e;, and the ¢; have now been represented in terms
of f;, we have

o Q
) [y
* *
| I
I

it

a=2g; t1g,

0.867} [os ] [ 223
a= 2 + l;‘ J =
-05 | 10867 —-0.13

But, as already shown, this can also be written as

a;* cos By, cosby || a;|

a* cos Oy, cos 0, aJ
( 2.23} 0.867 0.5 {1
| —0.13 —0.5 0.867] |1
Thus, while the point remains fixed, its coordinates are determined by the particular basis
by which they are expressed.

In summary, we see that the new coordinates of the original point a = [?] are now
a,*=2.23 and a,*= —0.13 in terms of the f; and f, axes. However, there is a second way
of looking at this transformation. That is, we can make the original e, e, plane remain
the same and assume that it is the point [3] which moves from its old location to the

position [_2?3]. This second way of interpreting things is shown in Fig. 3.21. Notice in

"

It
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&)

2.23
-0.13

Fig. 3.21 Rotation of point with basis vectors fixed.

this case that the point [$] is rotated clockwise 30°."" Either interpretation is equally
suitable. The one that is selected will depend on the researcher’s purpose since it is only
relative motion that is indicated.

In Chapter 4 we shall explore basis vector and coordinate transformations much more
thoroughly. At this point, however, we wish merely to show that there are two
compatible ways of looking at things:

1. One can rotate the basis vectors and refer the unchanged point to the new
reference axes.
2. One can rotate the point and refer its new location to the original reference axes.

In each case, under rigid rotations we should note that angles and distances are preserved.
Finally, we could simplify the angular representation of the preceding rotation—in the
special case of two dimensions—by means of a single angle of rotation.

If we let ¥ = 0,,, we can note the following:

cos f,, cos Oy cos¥ sin ¥
cos 0y, cos Oy —sin¥ cos W
It is instructive to see how the rotation of a set of basis vectors through the single angle ¥

(in the case of two dimensions) leads to the matrix above.

3.5.2 The Trigonometry of Rotation

The trigonometry of rotation can be shown fairly straightforwardly. Panell of
Fig. 3.22 shows a point 4 with original coordinates @, and a, in the e,, e, basis. If the

11 As will be discussed in more detail in Chapter 4, the clockwise rotation of a={}] can also be

represented by the product
2.23 0867 05 |[2]
—0.13 -0.5 0.867 | [ 1
2.23

where [}] and [_2%3] are both expressed in terms of the e; basis vectors.
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e, €
t A f, 3
A
T \ A
\ \
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v \
[ L \ f1 f1
a, -
-1 v K
i a,*/ K L
) - ,
hY W ¥
' 1 >, L | .
O-——=ay~-—=—/ 0 /

Fig. 3.22 A trigonometric demonstration of basis vector rotation.

original axes are rotated counterclockwise through the angle W, we obtain ¢, * and a,* as
the coordinates of 4 m the f,, f, basis. We now ask: How can @, * and a,* be expressed
in terms of the old coordinates ¢; and a,?

The trigonometric argument is simple to describe. Panel II shows the construction of
the rectangle IJKL. Angle OHI is the complement of the angle ¥ and, in turn, equals
angle AHK. Hence, angle HAK is equal to W, the angle of rotation. Given these facts, we
can now say

a,*=0K=0H+HK=0L+1J=0I cos ¥+ Alsin ¥=a,cos ¥ +a, sin ¥
a, ¥*=AK=AJ-JK=AJ—-IL = Al cos V-0l sin¥=a, cos ¥V—a, sin¥
The coordinates of 4 in terms of the new basis vectors f;, f, are then given by

a1*=a; cos¥ +a, sinV; a,*=—a, sin¥ +a, cos¥

| a,* cos ¥ sin ¥ alJ
az* —sin ¥ cos ¥ as
as desired.
It should be remembered, however, that expressing a basis vector rotation in terms of a

single angle W is restricted to two dimensions. On the other hand, the more cumbersome
notation involving four angles

or, in matrix form,

0515 012y 0315 0O

is more general, since the concept of direction cosines generalizes to three or more
dimensions. Thus, any time that we work with rotations involving three or more
dimensions we shall assume that direction cosines are involved throughout.

3.53 Higher-Dimensional Rotations

What has been illustrated above for the case of two-dimensional rotations can be
extended to three or more dimensions by using the appropriate matrix of direction
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Fig. 3.23 Rotation in three dimensions.

cosines. Figure 3.23 portrays, in general form, a counterclockwise rotation from the e;
basis to an f; basis. The coordinates of some point a in the original basis can be expressed
as a* in the new basis by

a,*|=jcosly; cosly cosls | a;
a*|=|cosfy; cosby, coslxn|ias
as* | =] cosf;3 cosfyy cosly || as

Fig. 3.23 shows the angles that are considered in this more complex case. However, no
new principles are involved.

Orthogonal matrices play a central role in various multivariate procedures, and their
special properties should be noted; these are taken up next.

3.5.4 Properties of an Orthogonal Matrix

Now that we have illustrated what goes on when a point, or points, are subjected to a
rotation, let us examine some of the properties of the transformation matrix used in
Section 3.5.1. We have

[cos 6y, cos 021} ( 0.867 0.5 1
A= =
| cos by, cos by, -0.5 0.867 |

First, let us check on the following:

A'A 10867 05 | [ 087 05 | [1 0
0.5 0.867J ~0.5 0.867] |0 1

! [0.867 0.5 0.867 0.5 J 1 OJ
AA = =
-0.5 0.867 0.5 0.867) [0 1
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L

f

Fig. 3.24 Improper rotation.

As can be seen, within rounding error, we obtain an identity matrix in each case. Hence A
is observed to be an orthogonal matrix.

However, before concluding that all matrices that satisfy the above conditions are rigid
rotations, let us consider the following modification of A.

cos 04 cos 0,
B=
—C08 0y —COs Oy
Note that B differs from A only in the fact that the second-row entries of A have been
each multiplied by —1. If we examine the properties of B, we see that

BB=BB =1

That is, the same conditions are met with the B matrix as were met with the A matrix.'?

However, what is happening here is something that is a bit different from a rigid
rotation. Figure 3.24 illustrates what is going on. In this latter case we have a rigid
rotation that leads to a new axis f; which is in the same orientation as f; in Fig. 3.20 but
an axis f, which is the negative of f, in Fig. 3.20.

This new situation represents a case of rotation followed by a reflection of the f, axis.
Alternatively, we could have affixed minus signs to the first row of A and, in this case, it
would be the f; axis that was reflected. However, if all entries of A are multiplied by
—1, a rigid rotation of 6,; + 180° would result. It is only when an odd number of rows
receive minus signs that we have what is known as an “improper” rotation, that is, a
rotation followed by reflection.

'? The reader may verify this numerically or, in more general terms, write out the implied
trigonometric relationships.
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How do we know before hand whether a proper versus improper rotation is involved?
It tums out that this distinction is revealed by examining the determinant of A.

1. If the determinant of A equals 1, then a proper rotation is involved.
2. If the determinant of A equals —1, then an improper rotation is involved.

And, it tums out that any orthogonal matrix will have a determinant that is either 1 or
-1.

To sum up, if A'A=AA" =1 we say the matrix is orthogonal. If |A] = —1, it represents
a rotation followed by an odd number of reflections, for example, one axis in the 2 x 2
case, one or three in the 3 x 3 case, one or three in the 4 x 4 case, and so on. If |A] =1,
then we are dealing with a proper rotation.'?

3.6 GEOMETRIC ASPECTS OF CROSS-PRODUCT MATRICES
AND DETERMINANTS

In Chapter 2 we defined a determinant as a scalar function of a square matrix.
Evaluation of a determinant in terms of both cofactor expansion and the pivotal method
was also described and illustrated numerically. At this point attention focuses on the
geometric aspects of a determinant and, in particular, its role in portraying generalized
variance among a set of statistical variables. In the course of describing this relationship,
we shall also point out geometric analogies to a number of common statistical concepts.

By way of introduction, we first illustrate some geometric aspects of a determinant at
a simple two-dimensional level. We then discuss how determinants can be linked with
various statistical measures of interest to multivariate analysis.

3.6.1 The Geometric Interpretation of a Determinant

Certain aspects of the determinant of a matrix can be expressed in geometric format.
To illustrate, let us consider the unit square OIJK, as shown in Fig. 3.25. The coordinates
representing the vertices of the square are

0=(0,0); I=(1,0); J=(1,1); K=(0,1)

Next, suppose we were to multiply these coordinates by the matrix
2 1
T =
3 4
01 J K o I* J* K*
2 1jfo 1 1 0] 0 2 3 1
U = ; U=
3 4]0 0 1 1 0 3 7 4
13 1t should be mentioned that any reflection of two or more axes can itself be represented by a

proper rotation followed by just one reflection. For example, in the 3 x 3 case, only one axis need be
reflected after an appropriate rotation is made.

as follows:
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7+ s

Fig. 3.25 Geometric aspects of a determinant.

These transformed points also appear in Fig. 3.25 as the quadrilateral OI*J*K*.

The key aspect of this transformation has to do with the ratio of the area of the
quadrilateral to the area of the original unit square. The ratio of the two areas equals the
determinant of the transformation matrix T. That is,

IT[=2x4)—(3x1)=5

Thus, if one were to measure the area of OI*J*K* and compare it to the area of OLJK,
one would find that it is exactly five times the latter area. And this would be true for any
starting figure that is transformed by T.

This concept generalizes to determinants of matrices of order 3 x 3 and higher. In the
3 x 3 case, the determinant measures the ratio of volumes between the original and
transformed figures. In the 4 x 4 and higher-order cases, the determinant measures the
ratio of hypervolumes between original and transformed figures.

Finally, if the sign of the determinant should be negative, this does not affect the ratio
between hypervolumes of original and transformed figures. Rather, the presence of a
negative determinant has to do with the orientation of the transformed figure in the space
of interest.** Hence, it is the absolute value of the determinant that indicates the ratio of
hypervolumes. Moreover, if that absolute value is less than unity, then the transformed
figure’s hypervolume is a fraction of that of the original figure.

3.6.2 The Geometry of Statistical Measures
In Chapter 1 we introduced a small and illustrative data bank (Table 1.2), involving
only twelve cases and three variables. In Chapter 2 we used this miniature data bank

' To illustrate this, the reader should work out the case of T = [2 ~}] with {T| = —35. This entails a
reflection of the quadrilateral in Fig. 3.25 across the y axis. However, the ratio of areas is still 5 : 1.
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(Table 2.2) to illustrate the application of matrix operations in the computation of
various cross-product matrices, such as the SSCP, covariance, and correlation matrices.

We continue to refer to this sample data bank. However, in line with the focus of
Chapter 3, the data of the sample problem are now discussed from a geometric viewpoint.

In the course of analyzing multivariate data, it is useful to make various scatter plots
for showing relationships among variables. Figures 1.2 and 1.3 are illustrations of the
more usual type of plot in which variables are treated as axes, and cases (employees in
this example) are treated as points. This more conventional way of portraying data is
often called a response surface or point model, since with one criterion variable and two
predictors X; and X,, one could visualize the fitting of a response surface to Y, the
criterion variable.

Alternatively, however, we could imagine that each of the twelve employees, or cases,
represents a dimension, and each of the three variables in the sample problem represents a
vector embedded in a twelve-dimensional space. (Actually, if the three variables are
linearly independent, they will lie in only a three-dimensional subspace of the original
twelve dimensions, as is discussed in more detail in later chapters.)

For the moment, let us simplify things even further and consider only two of the
variables of the sample problem, namely, Y and X| . If so, a vector representation of these
two variables could be portrayed in only two dimensions, embedded in the fuli,
twelve-dimensional space.

From Table 2.3 we note that the covariance and correlation matrices for only the Y,
X pair of variables are

Y X, Y X,
Y [ 2952 19447 Y110 095
C= J; R=
X:.1944 14.19 X;L095 1.0
As recalled, both the C and R matrices are based on mean-corrected variables; as such,
the origin of the space will be taken at the centroid of the variables, represented by the 0

vector.'s
As in Chapter 2, we can define the variance of a variable X, as

, _ Ixh
52 =

where x;; = X;; — X, (ie.,

each x is expressed as a

deviation about the mean, and

m denotes the number of cases'®)

! m

's By centroid is meant a vector whose components are the arithmetic means of Y and X,,
respectively. Then, if we allow the centroid to represent the origin or 0 vector, the individual vectors
are position vectors whose termini are expressed as deviations from the mean of Y and X,,
respectively.

¢ One could use m — 1 in the denominator if one wished to have an unbiased estimate of the
population variance. (Such adjustment does not mean that the sample standard deviation is an
unbiased estimate of the population standard deviation, however.) Here, for purpose of simplification,
we omit the adjustment and use m in the denominator.
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Similarly, the correlation of a pair of variables is defined as

2yiXi
Tyx, = W;T where y; and x;; are
Vi i each expressed as deviations

about their respective means

When Y and X, are each expressed in mean-corrected form, their correlation is related
to their scalar product as follows:

ryx = __L = Ccos ny
oyl xg !

which, we see, is just the cosine of fyy , their angle of separation.
In terms of the sample problem, the correlation is
233.28

=095
V35424 -/170.28

Tyx, =C08 Oyx =

where the scalar product and squared vector lengths are computed from Yy and Xy, in
Table 1.2. The covariance of a pair of variables is defined as

COVyx, =Tyx, SySx,

_ Zyixg where 5, and sy, are standard
I deviations of Y and X, respectively

Our current objective is to tie in these statistical notions with concepts from vector
algebra and, in particular, to show how the determinant of a covariance matrix can be
used as a generalized scalar measure of dispersion.

To do this, we first imagine a geometric space in which the axes are the m cases (e.g.,
the employees). The variable Y can then be thought of as a *‘test” vector y in a space of
m persons. Similarly, the variable X; can be thought of as another vector x; in the person
space. The components of y and the components of x; each sum to zero since each
variable is expressed in terms of deviations from its own mean.

Once this has been done, we can see that the length of the vector y tums out to be
proportional to the standard deviation of the variable Y. That is,

m
lyll = ,Zl yi=/ms,

Similarly, for the vector x; we have

m
llx,ll = .Zl X} = msy,
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Fig. 3.26 A vector representation of the covariance between Y and X, (sample problem).

The correlation r,,, between the two test vectors, measured as deviations from each
variable’s mean but based on vector lengths that are each normalized to unity, is equal to
the cosine of the angle separating them. Furthermore, the scalar product of these two

vectors is proportional to their covariance. That is,
!
y Xy =cos Oyx Nyl - lix, 1l = m[covyx | =m{ryx sy sx, ]

Insofar as the sample problem is concerned, Fig. 3.26 shows a plot of the vectors y and
x;. The angle corresponding to a cosine of 0.95 (denoting their correlation) is 18°. Their
respective lengths are

Hyll= V12 - /2952 = 18.82; Nx 0= /12 - V1419 =13.05

If one is dealing with standardized scores, then vector lengths would, of course, each
be equal to /m since sy and s, would each be equal to unity.

In brief, with mean-corrected variables, all three cross-product matrices—the SSCP,
covariance, and correlation matrices—can be portrayed in geometric terms. The key
concept involves the scalar product between two variables. In all three cases, we have

cos Oyx, =ryx,

The vector lengths in each case are as follows:

m m
SSCP matrix: NN DS
i=1 i=1

Covariance matrix: Vmsy; vm Sx,
Correlation matrix: Vm;, m

This complementary view of association between variables will serve us in good stead in
the interpretation of various aspects of multivariate analysis in later chapters.

3.6.3 A Generalized Variance Measure

Having established the various correspondences shown above, we now wish to illustrate
how the determinant of the covariance matrix represents a scalar measure of generalized
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variance.'” Given, illustratively, two variables Y and X, the covariance matrix can be

written as
2
s TyxSyS
y yxoySx
C= [7 , }

TyxSySx  Sx

where the main diagonal components are variances, and the off-diagonal component is
their covariance. If we compute the determinant of this matrix, we get

IC1= 5,285 7 — 138y 2> = 53285 (1= 155) = 5755 *(1—cos? Oyx).
and, from basic trigonometry, in which we have the identity sin? 6 + cos? 6 = 1, we can
write

|C] = sy25,2 sin? Oyx = (s, S sin yx)*
where 8y is the angle between the (deviation-score) vectors y and X.

As pointed out earlier, the standard deviation of a variable 1s 1//m times the length of
its corresponding vector. Hence, we have

. _ iyl nxdb
Sy Sx SIn ny = -\/———m__ﬁ sm ny

and we can conveniently set up the equivalence

llyl

e

sin 8

as the height of a parallelogram with base given by
lx|
vm

as shown in Fig. 3.27. So, if the vector lengths are each scaled by 1 /\/m, we see that the
area of the resulting (scaled) parallelogram equals 5,5, sin Oyx . The square of this area

2
Jm

Fig. 3.27 Representing the determinant of a 2 x 2 covariance matrix as the area of a
parallelogram.

17 For example, even in a 2 x 2 covariance matrix we have four dispersionlike entries. Our interest
here is on developing a single number that represents the four entries in certain multivariate statistical
applications.
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equals the generalized variance (i.e., determinant of the dispersion matrix). If n variables
are involved, the generalized variance equals the square of the volume formed by n such
(rescaled) vectors.

Figure 3.27 shows, in general form, the nature of this parallelogram in the two-variable
case. We see that each vector appears in scaled (by 1/3/m) form, and the parallelogram is
completed as shown.

For a numerical illustration of the correspondence, let us again refer to the sample
problem of Table 2.3. We illustrate the equivalence for only the first two variables Y and
X,.

First, from the covariance matrix involving variables Y and X, ,

Y X

Y 12952 19447

|

. |
X,L19.44 14.19

we obtain
lyll=+v12 - v/29.52 = 18.82: [1x,1l = V12 - \/14.19 =13.05
cos fyx, =0.95; sin fyx, =0.31

Hence the area of the parallelogram formed by y and x, is
ylh il _ 1882 13.05

0 - — . —
Jm ym hOYNT Um T ym

(0.31)=6.34

The square of 6.34 is equal to 40.22. This value, within rounding error, equals the
determinant of C, the covariance matrix. Thus we have shown geometrically and
numerically how the determinant of C is equal to the square of the area of the
parallelogram in Fig. 3.27.

The concept of generalized variance is quite important in multivariate analysis since it
enables us to portray a matrix of variances and covariances in terms of a single number,
namely, the determinant of the covariance matrix. Just as importantly, we also see that
the statistical measures of standard deviation, covariance, and correlation can be
portrayed in terms of length and/or angle of test vectors in person and, more generally,
object space.

3.7 SUMMARY

The purpose of this chapter has been to describe a number of the vector and matrix
operations outlined in Chapter 2 from a geometric standpoint. After setting up a
rectangular Cartesian coordinate system and defining the concept of a Euclidean space,
we discussed such topics as vector length and angle, vector addition and subtraction,
scalar multiplication of a vector, and the scalar product of two vectors from a geometric
point of view.
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We then described the notion of linear independence. We also illustrated how the
Gram-Schmidt process could be employed to find an orthonormal basis starting from any
given (arbitrary) basis. Following this we briefly discussed the idea of generalized
(nonorthogonal) coordinate systems.

Matrix times vector multiplication was introduced from a geometric viewpoint for the
special case of orthogonal (i.e., proper or improper rotation) matrices. The properties of
this class of matrices were discussed, and their application was illustrated numerically. We
concluded the chapter with a geometric representation of various statistical measures,
including the central concept of generalized variance, as applicable to multivariate
statistical tests to be considered in later chapters.

REVIEW QUESTIONS

1. Sketch a three-dimensional coordinate system.

a. Plot points with coordinates (2, 1,0), (1, -1, 1), /3, m —2). What is the
length of each?

b. What is the set of points whose x and y coordinates sum to 1?
c.  What is the graph of z = x%?
d. What is the graph of the inequality x? + y? + 2% < 17

2. Let P be the point (4, 3, —1), Q be the point (1, 0, 2), and R be the midpoint of the
segment joining P and Q.

a.  What are the coordinates of R?
b. Sketch the vectors PR, OR, and PQ, where O denotes the origin.

c. Verify that PR = PQ/2 by computing the distance from P to R, R to @, and P to
Q; then show that the first two distances are each half of the last distance.

3. In the context of linear combinations,
a. find a scalar k such that

(1,0,2) + k(2,1,1) =(-1,-1,1)
b. find scalars ky, k5, and k3 such that
ki(5e; +e3) + ky(ey +e3) + ky(es) = 5e; + 3e; + e
c. find k; and k, such that
ki(5e,+ey) tky(ey—ey)=0

4. Let a and b be vectors with given lengths and angle §. Compute their scalar product
under the conditions

a. |lall=0.5; bl = 4; 6= 45°
b. |lall = 4; ivlf=1; 8= 90°
c. llall=1; bl =1; 6=120°

d. What is the possible range of values for the scalar product a'bif

flalt=2 and [Iblt=3?
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5. Let a, b, and ¢ be vectors. Let Ilap|| be the component of a along c and let prll be
the component of b along c¢c. What is the component of a+b along ¢? Sketch the
relationship in two-dimensional space.

6. Leta =(2,—1,7)and b = (-3, 6, 1). Find direction cosines for

a. a'+b b. a'—b’ c. 5a +10b d. 3('-b")
Next, find the cosine of the angle between the two vectors obtained in parts ¢ and d.

7. Apply the Gram-Schmidt orthonormalization procedure to the following sets of
vectors:

a. a' =(1,2,3); '=(3,0,2); <'=(3,1,1)
b. a' =(2,1); b'=(1,2); c¢'=(1,1)

c. What do you notice about the vectors obtained in part b?
8. Find coordinates of the vector a’ = (2, 3) relative to the basis vectors f,'=Q, -1)
and f," = (3, 5).
9. Show that the vectors a' = (1,4, —2) and b =(2, 1, 3) are orthogonal and find a
third vector that is orthogonal to both.
10. Find the equations for the ellipse 4x> + y2 =4 and the circle x? +»% =1 after the
xy axes have been rotated counterclockwise through angles of

o o

a. 45 b. 60 c. 120°

11. Find x and y so that the vectors (4,-2,1,7) and (2,-3,x, y) are linearly
dependent.
12. Express the standard basis vectors e; = (1, 0, 0), e;' =(0, 1, 0), and e;' =(0,0,1)
as linear combinations of f," = (1, 2,4),f," =(~2,1,5), and f3' = (=1, —1,2).
13. Rotate the vector a =(1,2) counterclockwise through an angle of 45° while
keeping the basis vectors fixed. Rotate b’ = (3, 2) clockwise through an angle of 60°.

a. What is the scalar product a'b before and after the two rotations?

b. What are the vector lengths of a’ and b’ after the rotations?

c. Show each of the above steps geometrically.
14. Assume that we have the expression

a* _| cos 45° —sin 45‘1 {a,]
[az*} B Lin 45° cos 45° as
and OP is the line joining the origin 0 to the point P = (2, 3). Show in diagram form the
position of OP*, the rotated point.
a
I:a—j

15. Apply the transformation
a*] |35
az*J 2 4_

to a square with vertices of (1, 1), (3, 1), (3, 3), (1, 3) and show geometrically that the
ratio of the area of the new figure to the area of the originalis 2 to 1.
16. In the sample problem of Table 2.3, consider the full 3 x 3 covariance matrix.
a. Plot the mean-corrected y, x;, and x, in a three-dimensional space.
b. Plot the standardized form of y, X, and X, in a three-dimensional space.
c¢. Show how the correlation between y and x, is related to
y'xa

Hy - 1%l

cos Oyx, =



