
CHAPTER 6 

Applying the Tools to Multivariate Data 

6.1 INTRODUCTION 

In this chapter we come around full circle to the three substantive problems first 
introduced in Chapter 1. As recalled, each problem was based on a "toy" data bank and 
formulated in terms of three commonly used techniques in multivariate analysis: (a) 
multiple regression, (b) principal components analysis, and (c) multiple discriminant 
analysis. 

We discuss the multiple regression problem first. The problem is structured so as to 
require the solution of a set of linear equations, called "normal" equations from 
least-squares theory. These equations are first set up in terms of the original data, and the 
parameters are found by matrix inversion. We then show how the same problem can be 
formulated in terms of either a covariance or a correlation matrix. 

R^, a measure of overall goodness of fit, and other regression statistics such as partial 
correlation coefficients, are also described. The results are interpreted in terms of the 
substantive problem of interest, and comments are made on the geometric aspects of 
multiple regression. 

We then discuss variations on the general linear model of multiple regression: analysis 
of variance and covariance, two-group discriminant analysis, and binary-valued regression 
(in which all variables, criterion and predictors, are expressed as zero-one dummies). This 
discussion is presented as another way of showing the essential unity among single-
criterion, multiple-predictor models. 

Discussion then turns to the second substantive problem, formulated as a principal 
components model. Here the solution is seen to entail finding the eigenstructure of a 
covariance matrix. Component loadings and component scores are also defined and 
computed in terms of the sample problem. 

After solving this sample problem, some general comments are made about other 
aspects of factor analysis, such as the factoring of other kinds of cross-product matrices, 
rotation of component solutions, and dimension reduction methods other than the 
principal components procedure. 

The three-group multiple discriminant problem of Chapter 1 is taken up next. This 
problem is formulated in terms of finding the eigenstructure of a nonsymmetric matrix 
which, in turn, represents the product of two symmetric matrices. The discriminant 
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functions are computed, and significance tests are conducted. The results are interpreted 
in the context of the third sample problem. 

We then turn to other aspects of multiple discriminant analysis (MDA), including 
classification matrices, alternative ways to scale the discriminant functions, and the 
relationship of MDA to principal components analysis. Finally, some summary-type 
comments are made about other techniques for dealing with multiple-criterion, 
multiple-predictor association. 

The last major section of the chapter is, in some respects, a prologue to textbooks that 
deal with multivariate analysis per se. In particular, the concepts of transformational 
geometry, as introduced in earlier chapters, are now brought together as another type of 
descriptor by which multivariate techniques can be classified. Under this view 
multivariate methods are treated as procedures for matching one set of numbers with 
some other set or sets of numbers. Techniques can be distinguished by the nature of the 
transformation(s) used to effect the matching and the characteristics of the transformed 
numbers. 

This organizing principle is described in some detail and suggests a framework that 
can be useful for later study of multivariate procedures as well as suggestive of new 
models in this field. 

6.2 THE MULTIPLE REGRESSION PROBLEM 

We are now ready to work through the details of the sample problem in Chapter 1 
dealing with the relationship of employee absenteeism Y, to attitude toward the firm Xi 
and number of years employed by the firm X2. To simplify our discussion, the basic data, 
first shown in Table 1.2, are reproduced in Table 6.1. 

As recalled from the discussion in Chapter 1, here we are interested in 

1. finding a regression equation for estimating values of the criterion variable Y from 
a linear function of the predictor variables Xi and X2 ; 

2. determining the strength of the overall relationship; 
3. testing the significance of the overall relationship; 
4. determining the relative importance of the two predictors Xi and X2 in 

accounting for variation in Y. 

6.2.1 The Estimating Equation 

As again recalled from Chapter 1, the multiple regression equation 

Yi = bo + baii+b.Xt2 

is a linear equation for predicting values of Y that minimize the sum of the squared errors 
12 12 

le^=l(Y,-Y,r 
i=l i=l 
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TABLE 6.1 

Basic Data of Sample Problem (from Table 1.2) 

Employee 

a 
b 
c 
d 
e 
f 

g 
h 
i 

J 
k 
1 

Mean 

Standard 
deviation 

Number of days absent 

Y 

1 
0 
1 
4 
3 
2 
5 
6 
9 

13 
15 
16 

6.25 

5.43 

Yd 

-5 .25 
6.25 

-5 .25 
-2 .25 
-3 .25 
-4 .25 
-1 .25 
-0 .25 

2.75 
6.75 
8.75 
9.75 

ys 

-0 .97 
-1 .15 
-0 .97 
-0 .41 
-0 .60 
-0 .78 
-0 .23 
-0 .05 

0.51 
1.24 
1.61 
1.80 

^ 1 

1 
2 
2 
3 
5 
5 
6 
7 

10 
11 
11 
12 

6.25 

3.77 

Attitude rating 

^ d l 

-5 .25 
-4 .25 
-4 .25 
-3 .25 
-1 .25 
-1 .25 
-0 .25 

0.75 
3.75 
4.75 
4.75 
5.75 

-^sl 

-1 .39 
-1 .13 
-1 .13 
-0 .86 
-0-33 
-0 .33 
-0 .07 

0.20 
0.99 
1.26 
1.26 
L53 

Years with company 

X2 

1 
1 
2 
2 
4 
6 
5 
4 
8 
7 
9 

10 

4.92 

2.98 

^ d 2 

-3 .92 
-3 .92 
-2 .92 
-2 .92 
-0 .92 

1.08 
0.08 

-0 .92 
3.08 
2.08 
4.08 
5.08 

^s2 

-1 .31 
-1 .31 
-0 .98 
-0 .98 
-0 .31 

0.36 
0.03 

-0 .31 
1.03 
0.70 
1.37 
1.71 

Appendix A shows how the set of normal equations, used to find bo, bi, and Z?2, are 
derived. In terms of the specific problem here, we have in matrix notation:^ 

C J(.i JC2 

1 

1 12 10 

bo 

bi 

b2 

e2 

en 

The model being fitted by least squares is 

y = Xb + e 

Notice that the model, in matrix form, starts off with the observed vector y and the 
observed matrix X. As will be shown later, the device of including a column of ones as the 
first column of X (called C) is employed for estimating the intercept bo. 

We wish to solve for b, the vector of parameters, so that X!L 1̂ 1̂ = e'e is minimized. As 
can be checked in Appendix A, the problem is a standard one in the calculus and leads to 
the so-called normal equations which, expressed in matrix form, are 

b = (X'X)-iXy 

^ The sample entries in y and X are taken from Table 6.1. 
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That is, we first need to find the minor product moment of X, which is X'X. Next, we 
find the inverse of X'X and postmultiply this inverse by X'y. 

In terms of the specific problem of Table 6.1, we have 

X' X X' 

^0 

b2 

1 

12 

10 

l] 
12 

loj 

[ l 

0 

1 

[l6j 

b = 

1 12 10 

-2.263 I 

1.550 

-0.239 

Hence, in terms of the original data of Table 6.1, we have the estimating equation 

Yi = -2.263 + 1.550^n - 0.239X/2 

The 12 values of ?^ appear in the lower portion of Table 6.2, along with the residuals e^. 
If one adds up the squared residuals, one obtains (within rounding error) the residual 

term shown in the analysis of variance table of Table 6.2: 

residual = 34.099 

The total sum of squares is obtained from 
12 

Z (Y-Yf = 354.25 
/ = i 

and the difference 

due to regression = 320.15 

6.2.2 Strength of Overall Relationship and Statistical Significance 

The squared multiple correlation coefficient is R^, and this measures the portion of 
variance in Y (as measured about its mean) that is accounted for by variation in Xi and 
X2. As mentioned in Chapter 1, the formula is 

R^ 
m . ei^ 

V;t,iYi-rf 

/?2 = 1 _ 34.099 
354.25 = 0.904 
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TABLE 6.2 

Selected Output from Multiple Regression 

R^ = 0.904; R = 0.951; variance of estimate 3.789 

Analysis of Variance for Multiple Regression 

Source 

Due to regression 
Residual 

Variable 

Total 

Regression 
coefficients 

df 

2 
9 

11 

Sums of 
squares 

320.151 
34.099 

354.250 

Standard 
errors r values 

Mean 
squares 

160.075 
3.789 

Partial 
correlations 

F ratio 

42.25 

Proportion 
of cumulative 

variance 

X, 
X, 

Employee 

a 
b 
c 
d 
e 
f 

Y 

1 
0 
1 
4 
3 
2 

1.550 
0.239 

Y 

-0.95 
0.60 
0.36 
1.91 
4.53 
4.05 

0.481 
0.606 

Y intercept 

3.225 
-0 .393 

-2 .263 

Table of Residuals 

e 

1.95 
-0 .60 

0.64 
2.09 

-1 .53 
-2 .05 

Employee 

g 
h 
i 

J 
k 
1 

0.732 
-0 .130 

Y 

5 
6 
9 

13 
15 
16 

Y 

5.85 
7.63 

11.33 
13.11 
12.64 
13.95 

0.902 
0.002 

e 

-0 .84 
-1 .63 
-2 .33 
-0 .11 

2.36 
2.05 

The statistical significance of i^, the positive square root of R^, is tested via the analysis 
of variance subtable of Table 6.2 by means of the F ratio: 

F = 42.25 

which, with 2 and 9 degrees of freedom, is highly significant at the o: = 0.01 level. Thus, 
as described in Chapter 1, the equivalent null hypotheses 

are rejected at the 0.01 level, and we conclude that the multiple correlation is significant. 
Up to this point, then, we have established the estimating equation and measured, via 

R^, the strength of the overall relationship between Y versus Xi and X2. 
If we look at the equation again 

Yi = -2.263 + 1 .SSOXa - 0.239X/2 
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we see that the intercept is negative. In terms of the current problem, a negative 2.263 
days of absenteeism is impossible, illustrating, of course, the possible meaninglessness of 
extrapolation beyond the range of the predictor variables used in developing the 
parameter values. 

The partial regression coefficient for Xi seems reasonable; it says that predicted 
absenteeism increases 1.55 days per unit increase in attitude rating. This is in accord with 
the scatter plot (Fig. 1.2) that shows the association of Y with Xi alone. 

The partial regression coefficient for X2, while small in absolute value, is negative, 
even though the scatter plot of Y on X2 alone (Fig. 1.2) shows a positive relationship. 
The key to this seeming contradiction lies in the strong positive relationship between the 
predictors Xi and X2 (also noted in the scatter plot of Fig. 1.2). Indeed, the correlation 
between Xi and X2 is 0.95. The upshot of all of this is that once Xi is in the equation, 
X2 is so redundant with Xi that its inclusion leads to a negative partial regression 
coefficient that effectively is zero (given its large standard error). 

6.2.3 Other Statistics 

The redundancy of X2, once Xi is in the equation, is brought out in Table 6.2 under 
the column 

Proportion of 
cumulative variance 

X^ 0.902 
X^ 0.002 

That is, of the total R^ =0.904, the contribution of Xi alone represents 0.902. The 
increment due to X2 (0.002) is virtually zero, again reflecting its high redundancy with 

This same type of finding is reinforced by examining the t values and the partial 
correlations in Table 6.2. These are 

X, 

x^ 

t Values 

3.225 
-0.393 

Partial 
correlations 

0.732 
-0.130 

The Student t value is the ratio of a predictor variable's partial regression coefficient to its 
standard error. The standard error, in tum, is a measure of how well the predictor variable 
itself can be predicted from a linear combination of the other predictors. The higher the 
standard error, the more redundant (better predicted) that predictor variable is with the 
others. Hence, the less contribution it makes to Y on its own and the lower its t value. 

We see that the ratio of ^1 to its own standard error is 

, . 1.550 
< ^ ) = 0 : ^ = 3.225 

which is significant at the 0.01 level. The t value for X2 of -0.393 is not significant, 
however. Without delving into formulas, the t test is a test of the separate significance of 
each predictor variable Xy, when included in a regression model, versus the same 
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regression model with all predictors included except it. We note here that only Xi is 
needed in the equation. 

The partial correlations also suggest the importance of Xi rather than X2 in 
accounting for variation in Y. The partial correlation of Y with some predictor Xj is their 
simple correlation when both variables are expressed on a residual basis, that is, net of the 
linear association of each with all of the other predictors. In the present problem, the 
partial correlation of Y with Xi is considerably higher than Y with X2, supporting the 
earlier conclusions. 

But what if X2 is entered first in the regression? What happens in this case to the 
various statistics reported in Table 6.2? As it turns out, the only statistic that changes if 
X2 is credited with as much variance as it can account for before Xi is allowed to 
contribute to criterion variance is the last column, proportion of cumulative variance. If 
X2 is entered first, it is credited with 0.79, while Xi is credited with only 0.11 of the 
0.90 total. The rest of the output does not change, and X2 is still eliminated from the 
regression on the basis of the t test results. 

What this example points out is that in the usual case of correlated predictors, the 
question of "relative importance" of predictors is ambiguous. Many researchers interpret 
relative importance in terms of the change inR^ occurring when the predictor in question 
is the last to enter. Other importance measures are also available, as pointed out by 
Darlington (1968). However, in the case of correlated predictors, no measure is entirely 
satisfactory. 

6.2.4 Other Fonnulations of the Problem 

In the sample problem of Table 6.1, the normal equations were formulated in terms of 
the original data. Alternatively, suppose we decided to work with the mean-corrected 
scores Y^, X^y X^2' ^^ this case we would compute the covariance matrix 

and the vector of partial regression parameters would be found from 

b = C-'a(j;) 

where a(y) is the vector of covariances between the criterion and each predictor in turn, 
with elements 

ai =yd'xdi/m 

«2 = yd'xd2/m 

in the sample problem. 
The preceding formula for computing b would find only bi and Z?2 since all data 

would be previously mean centered. To work back to original data, we can find the 
intercept of the equation by the simple formula: 

bo - Y — biXi — Z?2̂ 2 
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If we decided to work with the standardized data Y^, X^i, and X^2^ the appropriate minor 
product moment is the correlation matrix 

R = X,X/m 

and the vector of parameters b* (often called beta weights) would be found from 

b* = R-y>^) 

where r(y) is the vector of product-moment correlations between the criterion and each 
predictor in tum, with elements 

r2 = Ys^si/m 

in the sample problem. 
The vector b* measures the change in F per unit change in each of the predictors, 

when all variables are expressed in standardized units. To find the elements of b, we use 
the conversion equations 

^2 = ^: 
* 'y 

^X2 

These simple transformations, involving ratios of standard deviations, enable us to express 
changes in Y per unit change in Xi and X2 in terms of the original Y units. Having done 
this, we can then solve for the intercept term in exactly the same way: 

bo = Y- biXi - Z72^2 

as shown in the covariance matrix case. Many computer routines for performing multiple 
regression operate on the correlation matrix. As seen here, any of the cross-product 
matrices—raw cross products, covariances, or correlations—can be used and, in the latter 
two cases, modified for expressing regression results in terms of original data. 

6.2.5 Geometric Aspects—the Response Surface Model 

Figure 1.2 showed two-dimensional scatter plots of Y versus Xi, Y versus X2, and X2 
versus Xi It is also a relatively simple matter to plot a three-dimensional diagram of Y 
versus Xi and X2. This is shown in Fig. 6.1. 

We also show the fitted regression plane, as computed by least squares. This type of 
model, in which observations are represented by points and variables by dimensions, is 
often called the response surface or point model. 
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= -2.263+ 1.55X1-0.239X2 

Fig. 6.1 Three-dimensional plot and fitted regression plane. 

The intersection of the regression plane in Fig. 6.1 with the Y axis provides the 
estimate bo, the intercept term. If we next imagine constructing a plane perpendicular to 
the Xi axis, we, in effect, hold Xi constant; hence Z?2 represents the estimated 
contribution of a unit change in X2 to a change in Y. Similar remarks pertain to the 
interpretation of Z?i. 

The regression plane itself is oriented so as to minimize the sum of squared deviations 
between each Yf and its counterpart value on the fitted plane, where these deviations are 
taken along directions parallel to the Y axis. Similarly, we can find the sum of squared 
deviations about the mean of the Y/s by imagining a plane perpendicular to the Y axis 
passing through the value Y. Total variation in 7 is thus partitioned into two parts. As 
indicated earlier, these separate parts are found by 

1. subtracting unaccounted-for variation, involving squared deviations (Y^ - f^f 
about the fitted regression plane, from 

2. total variation involving squared deviations {Yj — Y)^ from the plane imagined to 
be passing through F. 

The quantity X / 3 j ( y i - YfY represents the unaccounted-for sum of squares, and the 

quantity [ Z / = i ( ^ ' - ^ ) ^ - Z / = i ( ^ - ^)^] represents the accounted-for sum of 
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squares. If no variation is accounted for, then we note that using Y is just as good at 
predicting Y as introducing the variation in Xi and X2« 

6.2.6 An Alternative Representation 

The foregoing representation of the 12 responses in variable space considers the 12 
observations as points in three dimensions, where each variable, 7, Xi, or X2, denotes a 
dimension. Alternatively, we can imagine that each of the 12 employees represents a 
dimension, and each of the variables constitutes a vector in this 12-dimensional person 
space. As we know from the discussion of matrix rank in Chapter 5, the three vectors will 
not span the whole 12-dimensional space but, rather, will lie in (at most) a 
three-dimensional subspace that is embedded in the 12-dimensional person space. 

We also remember that if the vectors are translated to a mean-centered origin and are 
assumed to be of unit length, the (product-moment) correlation between each pair of 
vectors is given by the cosine of their angle. In this case we have three two-variable 
correlations: ry^^, ryx^,and f'x^x^-

This concept is pictured, in general terms, in Fig. 6.2. In the left panel of the figure 
are two unit length vectors Xi and X2 emanating from the origin. Each is a 12-component 
vector of unit length, embedded in the "person" space. The cosine of the angle ^ 
separating Xi and X2 is the simple correlation rx x • 

Since the criterion vector y is not perfectly correlated with Xi and X2 , it must extend 
into a third dimension. The cosines of its angular separation between Xi and X2 are each 
measured, respectively, by its simple correlations ryx and ryx . However, one can 
project y onto the plane formed by Xi and X2. The projection of y onto this plane is 
denoted by y. 

In terms of this viewpoint, the idea behind multiple regression is to find the particular 
vector in the Xi, X2 plane that minimizes the angle 9 with y. This vector will be the 
projection y onto the plane formed by Xi, X2. Since any vector in the Xi, X2 plane is a 
linear combination of Xi and X2, it follows that we want the vector y = bi*Xi + Z?2*X2, 
where the bj*^s are beta weights, that minimizes the angle, or maximizes the cosine of the 
angle with y. The cosine of this angle 6 (see Fig. 6.2) is R, the multiple correlation. The 
problem then is to fmd a set of Z?y*'s that define a linear combination of the vectors Xi 

Fig. 6.2 Geometric relationship of y to y in vector space. The graph on the right shows geometric 
interpretation of partial regression weights in vector space. 
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and X2 maximizing the cosine R of d, the angle separating y and y. However, this is 
equivalent to minimizing the square of the distance from the terminus of y to its 
projection y. This criterion 

minimize 
12 

J=i 
(ysi-

n 

-1 
7 = 1 

-] 

^/ ^sij) 

again leads to the least-squares equations. (Since all variables are assumed to be measured 
in standardized form, the intercept Z?o is zero.) 

In general, the Xi, X2 axes will be obHque, as noted in Fig. 6.2. The right panel shows 
that a linear combination of Xi and X2, which results in the predicted vector y, involves 
combining oblique axes via Z?i*and Z?2* In this case, Z?i*and Z?2*are direction cosines. 

Figure 6.3 shows some conditions of interest. In Panel I we see that y is uncorrected 
with Xi and X2. This lack of correlation is indicated by the 90° angle between y and the 
Xi, X2 plane. Panel II shows the opposite situation where y is perfectly correlated with Xi 
and X2 and, hence, can be predicted without error by a Unear combination of Xi and X2. 

Panel III shows the case where Xi and X2 are uncorrected and y evinces some 
correlation with Xi and none with X2. Panel IV shows the case in which Xi and X2 are 
uncorrected, but the projection of y Hes entirely along X2. 

• - X 2 

Fig. 6.3 Some illustrative cases involving multiple correlation. Key: I, no correlation; II, perfect 
correlation; III, y correlated with x, only; IV, y correlated with Xj only. 
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In summary, the multiple correlation coefficient R is the cosine of the angle 6 made 
by y and y. The bj*'s are normalized beta weights and represent coordinates of y in the 
oblique space of the predictor variables. If more than two predictors are involved, the 
same geometric reasoning applies, although in this case the predictors involve higher-
dimensional hyperplanes. 

Partial correlations between y and Xi and X2, respectively, can also be interpreted. For 
example, if we consider a plane perpendicular to X2 and project y and Xi onto this plane, 
^yxi-x^, the partial correlation of y with Xi (with X2 partialed out) is represented by the 
cosine of the angle separating them on this plane. Similar remarks pertain to the partial 
correlation of y with X2 and would involve a projection onto a space that is orthogonal to 
Xi. The same general idea holds for larger numbers of predictors. 

6.3 OTHER FORMS OF THE GENERAL LINEAR MODEL 

The typical multiple regression model considers each variable as intervally scaled. This 
representation is overly restrictive. Indeed, by employing the dummy-variable device, as 
introduced in Chapter 1, we can extend the linear regression model to a more general 
model that subsumes the techniques of 

1. analysis of variance 
2. analysis of covariance 
3. two-group discriminant analysis 
4. binary-valued regression 

All of these cases are developed from two basic concepts: (a) the least-squares criterion 
for matching one set of data with some transformation of another set and (b) the dummy 
variable. 

Figure 6.4 shows, in a somewhat abstract sense, various special cases in terms of the 
response surface or point model involving m observations in three dimensions. 

Panel I of Fig. 6.4 shows each of the three columns of a data matrix as a dimension 
and each row of the matrix as a point. If we were then to append to the m x 2 matrix of 
predictors a unit vector, we have the famiUar matrix expression for fitting a plane or, 
more generally, a response surface, in the three-dimensional space shown in Panel I. 
Predicted values y of the criterion variable y are given by 

y = Xb 

where b is a 3 x 1 column vector with entries bo, Z?i, Z?2 denoting, respectively, the 
intercept, partial regression coefficient for Xi, and partial regression coefficient for X2. 

However—and this is the key point—nothing in the least-squares procedure precludes y 
(or Xi or X2 for that matter) from taking on values that are just zero or one. Panel II 
shows the case where y assumes only binary values, but Xi and X2 are allowed to be 
continuous. Panel III shows the opposite situation. Panel IV shows a "mixed" case where 
y and Xi are continuous and X2 is binary valued. Panel V shows a case where all three 
variables are binary valued. 



6.3. OTHER FORMS OF THE GENERAL LINEAR MODEL 271 

III 

IV 

1,0,0 

Fig. 6.4 Variations of the response surface model. 

Not surprisingly, from Chapter 1 we recognize Panel I as a traditional multiple 
regression formulation. Panel II appears as a two-group discriminant function. Panel III 
appears as a one-way analysis of variance design with one treatment variable at three 
levels. Panel IV represents a simple analysis of covariance design with a single two-level 
treatment variable (X2) and one continuous covariate (xi). Panel V seems less familiar, 
but could be viewed as a type of binary-valued regression where the criterion and the 
predictors are each dichotomies (e.g., predicting high versus low attitude toward the firm 
as a function of sex and marital status). 

As observed from Fig. 6.4, we can now conclude that all of these models are variations 
on a common theme—namely, one in which we are attempting to find some type of linear 
transformation that results in a set of scores that best match, in the sense of minimum 
sum of squared deviations, a set of criterion scores. In each case we are fitting a plane in 
the three-dimensional space of Xi, X2, and y and then finding estimates y of y that result 
in a minimum sum of squared deviations. 

All of the cases depicted in Fig. 6.4 are characterized by the fact that a single-criterion 
variable, either 0-1 coded or intervally scaled, is involved. Our interest is in finding some 
linear combination of predictors, where b denotes the set of combining weights, that 
leads to a set of predicted scores y that are most congruent with the original scores y. 

Extension of the multiple regression model to handle binary-valued predictors is 
described in various texts (e.g., Neter and Wasserman, 1974) in terms of a general linear 
model. 

If a further extension is made in order to allow for a binary-valued criterion, least 
squares can still be used to estimate parameter values, although the usual statistical tests 
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are not strictly appropriate since the normality and constant variance assumptions are 
missing. Still, as a descriptive device least squares can be used to find estimating equations 
for all of the cases depicted in Fig. 6.4. 

Discussion of the multiple regression problem has thus resulted in a much wider scope 
of application than might first have been imagined. Through the dummy-variable coding 
device, one can subsume all cases of interest—analysis of variance and covariance, 
two-group discrimination, binary-valued regression—that involve a single-criterion variable 
and multiple predictors. Moreover, although detailed discussion of the geometric aspects 
of the models was more or less confined to multiple regression, all of these methods can 
be represented by either 

1. the response surface or point model in variable space, or 
2. the vector model in person or object space. 

From the standpoint of matrix algebra, all of the preceding models entail solutions 
based on a set of linear (the normal) equations from least-squares theory. As such, the 
operation of matrix inversion becomes germane, as does the concept of matrix rank and 
related ideas such as determinants. In brief, the algebraic underpinnings of single-
criterion, multiple-predictor association are concepts of matrix rank and inversion. Thus, 
it is no accident that much of the discussion in earlier chapters was devoted to these 
topics. 

6.4 THE FACTOR ANALYSIS PROBLEM 

If matrix inversion and rank are the hallmarks of single-criterion, multiple-predictor 
association, then eigenstructures are the key concepts in dimension-reducing methods like 
factor analysis. Eigenstructures are also essential in multiple-criterion, multiple-predictor 
association, as we shall see later in the chapter. 

In Chapter 1 we introduced a small-scale problem in principal components analysis in 
the context of developing a reduced space for the two predictors: (a) Xi, attitude score 
and (b) X2, number of years with company. Using the X^i and X^2 ^^ta of Table 6.1 we 
wish to know if a change of basis vectors can be made that will produce an axis whose 
variance of point projections is maximal. 

This is a standard problem in finding the eigenstructure of a symmetric matrix. Here 
we employ the covariance matrix, although in some cases one might want to use some 
other type of cross-products matrix. Table 6.3 details the steps involved in finding the 
eigenstructure of C, the simple 2 x 2 covariance matrix of the sample problem of 
predictor variables in Table 6.1. (Supporting calculations appear in Chapter 5.) 

As observed from Table 6.3, the first eigenvalue Xi= 22.56 accounts for nearly all, 
actually 98 percent, of the variance of C, the covariance matrix. The linear composite Zi, 
developed from t i , makes an angle of approximately 38° with the horizontal axis, as 
noted in Fig. 6.5. Thus, if we wished to combine the vectors of scores X^n and X^i2 into 
a single linear composite, we would have, in scalar notation. 

zi(i) = 0.787Xd/i +0.617Xd,-2 

Note also that the second linear composite Z2 is at a right angle to Zi. 
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TABLE 6.3 

Finding the Eigenstructure of the Covariance Matrix 
(Predictor Variables in Table 6.1) 

Covariance matrix 

Xi X^ 

c = x. 14.19 10.69 

XiLlO.69 8.91 

Matrix equation 

( C - \ , I ) t / = 0 

Characteristic equation 

1 4 . 1 9 - ^ / 10.69 

10.69 8.91-X,-
ic-\/ih = 0 

Expansion of determinant 

\ / ^ - 2 3 . 1 \ / + 1 2 6 . 4 3 3 - 1 1 4 . 2 7 6 = 0 

Eigenvalues 

\, = 22.56; 

Eigenvectors 

^0.54 t, = 
0.787 

Lo.617 
; u = 

0.617 

L-0.787J 

6.4.1 Component Scores 

Component scores are the projections of the twelve points on each new axis, Zi and 
Z2, in turn. For example, the component score of the first point on Zi is 

zi(i) = 0.787(-5.25) + 0.617(-3.92) = -6.55 

as shown in Fig. 6.5. The full set of component scores appears in Table 5.1. 
The variance of each column of Z will equal its respective eigenvalue. If one wishes to 

find a matrix of component scores with unit variance, this is done quite simply by a 
transformation involving the matrix of eigenvectors T and the reciprocals of the square 
roots of the eigenvalues: ̂  

Z, = XdTA -1/2 

In the sample problem, the product of T and A ^^'^ is given by 

T A-'^^ 

0.787 0.617 

0.617 -0.787 

0.211 

0 

0 

1.361 
S = 

0.166 

0.130 

0.840 

-1.071 

In the sample problem, Z^ denotes the 12 x 2 matrix of unit-variance component scores; 
Xd is the 12x2 matrix of mean-centered predictor variables; T is the matrix of 

^ In this illustration we use A to denote the diagonal matrix of eigenvalues of C, the covariance 
matrix. Accordingly, A"*^^ is a diagonal matrix whose main diagonal elements are the reciprocals of 
the square roots of the main diagonal elements of A. 
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{-6.55)5, 

Fig. 6.5 Principal components rotation of mean-corrected predictor variables. 

eigenvectors from Table 6.3; and K'^'^ is a diagonal matrix of the reciprocals of the 
square roots of the eigenvalues. By appHcation of the transformation matrix S (instead of 
T), we would obtain unit-variance component scores. That is, in this case, 

Z'Zjm = l 

Geometrically, then, postmultiplication of Xj by S has the effect of transforming the 
ellipsoidal-like swarm of points in Fig. 6.5 into a circle, along the axes of the ellipse. 

6.4.2 Component Loadings 

Component loadings are simply product-moment correlations of each original variable 
X^i and X^2 with each set of component scores. 

To illustrate, the (unit-variance) component scores Zs/(i)On the first principal 
component are 

a -1.38 b -1.21 c -1.08 d -0.92 e -0.33 f -0.07 

g -0.03 0.01 1.02 J 1.06 1.32 1 1.62 

These represent the first column of Z .̂ For example, 

Zs,(i) = 0A66X^n + 0.130;i:d/2 = 0.166(-5.25) + 0.130(-3.92) = -1.38 

The product-moment correlation of Zs(i) with x^i is 0.99, and the product-moment 
correlation of Zs(i) with x^2 is 0.98. Not surprisingly, given the high variance accounted 
for by the first component, both loadings are high. 

A more general definition of a component loading considers a loading as a weight, 
obtained for each variable, whose square measures the contribution that the variable 
makes to variation in the component. However, usually in appHed work it is the 
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correlation matrix that is factored rather than the covariance, or some other type of cross 
products, matrix. Hence, the simpler definition of loading, namely, as the correlation of a 
variable with a component, is most prevalent. 

In the present problem, the principal components analysis of a 2 x 2 correlation 
matrix would necessarily effect a 45° rotation, rather than the 38° rotation shown in 
Fig. 6.5. Hence the loadings of Xi and X2 on each component would necessarily be 
equal. However, this will not, in general, be the case with correlations based on three or 
more variables being analyzed by principal components. 

The matrix of component "loadings" for the covariance matrix in the present problem 
is found quite simply from the relationship 

F = TA' 

0.787 

0.617 

0.617 

-0.787 

X2 

^ 1 / 2 

4.75 0 

0 0.73 

Xx 

X2 

3.74 0.45 14.19 

2.93 O.57J 8.91 

\i 22.56 0.54 23.10 

An interesting property of F is that the sum of the squared "loadings" of each 
component (column) equals its respective eigenvalue. For example, 

Xi = (3.74)^ + (2.93)2 = 22.56 

the variance of the first component, within rounding error. 
Similarly, the sum of the squared entries of each variable (row) equals its respective 

variance. For example, 
(3.74)2 + (0.45)2 = j4 19 

the variance of Xi. 
Finally, we see that both components together exhaust the total variance in the 

covariance matrix C. Furthermore, the first component itself accounts for 
22.56/23.10 = 0.98 of the total variance.^ Clearly, little is gained by inclusion of the 
second component insofar as the sample problem is concerned. 

6.4.3 The Basic Structure of Xj 

Another way of looking at the principal components problem is in terms of the basic 
structure of a matrix, as described in Chapter 5. In line with our earlier discussion, 
suppose we wished to find the basic structure of 

Xd/>/m = UAT' 

Of additional interest is the fact that X^ accounts for 14.19/23.10 or 0.61 of the total variance. 
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where, as we know, the minor product of the left-hand side of the equation represents the 
covariance matrix 

C=Xd'Xd/m 

As shown in Chapter 5, C is symmetric and, hence, orthogonally decomposable into the 
triple product 

C = TAT' 

0.787 0.617 

0.617 -0.787 

A 

22.56 0 

0 0.54 

T' 

0.787 0.617 

0.617 -0.787 

14.19 10.69 

10.69 8.91 

where T is orthogonal, and A is diagonal. Note that A is the matrix of eigenvalues of 
Xd'Xd/m, and T is the matrix of eigenvectors, as shown in Table 6.3. As shown in Chapter 
5, we can next solve for the orthonormal-by-columns matrix U by the equation 

where A 

U = Xd/\/mTA-^ 

A~̂ ^̂ . This, in turn, leads to the basic structure of X^/\/m: 

X^/yJm =UAT' 

As recalled, U is orthonormal by columns; A is diagonal (a stretch transformation); and 
T ' is orthogonal (a rotation). Moreover, as also pointed out in Chapter 5, if the 
eigenstructure of the major product moment X^X^'/m is found instead, the matrix of its 
eigenvalues A will still be the same, and the representation is now 

XdXd7^ = UAU' 

where U is the same matrix found above. One then goes on to solve for T' in a manner 
analogous to that shown above .̂  

Finally, by similar procedures we could find the basic structure of any of the following 
matrices of interest in Table 6.1: 

X; Xc; X/V^; or XJ^ 

by procedures identical to those shown above. As we know, division of X, X^, or Xgby 
the scalar \/m has no effect on the eigenvectors of either the minor or major product 
moments of X, X^, or X^. Corresponding eigenvalues of the product-moment matrix are 
changed by multipUcation by 1/m, which, in this case, represents the sample size. 

6.4.4 Other Aspects of Principal Components Analysis 

The example of Table 6.3 represents only one type of principal components analysis, 
namely, a components analysis of the covariance matrix C. As indicated above, one can 
component-analyze the averaged raw cross-products matrix X'Xfm or the correlation 

"* Alternatively, we could find U and T' simply by finding the eigenvectors of X^X(^'/m and 
X^'Xf^/m separately. 
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matrix X^'XJm. In general, the eigenstructures of these three matrices will differ. That is, 
unlike some factoring methods, such as canonical factor analysis (Van de Geer, 1971), 
principal components analysis is not invariant over changes in scale or origin. 

Principal components analysis does exhibit the orthogonality of axes property in 
which the axes display sequentially maximal variance. That is, the first axis displays the 
largest variance, the second (orthogonal) axis, the next largest variance, and so on. In 
problems of practical interest a principal components analysis might involve a set of 30 or 
more variables, rather than the two variables Xi and X2, used here for illustrative 
purposes. Accordingly, the opportunity to replace a large number of highly correlated 
variables with a relatively small number of uncorrected variables, with little loss of 
information, represents an attractive prospect. It is Httle wonder that principal 
components analysis has received much attention by researchers working in the 
behavioral and administrative sciences. 

It is also not surprising that a large variety of other kinds of factoring methods have 
been developed to aid the researcher in reducing the dimensionahty of his data space. 
Still, principal components represents one of the most common procedures for factoring 
matrices and, if anything, its popularity is on the rise. 

However, from a substantive viewpoint, the orientation obtained from principal 
components may not be the most interpretable. Accordingly, applications researchers 
often rotate the component axes that they desire to retain to a more meaningful 
orientation from a content point of view. A number of procedures (Harman, 1967) are 
available to accomplish this task. Generally, the applied researcher likes to rotate 
component axes with a view to having each variable project highly on only one rotated 
dimension and nearly zero on others. 

Another problem in any type of factoring procedure concerns the number of 
components (or factors, generally) to retain. Most data matrices will be full rank; hence, 
assuming that the number of objects exceeds the number of variables, one will obtain as 
many components as there are variables. Often the "lesser" components (those with lesser 
variance) are discarded; one often keeps only the first r (<n) components that account 
for some appreciable proportion (e.g., 80 to 90 percent) of the total variance in the data. 
Other rules for deciding how many factors to retain are also in use, including various 
statistical and graphical criteria. Still, the decision is largely a judgmental one, and factor 
analysis remains something of an ad hoc set of procedures. 

Factor analysis—either principal components or other type of factoring procedure-
represents only one class of methods for effecting dimensional reduction of one's data. 
More recently, new classes of techniques, such as multidimensional scaling (Green and 
Wind, 1973), have been used to develop reduced spaces. Many of these newer methods 
require only rank order input data. For example, the elements of a covariancelike matrix 
need only be ranked in order for these "nonmetric" procedures to be used. 

However, insofar as the metric procedure of principal components analysis is 
concerned, we see that the major mathematical tool involves the eigenstructure of 
symmetric matrices. Related concepts such as the singular value decomposition of a 
matrix into its basic structure, quadratic forms, and matrix rank are also of interest. 

From a geometric viewpoint we seek a rotation of the original basis of the space that 
coincides with the axes of the hyperellipsold of points, assumed to represent the objects, 
in the original n-dimensional space. The eigenvalues correspond to the variances of these 
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new axes, and the normalized eigenvectors of the particular cross-product matrix 
employed are the direction cosines that define the rotation. 

6.5 THE MULTIPLE DISCRIMINANT ANALYSIS PROBLEM 

The third problem described in Chapter 1 concerns the development of linear 
composites of X^i and Xd2 with the property of maximally separating the three groups 
(shown in Fig. 1.5). That is, in this multivariate application, the 12 employees, based on 
the data of Table 6.1, were split into three groups with regard to degree of absenteeism: 

Group 1—low (employees a, b, c, d) 
Group 2—intermediate (employees e, f, g, h) 
Group 3—high (employees i, j , k, 1) 

While it happens to be the case here that the three groups are ordered with respect to 
extent of absenteeism, this is not a requirement of multiple discriminant analysis (MDA). 
Any polytomy consisting of a set of mutually exclusive and collectively exhaustive groups 
is sufficient for application of MDA. 

In the sample problem application of MDA, we wish to find a linear composite of X^i 
and Xf^2 with the property of maximizing among-group variation relative to (pooled) 
within-group variation. Like principal components analysis, this involves finding the 
eigenstructure of a matrix. However, in this case the matrix is nonsymmetric, although it, 
in turn, represents the product of two symmetric matrices. 

6.5.1 Finding the Eigenstructure 

The quantity to be maximized in MDA consists of the ratio 

where, as it tums out, Xi is an eigenvalue, and A and W denote among-group and pooled 
within-group SSCP matrices, respectively. The vector Vi denotes the set of weights used 
to develop the linear composite (denoted as Wi) of the original mean-corrected score 
matrix Xj, while SS/^ and SSyj^ denote the among-group and within-group sums of 
squares of the linear composite. In scalar notation. 

^i{i)=ViX^n+V2Xai2 

Let us develop these concepts, step by step. 
Figure 6.6 shows the first linear composite Wi that we seek. We see that Wi makes an 

angle of 25° with the horizontal axis. We can project the 12 points onto Wi and find 
their discriminant scores W/(i).(The grand mean of these scores will be zero.) Also, we can 
find the three group means on Wi and the associated among-group and pooled 
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Fig. 6.6 Discriminant transformation of the mean-corrected predictor variables from Table 6.1. 
Key: • Group 1; o Group 2; x Group 3. 

within-group sums of squares. According to the preceding criterion, we have found 
of scores W/(i) with the property that 

a set 

Xi = 
^ % ( W i ) 

is maximal. That is, if we find (a) the sum of squares of the three group means from the 
grand mean, which is zero in the case of mean-corrected data and (b) the pooled 
within-group sum of squares of each of the scores about their respective group means on 
Wi, then (c) the ratio Xi of these two sums of squares is greater than that found by any 
other suitably normalized^ axis in the space of Fig. 6.6. 

Table 6.4 shows the preliminary calculations of interest. First, we compute each group 
mean on X^i and X^2 ? respectively; with equal-size groups these means, of course, sum to 
zero, within rounding error. Then we find the matrix of within-group deviations and the 
matrix of among-group deviations from group and grand mean, respectively. 

From here, we compute the minor product moment of 

X^—Xf^, the matrix of within-group deviations and, similarly, the minor product 
moment of 

Xj^ — Xj^, the matrix of among-group deviations (for k= \,2, .. . ,K = 3 groups) 

^ That is, we seek a linear composite in which the coefficients u i andV'j ^ ^ direction cosines. 
Also, it should be remembered in the computation of .S^^CWj ) that each group mean is based on four 
observations. 
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TABLE 6.4 

Preliminary Calculations for Multiple Discriminant Analysis 

Employee ^ d l 

5.25 
5.25 

-4.25 
•3.25 

-4.25 

1.25 
1.25 
0.25 
0.75 

0.50 

3.75 
4.75 
4.75 
5.75 

^ d 2 

-3 .92 
- 3 . 9 2 
-2 .92 
-2 .92 

-3 .42 

-0 .92 
1.08 
0.08 

-0 .92 

-0 .17 

3.08 
2.08 
4.08 
5.08 

^k- -Xfc 
Within-group 

deviations 

- 1 
0 
0 
1 

-0 .75 
-0 .75 

0.25 
1.25 

- 1 
0 
0 
1 

-0 .5 
-0 .5 

0.5 
0.5 

-0 .75 
L25 
0.25 

-0 .75 

-0 .50 
-1 .50 

0.50 
2.50 

Xfc-
Between 

X 
-group 

deviations 

-4 .25 
-4 .25 
-4 .25 
-4 .25 

-0 .5 
-0 .5 
-0 .5 
-0 .5 

4.75 
4.75 
4.75 
4.75 

-3 .42 
- 3 . 4 2 
-3 .42 
-3 .42 

-0 .17 
-0 .17 
-0 .17 
-0 .17 

3.58 
3.58 
3.58 
3.58 

Mean 

Mean 

Mean 4.75 3.58 

yf = (Xk-XkYiXk-Xf,); A = {Xk-Xy(Xk-X) 

w = 
6.75 1.75 

1.75 8.75 

T = W + A = 

A = 
163.5C 

126.50 

170.25 128.25~ 

128.25 106.92 

) 126.50 

98. n j 

to find W, the pooled within-group SSCP matrix, and A, the among-group SSCP matrix, 
as shown in Table 6.4. Their sum equals the total sample SSCP matrix T, which is also 
shown in Table 6.4. 

The problem, as shown in Appendix A, is to maximize Xi with respect to Vi. The 
resulting matrix equation is 

(A-XiW)vi = 0 

Assuming that W is nonsingular and, hence, that W ^ exists, we can premultiply both sides 
of the above equation to get 

(W-*A-Xil)vi=0 

with characteristic equation 

|W-^A-XiI|=0 

Note, then, that we have another eigenstructure problem, one now involving the 
nonsymmetric matrix W"^A. 
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TABLE 6.5 

Finding the Eigenstructure of the W"̂ A Matrix 

w = 

Eigenva 

A = 

0.156 -0.031 

-0.031 0.121_ 

lues of W-̂  A 

'29.444 0 ~| 

_ 0 0.0295J 

; W-'A = 
21.594 16.698" 

10.138 7.880 

Eigenvectors of W'̂ A 

; v = 
0.905 -0.612~| 

0.425 O.791J 

As is the case with principal components analysis, generally the characteristic equation 
will have more than a single root. In fact, in this problem we shall be able to fmd two 
eigenvalues, Xi and X2 ? and their associated eigenvectors. 

Table 6.5 shows the eigenvalues and eigenvectors obtained for this sample appHcation. 
Note the parallel between this problem and the principal components problem. In each 
case we are finding the eigenstructure of a matrix, but here the matrix is nonsymmetric. 

From Table 6.5 we see that the first discriminant function displays a relatively large 
eigenvalue of 

Xj = 29.444 

with associated, and normalized, eigenvector 

Vl 
0.905 

0.425 

representing an angle of 25° from the horizontal axis. 
Also, similar to principal components analysis, we can obtain a second discriminant 

function W2 with scores that are uncorrected with those of the first function. The 
eigenvalue associated with W2 is 

X. = 0.0295 

with normalized eigenvector 

V2^ 
-0.612 

0.791 

Note that X2 is much smaller than Xi; for all practical purposes it appears that a single 
discriminant function might account for these data. 

In general, with K groups and n predictors one obtains 

mm{K-\,n) 

different discriminant functions; here, of course K — \=n = 2, and we note that two 
functions are obtained. Usually, however, the number of predictors will greatly exceed 
the number of groups, and a great deal of parsimony can often be achieved by the use of 
discriminant scores. 
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As before, discriminant scores are found by projecting the points onto the 
discriminant axes. For example, the discriminant score of the first observation on Wi is 

wi(i) = 0.905(-5.25) + 0.425(-3.92) = -6.42 

as shown in Fig. 6.6. 
We also observe in Fig. 6.6 that Vi and V2 are not orthogonal, even though the scores 

on Wi versus those on W2 are uncorrelated. From the matrix of eigenvectors in Table 6.5 
we can compute the cosine between Vj and \2 as follows: 

cos ^ = (0.905 0.424) = -0 .21 , so that xl^=102 
-0.612 

0.791 

Thus, the angle ^ separating vi and V2 is 90° + 12° = 102°, as shown in Fig. 6.6. 

6.5.2 Statistical Significance and Classification 

It is one thing, of course, to find linear composites with the properties described 
above; it is quite another to test their statistical significance and to use them for 
classifying observations. Accordingly, each of these problems is taken up, in turn. At this 
point we have found two eigenvalues: 

Xi = 29.444; 0.0295 

Bartlett (1947) has proposed a statistic that can be used to test the significance of the 
discriminant functions (actually, their eigenvalues). 

Bartlett's statistic starts out by testing the null hypothesis that group centroids are all 
equal in the full discriminant space, in this case involving both the wi and W2 axes. 

Bartlett's statistic is expressed as follows: 

F=2.3026[m-l-(«+A:)/2] Z log(l+X,) 

where m denotes sample size, n denotes number of predictor variables, K denotes number 
of groups, and X/ denotes the /th eigenvalue (/ = 1, 2 , . . . , r). In terms of the sample 
problem, 

V= 2.3026[12-l-(2 + 3)/2](log 30.444 + log 1.0295) 

= 2.3026(8.5)(1.48350 + 0.01263) 

= 29.035 + 0.247 

= 29.282 

Bartlett's V statistic is approximately distributed as chi square with n{K — 1) = 4 degrees 
of freedom. In the sample problem, Fis significant beyond the 0.01 alpha level. 

However, one wonders whether the second discriminant function, whose eigenvalue is 
almost zero, adds anything beyond the first. Fortunately, Fcan be decomposed into the 
separate parts 

Fi = 29.035; F2 = 0.247 
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The first portion Vi has already been tested in the context of V. However, if Vi is 
"partialed out," is V2 statistically significant? As it turns out, V2 can be tested in the 
same way that V was tested: V2 = 0.247 is also approximately distributed as chi square 
with 

n(K-l)-(n+K-2) = (n-l)(K-2)=l 

degree of freedom. This approximate chi square (V2 =0.247) is clearly nonsignificant. 
Not surprisingly, we conclude that only the first discriminant function need be retained. 

Bartlett's procedure can be used for more than two discriminant functions in a similar 
manner. Had a third discriminant function been involved, its associated degrees of 
freedom would be (n — 2)(K — 3); those associated with a fourth discriminant function 
would be (n — 3)(K — 4), and so on. However, the reader interested in applying this test 
in substantive research should be aware of its assumptions (Harris, 1975; pp. 109-113). 

In the sample problem it is not hard to see why only the first discriminant function is 
significant. The following ratio: 

^1 29.444 
- 0.999 X1+X2 29.444 + 0.0295 

shows that Wi exhausts virtually all of the variation in the discriminant space. 
Classifying the twelve observations by means of Wi, the retained and significant 

discriminant function, is quite straightforward. All that is entailed is to compute a 
discriminant score for each observation, according to 

One also computes the discriminant scores for the three group means 

Wi(Group 1) = 0.905(-4.25) + 0.425(-3.42) = -5.30 

Wi(Group 2) = 0.905(-0.50) + 0.425(-0.17) = -0.52 

iviCGroup 3) = 0.905(4.75) + 0.425(3.58) = 5.82 

One then assigns each observation to that group whose mean score on Wi is closest to the 
individual score, w,(i). 

When this procedure is implemented for the sample problem, it turns out that all 
twelve cases are correctly assigned to their respective groups. Had W2 also been 
statistically significant and retained for classification purposes, the classification 
procedure would have been modified to involve the computation of Euclidean distances 
between each individual observation and each group centroid in discriminant function 
space.^ Each observation would then be assigned to the group whose centroid, in 
discriminant function space, was nearest. 

It should be mentioned, however, that the use of Bartlett's statistic and the 
classification rules enumerated above only scratch the surface of the topics of statistical 

^ It should be noted that in discriminant function space the pooled within-group SSCP matrix 
would first be spherized by means of the procedure described in Section 5.9.2; it is this space in which 
ordinary Euclidean distance is appropriate (given equal prior probabilities and equal costs of 
misclassification) for assigning objects to groups. 
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significance and assignment. For example, Bartlett's statistic can be modified by 
Schatzoff s tables (Schatzoff, 1966) to produce an exact test. Also, other tests (Rao, 
1952) are available for testing the null hypothesis of group centroid equality in the full 
discriminant space. 

The classification rules described above also need modification in cases where the prior 
probabilities of inclusion differ across the groups or where the costs of misclassification 
differ. Modern approaches to the problem (e.g., Eisenbeis and Avery, 1972) formulate the 
classification task in terms of statistical decision theory. As such, both prior probabilities 
of an observation belonging to each of the groups and costs of misclassification can be 
expHcitly introduced into the assignment procedure. 

6.5.3 Other Aspects of Multiple Discriminant Analysis 

One of the questions posed in Chapter 1 concemed the relative importance of the two 
predictors X^i and ^^2 ^^ effecting group discrimination. In the case of correlated 
predictors, this represents an ambiguous question and shares, along with multiple 
regression and other multivariate techniques, the difficulties of parceling out variance 
among nonorthogonal predictors. While we do not go into this question in detail, a few 
procedures that have been suggested for ascribing relative importance to Xdi versus Xd2 
can be mentioned. 

First, the entries in the normalized eigenvector Vi are 0.905 and 0.425 for Xdi and 
X(^2 > respectively. These are analogous to partial regression coefficients in multiple 
regression. To convert them into standardized (beta-type) numbers, each is multiplied by 
that predictor variable's pooled within-group standard deviation:^ 

Standardized weight (X^i); 0.905 x V0L75 = 0.783 

Standardized weight (Xdi); 0.425 x V0L972 = 0.419 

As can be noted, on either a standardized or nonstandardized basis, Xji receives the larger 
weight. 

Cooley and Lohnes (1971) recommend what they call structure correlations to 
ascertain predictor importance. These are merely the product-moment correlations 
between scores on each original variable and the discriminant scores. In this example they 
tum out to be 

Structure correlation (Xdi) = 0.998 

Structure correlation (Xd2) = 0.976 

In this case both predictors correlate highly with the retained discriminant function Wi, 
although the correlation for Xdi is slightly greater. 

Still other procedures, such as Bock and Haggard's (1968) step-down F ratios, can be 
employed to measure the relative importance of various predictors. However, we do not 
delve into these more esoteric methods, other than to say that the question of ascribing 
"relative importance" remains ambiguous in the case of correlated predictor variables no 
matter what procedure is used. 

"̂  Other standardization procedures, based on multiplication of each discriminant coefficient by 
the total-sample (as opposed to pooled within-group) standard deviation of the variables of interest, 
are also in use. 
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Another topic of interest concerns the relationship of MDA to other multivariate 
techniques. For example, an intimate connection exists between MDA and principal 
components analysis. Without delving deeply into the technical details, it turns out that a 
preliminary "spherizing" of the data matrix via 

XaW-

results in a new set of coordinates with spherical (pooled) within-group variation. 
One can then find the eigenstructure of the matrix 

W-̂ /̂ AW-

so as to satisfy the equation 

[W-i/^AW-^/^]Q = QA 

where Q is orthogonal and A is diagonal.^ The final transformation is then 

XHW-^/^O 

which, of course, is a spherizing transformation followed by a rotation of the spherized 
within-group variation to principal axes, on the basis of among-group variation. This idea 
was described in the discussion in Chapter 5 of the simultaneous diagonalization of two 
different quadratic forms.^ 

Probably the most important point to mention, however, is that MDA is one member 
of the same general family that includes 

1. canonical correlation, 
2. multivariate analysis of variance and covariance, 
3. categorical canonical correlation. 

The linkage among these multiple-criterion techniques is provided by a generaHzed 
canonical correlation model that allows for dummy variables on one or both sides of the 
equation. For example, one could have developed a multiple discriminant function for 
the sample problem by means of a canonical correlation in which the criterion variables 
were represented by the dummies 

1 0 

0 1 

0 0 

(Group 1) 

(Group 2) 

(Group 3) 

By a similar judicious choice of dummy and continuous variables, one can find linear 
composites of both the criterion and predictor batteries that relate to any of the specific 
multivariate techniques described above, and in Chapter 1 as well. 

'AW- while Q ' In this illustration A denotes the diagonal matrix of eigenvalues of W' 
denotes the associated matrix of eigenvectors. 

^ Still other procedures are available for finding the eigenstructure of W"*A (see Overall and Klett, 
1972). 



286 6. APPLYING THE TOOLS TO MULTIVARL\TE DATA 

Full discussion of the interrelationships among techniques would take us far beyond 
the scope of the book. As we have illustrated in Chapter 5, however, the eigenstructure of 
nonsymmetric matrices and the simultaneous diagonalization of two different quadratic 
forms figure prominently in the computation of discriminant functions for three or more 
groups. These concepts are also central in canonical correlation, multivariate analysis of 
variance and covariance, and categorical canonical correlation; in the last case, all 
variables are expressed as dummies. 

6.6 A PARTING LOOK AT MULTIVARIATE TECHNIQUE 
CLASSIFICATION 

In Chapter 1 a number of characteristics were enumerated that provided guidance for 
classifying the large, and still growing, variety of multivariate techniques. In particular, 
the following descriptors represented the main bases of classification: 

1. whether the data matrix is kept intact versus partitioned into criterion and 
predictor subsets; 

2. the number of variables in each subset (if partitioning is undertaken); 
3. the types of scales by which the variables are measured. 

At this point, however, the various types of linear transformations described in 
Chapters 4 and 5 are behind us. And, even in the introductory material of Chapter 1, it 
was suggested that multivariate analysis is largely concemed with transformations for 
matching one set of numbers, such as a data vector, a data matrix, or a linear composite, 
with some other set of numbers. 

The degree of matching is usually assessed by a residual sum of squared deviations or 
some other measure that can be related to this. This idea was illustrated at the beginning 
of the present chapter in the context of multiple regression. Here we desired to minimize 
the quantity 

m 

'̂ 
i = l 

ei' = (Yr •̂  /» 
- > - , • ) ' 

where Y^ denotes a datum, and ff denotes a predicted value of Y^. As a further aid to 
technique classification, we now take the view that multivariate techniques may differ 
according to the nature of the allowable transformations and the properties that the 
transformed matrices exhibit in the matching process. 

Partly by way of review of Chapters 4 and 5 and partly by way of prologue, let us list 
the major classes of transformations that vectors or matrices can undergo in the course of 
achieving various types of matching. For illustration, let us assume a general data matrix, 
denoted by X, of m rows and n columns (m > n). 

Our objective here will be to recapitulate various types of transformations described in 
earlier chapters as a way to make explicit the present descriptor, the nature of the linear 
transformation, for characterizing multivariate techniques. 
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6.6.1 Types of Transformations 

By way of an overview, Fig. 6.7 shows a directed graph of the transformations that are 
considered. This list of transformations is not meant to be exhaustive. However, those 
shown in Fig. 6.7 appear to be the most frequently encountered ones in multivariate 
analysis. We consider the more general classes first, followed by the more restricted 
transformations. 

We shall let T denote an arbitrary matrix. The matrices U and V denote either 
orthogonal matrices or orthonormal sections, while A denotes a diagonal matrix. From 
Section 5.7 we know that T can always be decomposed into the triple product 

T = UAV' 

We shall take advantage of this type of singular value (Eckart-Young, 1936) 
decomposition in describing various special cases of a general linear (or affme) 
transformation. 

General linear (affine) 
X* = XT+ 1c' 

= XUAV'+ 1c' 

Extended similarity 
X* = XUA+ 1c' 

Homogeneous linear 
X* = XT 

= XUAV' 

JTI 

Stretch 
X* = XA 

Central dilation 
X* = XA 

Identity 
X* = XI 

Extended 
permutation 
X* = XWA 

Simple 
permutation 
x* = xw 

Restricted 
similarity 
X* = XUA 

Rotation 
x* = xu 

Rotation-
annihilation 

X* = XU^ 
where 
U 'U = I 

Fig. 6.7 A directed graph of various types of linear transformations. 
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6,6,1.1 General Linear (Affine) Transformation The most general transformation 
of X to be considered is an affine transformation, defined as 

XT+lc 

where T(=UAV') denotes an arbitrary linear transformation. The matrix product of the 
m X 1 unit column vector 1 and c' a 1 x « row vector of constants defines the permissible 
shift of origin (as illustrated in Chapter 4 in the case of a centroid-centered orientation).*^ 

6.6,1,2 Homogeneous Linear Transformation A homogenous linear transformation 
can be defined as 

X* = XT 

with no shift in origin, but T, defined as before, is otherwise not restricted. 

6.6.1.3 Similarity Transformations An extended similarity transformation involves 
a rotation, achieved by the orthogonal matrix U, a central dilation, effected by the scalar 
matrix A, and a shift in origin: 

X* = XUA + Ic' 

where 1 and c' are defined as before. 
A restricted similarity transformation is a special case of this in which no shift in origin 

is permitted: 

X* = XUA 

where U and A are defined as before. 

6.6.1.4 Rotation As illustrated in earlier chapters, a rotation is a transformation 
that is carried out by an orthogonal matrix. This type of matrix is denoted by U, where 
U'U = UU' = I. The transformation is written as 

XU 

If the determinant |U| = 1, then a proper rotation of X is entailed. If |U| = - 1 , then a 
rotation of X followed by a reflection is entailed (i.e., an improper rotation). 

6.6.1.5 
condition Up'Up 

Rotation-Annihilation One type of transformation stipulates that only the 
I be met; that is. Up can be an orthonormal section (rectangular rather 

than square) whose columns are mutually orthogonal and of unit length. This amounts to 
a rotation followed by annihilation of some dimensions. 

In Fig. 6.7 we show this transformation with a dotted rather than solid line. This is 
because Up is not a special case of U for the reason that Up Up' ^ I. As such, Up is rather 
tangentially related to the overall schema of Fig. 6.7. 

°̂ Note that an affine transformation is nonhomogeneous in the sense that there are no fixed 
points (e.g., the 0 or origin vector) under this type of mapping. However, Section 4.4.1 shows how it 
can be carried out via matrix multiplication. 
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6,6.1.6 Permutation An extended permutation permits both a reordering of 
dimensions and a stretch or rescaling of the configuration. This is written as 

= XWA 

where W is a permutation matrix and A is diagonal. As recalled, a permutation matrix is 
an orthogonal matrix, all of whose entries are either 0 or 1, that changes the order of 
dimensions. 

A simple permutation is written as 

X* = XW 

with W defined as before. 

6.6.1.7 Stretch A stretch transformation involves a simple rescaling of the 
configuration by a diagonal matrix A. That is. 

X* = XA 

6.6.1.8 Central Dilation A special case of a stretch transformation involves a 
central dilation, given by the scalar matrix A. That is. 

X* = XA(=AX) 

6.6.1.9 Identity Transformation A special case of the central dilation transfor­
mation is the identity transformation 

X* = IX = XI = X 

where I, of course, is the identity matrice. 
While still other combinations are possible, the preceding ones cover most cases of 

practical interest. 

6.6.2 Constructing the Classification 

With the various geometric illustrations presented in the preceding section, it is now 
appropriate to discuss the nature of multivariate techniques from the standpoint of 
configuration matching. We consider the following classes: 

1. vector-matrix matching, 
2. matching of two matrices, 
3. matching of three or more matrices, 
4. matching of a data-based and an internally derived matrix. 

Within each of these classes, two additional aspects are discussed: 

1. types of scores—continuous or binary (dummy variable), 
2. type of permissible transformation applicable to each matrix or vector. 



290 6. APPLYING THE TOOLS TO MULTIVARIATE DATA 

l1 
1 
n- 1 P 

II 

q p 

I I I 

q 
IV 

Fig. 6.8 Illustrative partitionings of data matrix. 

Each of the above major classes is examined in turn. To assist us in this regard, we 
reproduce in Fig. 6.8 the schema that appeared as in Fig. 1.1. However, now we 
emphasize the nature of the linear transformation. 

6.6,2.1 Vector-Matrix Matching Panel I of Fig. 6.8 is the prototype of the family 
of multivariate techniques illustrated by the matrix equation 

y = Xb 

where b is a vector of combining weights, and y is a set of predicted values for y, the 
criterion variable. As illustrated earlier, by allowing y or X to be mixtures of continuous 
or binary-coded variables, this family is broad enough to include 

1. multiple (and simple) regression; 
2. two-group discriminant analysis, where y is binary valued; 
3. analysis of variance and covariance, where some columns of X are binary valued; 
4. binary-valued regression, where both y and X are binary valued. 

In least-squares theory the scalars R^ or 97̂  (eta squared) are usually the quantities being 
maximized.^^ Both R^, in the context of regression, and i?^, in the context of analysis of 
variance, are invariant over linear transformations of y or X. Moreover, both 7̂ ^ and T?̂  
can be simply related to the criterion of minimizing the sum of the squares of y - y, as 
described earlier. 

6.6.2.2 Matching Two Matrices In Panel II of Fig. 6.8 we have the case of two 
matrices, Y^nxp ^^^ ^mxq^ and are interested in the association between these two 
batteries of variables. If we assume that both sets of variables represent continuous values, 
the canonical correlation problem can be represented by separate affine transformations 
of Y and X such that each pair of linear composites is most congruent with each other, 
subject to being uncorrected with previously "extracted" composites. This uncorrelated-
ness condition is an illustration of the kinds of restrictions that may be placed on the 
transformed values. 

" The scalar 17̂  (eta squared) is computed in just the same way as 7?^ except for the fact that all 
predictor values are dummy variables. This is equivalent to 

, - SSA 

while SS/i^ denotes the among-group sum of squares and SSj denotes the total-group sum of squares. 



6.6. A PARTING LOOK AT MULTIVARIATE TECHNIQUE CLASSIFICATION 291 

Other possibilities come to mind, however. For example, one could allow only a 
separate homogenous linear transformation of each matrix with no shift in origin 
permitted. Or, one could permit a shift in origin but require each transformation to be an 
extend similarity transformation which, as shown earlier, is less general than an affine 
transformation. 

In other kinds of applications we may desire Y to remain fixed (i.e., transformed by an 
identity matrix) but permit X to be transformed by an affine transformation, extended 
similarity, or a similarity transformation. Some "procrustes" solutions, as used in 
matching factor score solutions from different studies, are of this general type (Rummel, 
1970). 

Still other restrictions are possible. Schonemann and Carroll (1970) describe a 
matching procedure in which one matrix undergoes an extended similarity 
transformation, while the other undergoes either (a) an extended similarity, (b) a 
similarity, (c) a rotation, or (d) an identity transformation. CHff s procedure (Cliff, 1966) 
allows a similarity transformation on one side and a similarity, rotation, or identity 
transformation on the other. 

If one matrix consists of two or more binary-valued variables, we have an instance of 
either multiple discriminant analysis or multivariate analysis of variance, depending upon 
how one frames the problem. From the standpoint of permissible transformations, 
however, the techniques are similar. That is, one can formulate either a multiple 
discriminant problem or a multivariate analysis of variance problem in terms of the 
canonical correlation model with one of the two matrices represented by binary-valued 
dummies. Generally, however, we are interested in special kinds of output that are related 
to the particular procedure employed. Therefore, while one could use a canonical 
correlation program to find discriminant weights, ordinarily we would not do so since we 
would be interested in various ancillary outputs as well. 

If both data sets consist of dummy variables, we may have a case of categorical 
canonical correlation or categorical conjoint measurement (Carroll, 1973). Insofar as the 
solution to the problem is concerned, these techniques are special cases of canonical 
correlation in which both matrices consist of dummy variables. 

Variations can be developed, however. For example, Horst (1956) describes a type of 
multiple discriminant analysis in which the dummy-variable criterion matrix, defining 
group membership, remains fixed. The predictor matrix is transformed linearly to best 
match it, subject to the predicted values maintaining the same column means and 
variances as the columns of the criterion-variable matrix. 

6.6.2.3 Three or More Matrices Heretofore, we have described multivariate analysis 
of covariance in terms of a matrix of criterion variables and a matrix of predictor 
variables. The latter matrix consists of a mixture of dummy variables, the design variables, 
and covariates, whose effect on the criterion variables we desire to remove. Alternatively, 
we can partition the data matrix into three matrices: criterion, design dummies, and 
covariates, as illustrated in Panel III of Fig. 6.8. 

Problems involving three, or more, matrices fall into two major types: 

1. a multivariate analysis of covariance situation, or multiple, partial correlation 
(Cooley and Lohnes, 1971), in which one of the data matrices consists of a set of 
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covariates, moderators, or contingency variables whose effect is to be removed before 
considering the association between the remaining matrices; 

2. a generahzed canonical correlation situation where the status of all three, or more, 
matrices is considered to be the same (in this case, we extend two-group canonical 
correlation to cover three or more matrices). 

Multivariate analysis of covariance problems occurs frequently in the behavioral and 
administrative sciences. For example, one may set up various experiments in which 
several response measures are sought from the subjects and, furthermore, certain 
covariates like task familiarity, education, and IQ level are also included in the analysis. 

In multivariate analysis of covariance one matrix, the response matrix, is typically 
made up of continuous scores, while the design matrix is typically made up of dummy 
variables. The matrix of covariates is usually made up of continuous scores. However, this 
is not necessary. In principle, any (or all three) of the matrices could consist of 
continuous or binary-valued scores, or, indeed, as mixtures. In this class of problems one 
generally allows afflne transformations to be applied to any of the three matrices, in the 
spirit of two-set canonical correlation. 

Generahzed canonical correlation, employing three or more data-based matrices of 
equal status, is concerned primarily with configuration matching. Horst (1961), Carroll 
(1968), and Kettenring (1972) have all proposed models for this type of problem. For 
example, in the Carroll and Chang approach, an r + 1st space is defined such that the r 
original spaces, each consisting of the same m observations on r sets of variables, are 
transformed to match it as well as possible. This procedure allows an affme 
transformation of each "contributing" configuration. 

While generahzed canonical correlation has usually been considered in the context of 
all scores being continuous, this, again, is not necessary provided that the researcher's 
interest is centered on data description and summarization, rather than on statistical 
inference. Binary-valued scores, or mixtures of continuous and binary valued, can be dealt 
with just as readily. Again, afflne transformations would generally be permitted. 

6.6.2.4 Matching Based on an Internal Criterion Multivariate techniques can also 
cover the possibility of deriving a matrix (e.g., a "latent" matrix) that best reproduces the 
scores of a data-based matrix, or some matrix derived from it, subject to meeting certain 
internal criteria. For example, in our earlier discussion of principal components analysis 
employing the covariance matrix as input, we found a rotation of the space whose 
successive dimensions accounted for the greatest amount of residual variance. This can 
also be viewed as defining successively higher-dimensional subspaces that maximize 
variance for that dimensionality. 

As pointed out earUer, most factor analytic techniques (e.g., principal components 
analysis) are not independent of scale. That is, different results are obtained depending 
upon whether the averaged raw sums of squares and cross products, covariance, or 
correlation matrix is the one being factored. A major exception to this is canonical factor 
analysis (McDonald, 1968). This technique produces results that are comparable across 
various types of data scaling. That is, the solution obtained from one type of scaling can 
be readily transformed to a solution obtained from a different scaling of the original data 
matrix. Maximum likelihood factor analysis (Van de Geer, 1971) also yields results that 
are independent of scale. 
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As pointed out earlier, some types of factor rotation (e.g., Varimax) are based on 
achieving internal criteria of "simple" structure (Horst, 1966). Simple structure entails 
the idea of a hypothetical zero-one matrix in which each variable is, ideally, supposed to 
load with unity on one factor only (i.e., with zeros appearing elsewhere). In this sense a 
type of "matching" of one matrix to another is also involved. 

In brief, a useful descriptor in characterizing multivariate methods is the type of linear 
transformation involved in the matching process and the restrictions placed on the nature 
of the transformed data. As we have illustrated, if only briefly, the various possibilities 
are extensive. Combined with the descriptors of Chapter 1, the type of linear 
transformation descriptor provides a rather comprehensive system for characterizing all 
current multivariate techniques. Moreover, it can be suggestive of still other combinations 
to be invented. 

6.7 SUMMARY 

In this chapter we have tried to show how the mathematical tools developed in the 
foregoing chapters and the appendixes underlie the formulation and solution of various 
multivariate techniques. In particular, multiple regression, principal components analysis, 
and multiple discriminant analysis were presented as prototypical techniques. 

In multiple regression, the concepts of matrix inversion, determinants, and matrix rank 
figured prominently in the solution. We also showed how the multiple regression problem 
could be described geometrically, both from the standpoint of a response surface or point 
model and from the standpoint of a vector model. Finally, the notion of generalized 
regression, as a least-squares model that encompasses analysis of variance and covariance, 
two-group discrimination, and binary-valued regression, was illustrated graphically. 

Principal components, the technique described next, entailed the rotation of a set of 
basis vectors to a new orthogonal basis with projections whose variance was sequentially 
maximal. The concepts of matrix eigenstructure of a symmetric matrix, matrix rank, and 
quadratic forms were most important here. 

Multiple discriminant analysis then provided us with a procedure for extending our 
discussion to cover the eigenstructure of a nonsymmetric matrix. The simultaneous 
diagonaUzation of two different quadratic forms represented the central concept from 
matrix algebra. Geometrically, this entailed a rotation to align the configuration with the 
principal axes of the within-group SSCP matrix, a spherizing along these axes and then a 
further rotation to principal axes of the transformed among-group SSCP matrix. 

The various matrix transformations of Chapter 4 were then recapitulated and 
organized into a framework within which various multivariate techniques could be 
described. In conjunction with the descriptors of Chapter 1, the specific nature of the 
linear transformation provided a useful way to characterize various multivariate 
procedures. 

This chapter (and the entire book) has served as something of a prologue for textbooks 
dealing with multivariate methods per se. A large number of such texts are listed in the 
references, although no attempt has been made to be exhaustive. We do hope, however, 
that this book will make the going a bit easier as the reader delves more deeply into the 
subject matter of multivariate analysis. 
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REVIEW QUESTIONS 

1. Using the data of Table 6.1, 

a. compute the parameter values of Y regressed on Xi and X2 by means of the 
covariance matrix; 

b. repeat the process, now employing the correlation matrix; 
c. regress Y on Xi and Xi^ (in place of X2) by means of a raw cross-products 

matrix. How does the/?^ of this compare with the simple squared correlation found from 
the regression of Y on Xi alone? 

2. Again using the data of Table 6.1, 

a. find the principal components of the correlation matrix R, obtained from Xi 
and X2. How do the eigenvectors compare with those obtained from C, the covariance 
matrix? 

b. find the principal components of the averaged raw cross-products matrix X X/m, 
obtained from Xi and X2 ; 

c. returning to Section 6.4.1, find the multiple regression of Y on the two columns 
of component scores computed from the covariance matrix C. How does the value of this 
R^ compare to that obtained by regressing Y on Xi and X2 originally? What happens to 
the squared correlation if only the scores on the first component are used? 

d. find the eigenstructure of C, the covariance matrix based on all three variables, 
y, Xi, and X2. Compare the eigenvectors obtained here with those appearing in Fig. 6.5. 

3. Again using the data of Table 6.1, 

a. perform a three-group discriminant analysis on the standardized columns x^j and 
Xs2 using the same group designation as before. How do these discriminant weights 
compare with those found earher? 

b. using the procedure of Chapter 5, perform a simultaneous diagonalization of the 
W and A matrices in Table 6.4 and compare your results with those of Table 6.5. 

c. split the mean-corrected columns, X^i and X^2 i^ Table 6.1, into two groups 
(viz., the first six versus the second six employees) and compute a two-group discriminant 
function. What simpUfications in the computations are noted in this case? 

4. Regress Y on Xi and X2, where the latter predictor is now dichotomized with 
^2 < 5 receiving the code value 0 and Z2 > 5 receiving the code value 1. 

a. How does the regression equation compare to the original shown in Table 6.2? 
b. What is the effect on R^ and the proportion of cumulative variance column, as 

illustrated in Table 6.2? 


