
CHAPTER 5 

Decomposition of Matrix Transformations: 
Eigenstructuresand Quadratic Forms 

5.1 INTRODUCTION 

In the preceding chapter we discussed various special cases of matrix transformations, 
such as rotations, reflections, and stretches, and portrayed their effects geometrically. We 
also pointed out the geometric effect of various composite transformations, such as a 
rotation followed by a stretch. 

The motivation for this chapter is, however, just the opposite of that in Chapter 4. 
Here we start out with a more or less arbitrary matrix transformation and consider ways 
of decomposing it into the product of matrices that are simpler from a geometric 
standpoint. As such, our objective is to provide, in part, a set of complementary 
approaches to those illustrated in Chapter 4. 

Adopting this reverse viewpoint enables us to introduce a number of important 
concepts in multivariate analysis-matrix eigenvalues and eigenvectors, the eigenstructure 
properties of symmetric and nonsymmetric matrices, the singular value decomposition of 
a matrix and quadratic forms. This new material, along with that of the preceding three 
chapters, should provide most of the background for understanding vector and matrix 
operations in multivariate analysis. Moreover, we shall examine concepts covered earlier, 
such as matrix rank, matrix inverse, and matrix singularity, from another perspective-one 
drawn from the context of eigenstructures. 

Finding the eigenstructure of a square matrix, like finding its inverse, is almost a 
routine matter in the current age of computers. Nevertheless, it seems useful to discuss the 
kinds of computations involved even though we limit ourselves to small matrices of order 
2 X 2 or 3 X 3. In this way we can illustrate many of these concepts geometrically as well 
as numerically. 

Since the topic of eigenstructures can get rather complex, we start off the chapter with 
an overview discussion of eigenstructures in which the eigenvalues and eigenvectors can be 
found simply and quickly. Emphasis here is on describing the geometric aspects of 
eigenstructures as related to special kinds of basis vector changes that render the nature of 
the mapping as simple as possible, for example, as a stretch relative to the appropriate set 
of basis vectors. 

This simple and descriptive treatment also enables us to tie in the present material on 
eigenstructures with the discussion in Chapter 4 that centered on point and basis vector 
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transformations. In so doing, we return to the numerical example shown in Section 4.3 
and obtain the eigenstructure of the transformation matrix described there. 

The next main section of the chapter contmues the discussion of eigenstructures, but 
now in the context of multivariate analysis. To introduce this complementary 
approach—one based on fmding a linear composite such that the variance of point 
projections onto it is maximal—we return to the small numerical problem drawn from the 
sample data of Table 1.2. We assume that we have a set of mean-corrected scores of 
twelve employees on Xi (attitude toward the company) and X2 (number of years 
employed by the company). The problem is to find a linear composite of the two 
separate scores that exhibits maximum variance across individuals. This motivation leads 
to a discussion of matrix eigenstructures involving symmetric matrices and the 
multivariate technique of principal components analysis. 

The next main section of the chapter deals with various properties of matrix 
eigenstructures. The more common case of symmetric matrices (with real-valued entries) 
is discussed in some detail, while the more complex case involving eigenstructures of 
nonsymmetric matrices is described more briefly. The relationship of eigenstructure to 
matrix rank is also described here. 

The singular value decomposition of a matrix either square or rectangular and its 
relationship to matrix decompositon is another central concept in multivariate procedures. 
Accordingly, attention is centered on this topic, and the discussion is also related to material 
covered in Chapter 4. Here, however, we focus on the decomposition of matrices into the 
product of other matrices that individually exhibit rather simple geometric interpretations. 

Quadratic forms are next taken up and related to the preceding material. Moreover, 
additional discussion about the eigenstructure of square nonsymmetric matrices, as related 
to such multivariate techniques as multiple discriminant analysis and canonical correlation, 
is presented in the context of the third sample problem in Chapter 1. 

Thus, if matrix inversion and matrix rank are important in linear regression and related 
procedures for studying single criterion, multiple predictor association, matrix 
eigenstructures and quadratic forms are the essential concepts in deaUng with multiple 
criterion, multiple predictor relationships. 

5.2 AN OVERVIEW OF MATRIX EIGENSTRUCTURES 

In Chapter 4 we spent a fair amount of time discussing point and basis vector 
transformations. In particular, in Section 4.3.5 we discussed the problem of finding the 
transformation matrix T°, relative to some basis F, if we know the transformation matrix 
T, denoting the same mapping relative to the E basis. As shown, to find T° requires that 
we know L the transformation that connects F with E. We can then find T° from the 
equation 

T° = (L')-^TL' 

While the discussion at that point may have seemed rather complex, it was pointed out 
that this procedure for changing basis vectors has practical utility in cases where we are 
able to find some special basis F in which the matrix (analogous to T° above) of the 
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linear transformation takes on some particularly simple form, such as a stretch or a 
stretch followed by a reflection. 

The development of a special basis, in which a linear transformation assumes a simple 
(i.e., diagonal) form, is the motivation for this section of the chapter. As it turns out, if 
such a basis exists, it will be found from the eigenstructure of a matrix that is analogous 
to T above.^ Moreover, the (diagonal) matrix that represents the same transformation 
relative to the new basis will also be found at the same time. In all cases we assume that 
the original matrix of the transformation is square (with real-valued entries, of course). 

By way of introduction to matrix eigenstructures, let us first take up an even simpler 
situation than that covered in Section 4.3.5. Assume that we have a 2 x 2 transformation 
matrix: 

A = 
- 3 

4 

Next, suppose we wished to find an image vector 

that has the same (or, possibly, precisely the opposite) direction as the preimage vector 

Xx 

x = 
X2 

If we are concerned only with maintaining direction, then x* the image vector can be 
represented by 

x^ = 
\Xi 

XX2 
= 1 

Xl 

X2 

where X denotes a scalar. That is, we can stretch or compress x, the preimage, in any way 
we wish as long as x* is in the same (or precisely the opposite) direction as x. 

If x is transformed by A into x* = Xx, we state the following: 

Vectors, which under a given transformation map into themselves or multiples of 
themselves, are called invariant vectors under that transformation. 

It follows, then, that such vectors obey the relation 

Ax = Xx 

wdiere, as noted, X is a scalar. 

^ What we shall call eigenvalues (and eigenvectors) some authors call characteristic roots (vectors) 
or latent roots (vectors). 
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To illustrate, suppose we try out the vector Xi = [3] to see whether this is invariant 
under A: 

A 

- 3 5 

4 - 2 

Xl 

2 

3 

Xl 

9 

2 

Such is not the case. We see that the relationship for an invariant vector does not hold, 
since the components of the vector Xi*= [2] are not constant multiples of the vector 
Xl = [3]. However, let us next try the vector X2 = [3]. 

A 

- 3 5 

4 - 2 

X2 

3 

3 
~" 

X2 

6 

6 

* 

= 2 
3 

3 

In the case of X2 = [3], we do have an invariant vector. Moreover, if we try any vector in 
which the components are in the ratio 1 : 1, we would find that the relation is also 
satisfied. For example, 

- 3 

4 

5 1 
- 2 

4 

4 

8 

8 
= 2 

4 

4 

where X = 2 is the constant of proportionality. 
Is it the case that only preimage vectors of the form X/ = [̂ ] satisfy the relation? Let 

us try another vector, namely, X3 = [ i ] : 

- 3 

4 

5] 
- 2 

r 5" 
[-4 

-35~ 

28 
= - 7 

5 

-4_ 

We see that this form xy = [_4^], works also. But are there others? As we shall see, there 
are no others that are not of the form of either 

or 
Sk 

-4k 

To delve somewhat more deeply into the problem, let us return to the matrix equation 

Ax = Xx 

which can be rearranged (by subtracting Xx from both sides) as follows: 

Ax-Xx = 0 

Or equivalently, 

Ax-XIx = 0 
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where I is an identity matrix. Next, we can factor out x to get 

(A-XI)x = 0 

As can now be seen, the problem of finding an invariant vector x is reduced to the 
problem of solving the equation 

(A-XI)x = 0 

~a b\ 

c d\ \X2 

= 
0 

One trivial solution is, of course, to let x= [o]. Generally, however, we would be 
interested in nontrivial solutions; that is, solutions in which x 9̂  [o]. 

For the moment, let us set A — XI equal to B and examine what is implied about B if x 
is to be nontrivial (i.e., contain nonzero elements). The above expression can then be 
written as 

Bx 

\^^ich, in turn, can be written as the set of simultaneous linear equations: 

axi +bx2 = 0 

ex 1 + dx2 - 0 

After multiplying the first equation by d, the second by —b, and adding the two, we have 

{ad-bc)x^ =0 

We then repeat the process by multiplying the first equation by —c, the second by a, and 
adding the two, to get 

(ad-bc)x2 =0 

So, if either XI ^ 0 or X2 ^ 0 , we must have the situation in which 

\a b\ 

c d 
= |B| = |(A-XI)| = 0 

What this all says is that the determinant of A - XI must be zero if we wish to allow Xi 
and X2 to be nonzero. 

5.2.1 The Characteristic Equation 

Returning to the original expression of A — XI, the above reasoning says that we want 
the determinant of this matrix to be zero. We can write out the above matrix expHcitly as 

A-XI = 
I ^ 2 1 ^ 2 2 I I 0 1 I 

aii-\ an 

CI21 fl?22~"^ 

« 1 1 

« 2 1 

an 

« 2 1 

^ 1 2 

^22 _ 

a\2 

^22 

-X 
1 

0 

"x 
0 

0~ 

1 

0" 

X 
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Then, we can find the determinant and set it equal to zero:^ 

^21 ^ 2 2 " " ^ 

^ ^2 X^-\(an +^^22) +^11^22-^12 ^21 = 0 

This last expression is called the characteristic equation of the transformation matrix A. 
The roots of this equation, which shall be denoted by X/, are called eigenvalues, and their 
associated vectors X/ are obtained by substituting the roots in 

(A-X,I)x, = 0 

and solving for x .̂ These vectors X/ are called eigenvectors. They are the vectors that are 
invariant under transformation by the matrix A. That is, by setting up the format of the 
characteristic equation and then solving for its roots and associated vectors, we have an 
operational procedure for finding the invariant vectors of interest. We obtain two central 
results from the process: 

1. the eigenvalues X̂- that indicate the magnitude of the stretch (or stretch followed 
by reflection), and 

2. the eigenvectors X/ that indicate the new directions (basis vectors) along which the 
stretching or compressing takes place. 

In the case of a 2 x 2 matrix, not more than two values of X̂- are possible. We can see this 
from the fact that the characteristic equation is quadratic, and a quadratic equation has 
two solutions, or roots. In general, if Ais n xn, n roots are possible, since a polynomial 
of degree n is involved. 

As indicated above, the characteristic equation of A is defined as 

|A-X,-I| = 0 

The determinant itself is defined as 

-X,-I| 

and is called the characteristic function of A. 
It should be clear, then, that only square matrices have eigenstructures, since we know 

already that only square matrices have determinants. Moreover, since Ax = Xx, A must be 
square. 

5.2.2 A Numerical and Geometric Illustration 

Now that we have concerned ourselves with the rationale for finding the eigenstructure 
(i.e., the eigenvalues and eigenvectors) of a square matrix, let us apply the procedure to 
the illustrative matrix shown earlier: 

^-3 5 ' 
A = 

4 - 2 

^ The reader should note that the characteristic equation is a polynomial of degree n (given that A 
is n xn). It will have, in general, n roots, not all of which may be either real or, even if real, distinct. 
We consider these possibilities in due course. 
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First we write 
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( A - X , I ) x - 0 

-3 5 

4 - 2 

Next, we set up the characteristic equation 

|~3 'X^ 5 

-X,-
' l 

0 

o' 

1 

1 

J 

^ 1 / 

X2l_ 
= 

0 

0 

-2-X,-
= 0 

and expand the determinant to get 

X,-̂  + 5X,—14 = 0 

We then find the roots of this quadratic equation by simple factoring: 

(X, + 7 ) (X , -2 )=0 

X i = - 7 

X2=2 

Next, let us substitute Xi= —7 in the equation (A—X/I)x/ = 0: 

f 1 
' - 3 

4 

5 ' 

- 2 

~-7 

0 -

o' 
-7 

i[ 
J 1 

~4 5l 

4 5j 

Xn 

^ 2 1 1 

[xn 

[^21 

'o" 
0 

"o" 
0 

The obvious solution to the two equations, each of which is 

4xii + 5JC2I = 0 

is the vector 

5' 

or, as illustrated earlier, more generally, 

Xi = 
5k 

-4k 

Next, let substitute X2 = 2 in the same way, so as to fmd 

- 3 

_ 4 

5 

- 2 

[2 
[0 
- 5 

4 

0^ 

2 
\ 

J 
5 

- 4 

X12 

_-^22_ 

^ 1 2 

•^22_ 

0I 
OJ 
~o' 

0 
L J 
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^{30 , 30) 

Fig. 5.1 Vectors that are invariant under the transformation matrix A. 

A solution to these two equations: 

— ̂ ^ 12 ^^ 22 ~ ^ 

4Xi2—4X22 = 0 

is evidently the vector 

or, again more generally, 

X2 = 

X2 

1 

1 

Ik 

Ik 

Hence, insofar as Xi and X2 are concerned, any vector whose components are in the ratio 
of either 

5 : - 4 or 1:1 

represents an eigenvector of the transformation given by the matrix A. 
Figure 5.1 shows the geometric aspects of the preceding computations.^ If we consider 

^ For ease of presentation, in Fig. 5.1 we let 

kxl 

kxl 

1 5 x 1 

1 5 x 1 
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the eigenvector Xi = [_|], we see that this is mapped onto 

h 
Xii 

^21 

= -1 
5~ 

-4 
= 
"-35' 

28 
L J 

while the second eigenvector X2 = [ĵ  ^ 1 ] ~ [}5 x 11 ^̂  mapped onto 

^1? 

X22 

= 2 
~15 

15 

fso 
— 30 

Furthermore, the eigenvalues Xi= —7 and X2= 2 represent stretch (or stretch followed by 
reflection) constants. 

5.2.3 Diagonalizing the Transformation Matrix 

Let us retum to the two eigenvectors found above and next place them in a matrix, 
denoted by U: 

5 f 
U^ 

- 4 1 

As noted, the two column vectors above are the invariant vectors of A. We now ask the 
question: How would A behave if one chose as a basis for the space the two eigenvectors, 
now denoted by Ui and U2, the columns ofW. 

As we shall show numerically, if U is chosen as a new basis of the transformation, 
originally represented by the matrix A relative to the standard E basis, then the new 
transformation matrix is a stretch. This is represented by the diagonal matrix D, given by 
the expression 

D = U-'AU 

If U and D can be found, we say that A is diagonalizable via U. The matrix U consists of 
the eigenvectors of A, and the matrix D is a diagonal matrix whose entries are the 
eigenvalues of A. Note, then, that U must be nonsingular, and we must find its inverse 

Recalling material from Chapter 4, we know that we can find the inverse of U in the 
2 x 2 case simply from the determinant and the adjoint of U: 

1/9 -1 /9" 
U-' = ^ adj(U)=^ 

lU 4/9 5/9 

Next, we form the triple product 

'\I9 
D = U-'AU = 

4/9 

-1 /9 

5/9 

[-3 5' 

[ 4 -2_ 

" 5 r 
-4 1 

= 
-7 0" 

0 2 

We see that the transformation matrix A, when premultiplied by U ^ and postmultiplied 
by U, the matrix whose columns represent its eigenvectors, has been transformed into a 
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diagonal matrix D with entries given by the eigenvalues of A. That is, if a set of basis 
vectors given by U is employed, the transformation, represented by A, behaves as a 
stretch, or possibly as a stretch followed by a reflection, relative to this special basis of 
eigenvectors. 

We shall be coming back to this central result several times in the course of elaborating 
upon matrix eigenstructures. The point to remember here is that we have found an 
instance where, by appropriate choice of basis vectors, a given linear transformation takes 
on a particularly simple form. This search for a basis, in which the nature of the 
transformation is particularly simple, represents the primary motivation for presenting 
the material of this section. 

Next, let us look at the expression 

D = U-̂ AU 

somewhat more closely. First of all, we are struck by the resemblance of this triple 
product to the triple product 

T° = (L')"'TL' 

described in Section 4.3.5. There we found that T° denoted the point transformation of a 
vector x°, referred to a basis f/, onto a vector x*°, also referred to F. T° can be found if 
we know T, the matrix of the same linear mapping with respect to the original basis e/, 
and L, the matrix of the transformation linking the f,- basis to the ê  basis. 

Note in the present case that D plays the role of T°, A plays the role of T, and U plays 
the role of L'. As such, the analogy is complete. Since U is the transpose of the matrix 
used to find the two linear combinations with respect to the standard basis ^f. 

fi = 5ei-4e2; f i = 5 
[l 
0 

- 4 
0 

1 
1 — — 1 ( _ _ l 

1 

0 
+ 1 

~0| 

ij 
f2 = lei + le2; f 2 = 1 

we see that the analogy does, indeed, hold. The current material thus provides some 
motivation for recapitulating, and extending, the discussion of point and basis vector 
transformations in Chapter 4. 

5.2.4 Point and Basis Vector Transformations Revisited 

Suppose we now tie in directly the current material on the special basis vectors 
(eigenvectors) obtained by finding the eigenstructure of a matrix to the material covered 
in Section 4.3.5. There we set up the transformation matrix 

0.9 0.44 

0.6 0.8 

and the vector x = [2 ] with respect to the original e/ basis. 
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We also considered the transformation matrix 

0.83 0.55 
L = 

0.20 0.98 

which denoted point transformations with respect to the e,- basis according to the 
transformation L. As recalled, when we wish to fmd some new basis f/ with respect to e,, 
we use the transpose of L: 

L' = 
0.83 0.20 

0.55 0.98 

Note, then, that we must keep in mind the distinction between a linear transformation T 
and its matrix representation with respect to a particular basis. By way of review, Fig. 5.2 
shows the geometric aspects of the mapping: 

where 

x * ° = T V = ( L ' r ^ T L V 

L' = 
0.83 0.20 

0.55 0.98 

1.11 0.60 

0.34 0.59 

2.31 

1.52 

(L')-^ = 
1.39 -0.28 

-0.78 1.18 

Fig. 5.2 Geometric aspects of the transformation x*° = T° x°, 
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in which the vector x° is mapped onto x*° by the point transformation T°. As recalled 
T° is the matrix of the transformation with respect to the f/ basis (given knowledge of T, 
the transformation matrix with respect to the e/ basis), and L' is the matrix connecting 
basis vectors in F with those in E. 

In the present context, U plays the role of L'. Hence, to bring in the new material, we 
shall want to fmd the eigenstructure of T. Without delving into computational details, we 
simply state that the eigenstructure of T is found in just the same way as already 
illustrated for the matrix A. In the case of T, the decomposition, as derived from its 
eigenstructure, is 

D U '̂TU 

D U"̂  

~1.37 0 

0 0.66 

-0.80 -0.62] 

0.74 -0.7oJ 

T U 

ro.9 0.44~| 

[0.6 0.8 J 

[-0.69 0.61 

[-0.73 -0.79 

Next, in line with the recapitulation in Fig. 5.2, we find the transformation 

x*°=u-iTUx° = Dx° = 
1.37 0 

0 0.33 

1.37 

0.66 

Figure 5.3 shows the pertinent results from a geometric standpoint. First, we note that 
the columns of U appear as the new basis vectors denoted fi and £2, respectively, so as to 
maintain the analogy with the column vectors of L' in Fig. 5.2. 

First, U takes x° onto x with respect to E. Then, the transformation T takes x onto x* 
with respect to E. Finally, U"̂  takes x* onto x*° with respect to F, the matrix of the 
new basis. The interesting aspect of the exercise, however, is that the f/ basis (given by U 
in the present context) is not just any old basis; rather, it is one in which the mapping of 
x° onto x*° involves a stretch as given by the transformation 

x*° = Dx" = 

D 

1.37 0 

0 0.33 

X " 

"1.37" 

0.66 

Figure 5.3 shows the point transformation from x° to x*° with respect to the f/ basis.^ 
In one sense, then, the eigenstructure problem is precisely analogous to finding the nature 
of a transformation relative to two different sets of basis vectors. And this is one reason 
why the latter topic was discussed in Section 4.3.5. However, the distinguishing feature of 
an eigenvector basis is that the nature of the transformation assumes a particularly simple 
geometric form, such as the stretch noted above. 

"* As shown in Fig. 5.3, x° = [ 2] is stretched along the f̂  axis in the ratio 1.37 : 1 but compressed 
along the f̂  axis in the ratio 0.67 : 2 (or 0.33 : 1). 
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Fig. 5.3 Basis vector transformation involving eigenvectors of T. 

5.2.5 Recapitulation 

In summary, obtaining the eigenstructure of a (square) matrix entails solving the 
characteristic equation 

|A-X,-I| = 0 

If A is of order nxn, then we shall obtain n roots of the equation; these roots are called 
eigenvalues. Each eigenvalue can then be substituted in 

(A-X,I)x, = 0 

to obtain its associated eigenvector. 
But what about the eigenvalues (and eigenvectors) of some arbitrary matrix A? All we 

have said up to this point is that if A is « x «, then n eigenvalues and eigenvectors are 
obtained. However, we shall find it is possible that 

1. some, or all, of the eigenvalues are complex, rather than real valued (even though 
A is real valued); 

2. some, or all, of the eigenvectors have complex elements; 
3. even if all eigenvalues (and their eigenvectors) are real, some eigenvalues may be 

zero; 
4. even if all eigenvalues are real and nonzero, some may be repeated. 
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Moreover, so far we have not said very much about the new basis of column eigenvectors 
in U, other than to indicate that it must be nonsingular in order for the relationship 

D = U-^AU 

to hold. Furthermore, by the following algebraic operations: 

UD = UU-̂ AU = AU 

and 

UDU-^ = AUU-^ 

we can express A as 

A = UDU" 

Other than the conditions that U is nonsingular and D is diagonal, however, no further 
requirements have been imposed. We might well wonder if situations exist in which U 
turns out to be orthogonal as well as nonsingular. Also, we recall that the illustrative 
matrices, whose eigenstructures were found above, are not symmetric. Do special 
properties exist in the case of symmetric transformation matrices? 

We shall want to discuss these questions, and related ones as well, as we proceed to a 
consideration of eigenstructures in the context of multivariate analysis. 

Here a complementary approach to the study of eigenstructures is adopted. Emphasis 
is now placed on symmetric matrices and the role that eigenstructures play in reorienting 
an original data space with correlated dimensions to uncorrected axes, along which the 
objects are maximally separated, that is, display the highest variance. While it may seem 
that we are starting on a brand-new topic, it turns out that we are still interested in basis 
vector changes in order to achieve certain simpHfications in the transformation. Hence we 
shall return to the present topic in due course, but now in the context of symmetric 
transformation matrices. As it turns out, the eigenstructure of a symmetric matrix 
displays properties that can be described more simply than those associated with the 
nonsymmetric case. Accordingly, we cover this simpler case first and then proceed to the 
situation involving nonsymmetric matrices. 

5.3 TRANSFORMATIONS OF COVARIANCE MATRICES 

At the end of Chapter 1, a small sample problem with hypothetical data was 
introduced in order to illustrate some of the more commonly used multivariate tools. The 
basic data, shown in Table 1.2, have already been employed as a running example to show 

1. how matrix notation can be used to summarize various statistical operations in a 
concise manner (Chapter 2); 

2. the geometric aspects of such statistical measures as standard deviations, 
correlations, and the generalized dispersion of a covariance matrix (Chapter 3); 

3. how the pivotal method can be used to find matrix inverses and solutions to sets 
of simultaneous equations (Chapter 4). 
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Xd2 

H h H 1 1 1 1 iXdi 

-5+ 

Fig. 5.4 Scatter plot of mean-corrected predictors from sample problem of Chapter 1. 

In this chapter we continue to use this small data bank for expository purposes. 
Suppose we were to start with a plot of the mean-corrected scores of the two 

predictors Xfi2 (years employed by the company) versus X^xi (attitude toward the 
company). Figure 5.4 shows the scatter plot obtained from the mean-corrected data of 
Table 1.2. 

We note that X^2 ^^^ ^di r̂̂  positively associated (their correlation is 0.95). In line 
with the discussion of Chapter 1, suppose we wished to replace Zdi and X^2 ^Y ^ single 
linear composite 

^i~ h^dil •*" h^di: 

for i= 1,2, ... ,12, the total number of employees, so that the variance of this linear 
composite 

12 
Var(z,)= E (z/-z)^/12 

/ = i 

subject to t't = 1, is maximized. By this is meant that the twelve employees are maximally 
separated along the linear composite. 
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The motivation for doing this sort of thing is often based on parsimony, that is, the 
desire to replace two or more correlated variables with a single linear composite that, in a 
sense, attempts to account for as much as possible of the variation shared by the 
contributory variables. The vector of weights t is constrained to be of unit length so that 
Var(Z|) cannot be made indefinitely large by making the entries of t arbitrarily large. 

If our desire is to maximize the variance of the linear composite, how should the 
weights ti and 2̂ be chosen so as to bring this about? 

To answer this question we need, of course, some kind of criterion. For example, one 
approach might be to bring the external variable 7 into the problem and choose ti and ̂ 2 
so as to result in a linear composite whose values maximally correlate with Y. As was 
shown in our discussion of multiple regression in Chapter 4, this involves finding a set of 
predicted values f'l whose sum of squared deviations from 7/ is minimized. 

However, in the present case, let us assume that we choose some "internal" criterion 
that ignores the external variable Y. The approach suggested earlier is to find a vector that 
maximizes the variance (or a quantity proportional to this, such as the sum of squares) of 
the twelve points if they are projected onto this vector. This is also equivalent to 
minimizing the sum of the squared distances between all pairs of points in which one 
member of each pair is the to-be-found projection and the other member is the original 
point. 

It is relevant to point out that we are really concerned with two types of vectors. The 
vector t = [Ji ] is a vector of direction cosines or direction numbers in terms of the 
original basis. The vector z comprises the particular point projections whose variance we 
are trying to maximize through the particular choice of t. 

We have, of course, several possible candidates for measuring the original association 
between X^i ^^^ ^di ? such as S, the SSCP matrix, C, the covariance matrix (which is 
proportional to S), and R, the correlation matrix. 

Illustratively, let us develop the argument in terms of the covariance matrix which, in 
the sample problem, is 

C = 
X2 

Xi X2 

14.19 10.69 

10.69 8.91 

Since, as it tums out, we shall be finding two linear composites, we shall refer to these 
new variables as zi and Z2, respectively. 

Finding the first of these linear composites Zi represents the motivation for 
introducing a new use for computing the eigenstructure of a matrix. That is, we shall wish 
to find a vector in the space shown in Fig. 5.4 with the property of maximizing the 
variance of the twelve points if they are projected onto this vector. We might then wish to 
find a second vector in the same space that obeys certain other properties. If so, what we 
shall be doing is changing the original basis vectors to a new set of basis vectors. (These 
new basis vectors are often called principal axes.) And, in the course of doing this, it will 
turn out that we are also decomposing the covariance matrix into the product of simpler 
matrices from a geometric standpoint in just the same spirit as described in Section 5.2. 
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5.4 EIGENSTRUCTURE OF A SYMMETRIC MATRIX 

Let us now focus on the covariance matrix of the two predictors 

Xi X2 

14.19 10.69" 

10.69 8.91 
C = 

X2 

The first thing to be noticed about C is that it is not only square but also symmetric. 
Many derived matrices in multivariate analysis exhibit these characteristics. We now wish 
to consider various linear composites of X^i and X^2 that have some chance of 
maximally separating individuals. 

Suppose, arbitrarily, we consider the following, overly simple, linear combinations of 
Xdiandxd2: 

zi = 0.707xdi +0.707xd2 = 0.707(xdi +Xd2) 

Z2 = 0.707xd2 -0.707xdi = 0.707(xd2 -Xdi) 

In the case of Zi we are giving equal weight to Xdi and Xd2 » while in the case of Z2 we are 
concerned with their difference, that is, the "increment" (component by component) of 
Xd2 over Xdi- Notice, further, that (a) the transformation matrix representing these linear 
combinations, which we shall call T, is orthogonal and (b) we shall be postmultiplying 
each point represented as a row vector in Xd by the matrix 

T = 
0.707 -0.707 

0.707 0.707 

As surmised, 0.707 is chosen so that (0.707)^ +(0.707)^ = 1, and we have a set of 
direction cosines. Since T is orthogonal, the following relationships hold: 

T'T=TT' = I 

Finally, we also note that the determinant |T| = 1. Hence, a proper rotation, as a matter 
of fact, a 45° rotation, is entailed since cos 45° = 0.707. We first ask: Suppose one were 
to consider the mean-corrected matrix Xd of the two predictors. What is the relationship 
of the derived matrix Z, found by the rotation XdT, to the matrix Xd? 

Panel I of Table 5.1 shows the linear composites for Zi and Z2, respectively, as 
obtained from the 45° rotation matrix. Since we shall be considering a second 
transformation subsequently, we use the notation Z^ and T^ to denote the particular 
rotation (involving a 45° angle) that is now being appUed. 

The solid-line vectors, Zî  and Z2a , of Fig. 5.5 show the results of rotating the original 
basis vectors 45° counterclockwise. If we project the twelve points onto the new basis 
vectors Zj^ and Z2a , we find the projections shown in the matrix Z^ in Panel I of 
Table 5.1. Note further that, within rounding error, the mean of each column of Z^ is 
zero. (In general, if a set of vectors is transformed by a linear function, we will find that 
the means of the transformed vectors are given by that linear function applied to the 
means of the original variables.) A more interesting aspect of the transformation is: What 
is the relationship of the new covariance matrix, derived from the transformed matrix Z^, 
to that derived from the original matrix Xd? 
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TABLE 5.1 

Linear Composites Based on 45" and 38" Rotations of Original Basis Vectors 

I 
45" rotation 

â Xj 

~ 6.48 0.94" 
5.78 0.23 
5.07 0.94 

-4.36 0.23 
-1.53 0.23 

0.12 1.65 
-0.12 0.23 
-0.12 -1.19 

4.83 0.47 
4.83 1.89 
6.24 0.47 

= 

7.66 -0.47 j 

-5.25 -3.92" 
-4.25 -3.92 
-4.25 -2.92 
-3.25 -2.92 
-1.25 -0.92 
-1.25 1.08 
-0.25 0.08 

0.75 -0.92 
3.75 3.08 
4.75 2.08 
4.75 4.08 
5.75 5.08 

Variances 
22.23 0.87 

1 0.707 
0.707 

T« 

-0.707 1 
O.707J 

II 
38° rotation 

^b ^ d 

~-6.55 0.15" 
5.76 -0.46 

-5.15 0.32 
-4.36 -0.29 
-1.55 0.05 
-0.32 1.62 
-0.15 0.09 

0.02 -1.19 
4.85 0.11 
5.02 -1.29 
6.26 0.28 
7.66 0.45 

r-5.25 -3.92" 
i -4.25 -3.92 

-4.25 -2.92 
-3.25 v2.92 
-1.25 -0.92 
-1.25 1.08 
-0.25 0.08 

0.75 -0.92 
3.75 3.08 
4.75 2.08 
4.75 4.08 
5.75 5.08 

Variances 
22.56 0.54 

[0.787 
0.617 

T& 

-0.617] 
0.787] 

Fig. 5.5 Applying 45° and 38° counterclockwise rotations to axes of Fig. 5.4. 

We recall from Chapter 2 that the covariance matrix can be computed from the 
raw-data matrix X by the expression 

C= l/m[X'X-(l/m)(X'l)(l 'X)] 

where X'X is called the minor product moment of the raw-data matrix X, and the second 
term in the brackets is the correction for means. 

In the present case by using X^ the mean of each column is already zero and similarly 
so for the columns of the transformed matrix Z^ . Hence, the second term on the right of 
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the above equation consists of a null matrix. The original covariance matrix can then be 
restated as 

C(X)-
14.19 10.69 

10.69 8.91 

5.4.1 The Behavior of the Covariance Matrix under Linear 
Transformation 

If C(X) is computed as shown above, we could find C{Za) by the same procedure, 
namely, 

C ( Z j = l / m Z / Z « 

since, as before, the mean of each column of Z^ (within rounding error) is also zero and, 
hence llm{Za'l)(l'Za)= <t>. 

Actually, however, a much more direct way to find C{Za) is available. Since 
Za = XdT^ and C(ZJ = 1/m Z^'Z^, we have 

Q{Za) = [(XdT,y(XdT,)]/m = [T,%'XdTJ/A72 = T ; [C{X)]Ta 

That is, we can find C(Za ) through knowledge of the transformation matrix T^ and C(X), 
the covariance matrix prior to transformation. 

To find C(Za ) we compute 

C(Z„) = 

T ' 

0.707 0.707 

-0.707 0.707 

22.23 -2.64] 

-2.64 0.87] 

C{X) 

[14.19 10.691 

[10.69 8.9 ij 

T 

r0.707 

[o.707 

-0.707 

0.707 

The first thing to be noticed about C{Za) is that the sum of the main diagonal entries 
(22.23 + 0.87) is, within rounding, equal to the sum of the main diagonal entries of C(X). 
The second thing of interest is that C(Za) continues to remain symmetric, but now the 
off-diagonal entries are much smaller in absolute value (2.64) than their counterpart 
entries (10.69) in C(X), 

What has happened here is that the rotation of axes, effected by T, has resulted in a 
new set of basis vectors in which projections on the first of the new axes display a 
considerably larger variance than either contributing dimension x^i or Xd2 • 

We might next inquire if we can do still better in variance maximization. Does some 
other rotation result in a still higher sum of squares for the first transformed dimension? 
What we could do, of course, is to proceed by brute force. Based on what we have seen so 
far, we could try other orthogonal transformations in the vicinity of a 45° angle and duly 
note how the parceling out of variance between Zi and Z2 behaves under each 
transformation. Fortunately, however, an analytical approach is available—one that again 
utilizes the concept of the eigenstructure of a matrix. 
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5.4.2 The Characteristic Equation 

In preceding chapters we have talked about changing the basis of a vector space. We 
have also discussed transformations that involve a rotation (proper and improper) and a 
stretch. Finally, we know that a linear combination such as Zi = 0.707X^1 + 0.707Xd2 
can be so expressed that the sum of the squared weights equals unity. That is, we 
can—and have done so in the preceding illustration—normalize the weights of the linear 
combination so that they appear as direction cosines. 

Suppose we take just one colunm vector of some new rotation matrix T (for the 
moment we drop the subscript for ease of exposition) and wish to maximize the 
expression 

U'[C(X)]t, 

subject to the normalization constraint that ti 'ti = 1. This restriction on the length of ti 
will ensure that our transformation meets the unit length condition for a rotation. And, 
incidentally, this restriction will also ensure that the resultant scalar t i ' [C(X)] ti cannot 
be made arbitrarily large by finding entries of ti with arbitrarily large values. 

The above problem is a more or less standard one in the calculus, namely, optimizing 

F=u'[C(X)]t,-Hu'U-l) 

vAiere X is an additional unknown in the problem, called a Lagrange multiplier. 
While we shall not go into details (see Appendix A for these), we can briefly sketch 

out their nature by differentiating F with respect to the elements of ti and setting this 
partial derivative equal to the zero vector. The appropriate (symbolic) derivative is 

bF 
g^=2[C(X)ti-Xti] 

Setting this expression equal to the zero vector, dividing both sides by 2, and factoring 
out ti leads to 

[C(X)-AI]ti = 0 

where I is the identity matrix. In terms of our specific problem, we have 

C(A^)-XI t, 0 

14.19-X 

10.69 

10.69 

8.91-

tn 

hi 

We may also recall from the calculus that satisfaction of the above equation is a necessary 
condition for a maximum (or minimum).' 

Immediately we are struck by the resemblance of the above expression to the matrix 
equation of Section 5.2: 

(A-AI)x = 0 

Although not shown here, sufficiency conditions are also met. 
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that was used in finding the eigenstructure of A. Indeed, the only basic differences here 
are that C{X) is symmetric, and the eigenvectors are to be normaUzed to unit length. 

If the matrix C(X) — XI, for a fixed value of X, were nonsingular (i.e., possessed an 
inverse), it would always be the case that the only possible solution to the equation 
involves setting ti equal to the zero vector. Hence, in line with the discussion of 
Section 5.2, we want to accompHsh just the opposite, namely, to find a X that will make 
C(Z) — XI singular. But we recall that singular matrices have determinants of zero. Hence 
we want to find a value for X that satisfies the characteristic equation: 

|C(X)-XI| = 0 

Another way of putting things is that we wish to find ti such that 

C(Z) t i = Xti 

where ti is a vector, which if premultiplied by C{X), results in a vector Xti whose 
components are proportional to those of t i . 

This, of course, is the same line of reasoning that we discussed earlier in the chapter in 
the context of finding a new basis in which the matrix of the transformation in terms of 
that new basis could be denoted by a stretch or, possibly, by a stretch followed by a 
reflection. 

As recalled, however, for an nxn matrix one obtains n roots in solving the 
characteristic equation. Since we wish to maximize F, we shall be on the lookout for the 
largest X̂- obtained from solving the characteristic equation. That is, we shall order the 
roots from large to small and choose that eigenvector t/ corresponding to the largest X/. 

Either the approach described in Section 5.2 or the current approach leads to the same 
type of result so long as we remember to order the roots of \Q{X) ~ Xi= 0 from large to 
small.^ As observed, |C(^) - X| = 0 is simply the characteristic equation of the covariance 
matrix C(X). 

Now, while we initially framed the problem in terms of a single eigenvector ti and a 
single eigenvalue Xi, the characteristic equation, as formulated above, will enable us to 
solve for two eigenvalues Xi and X2, and two eigenvectors ti and t2. As already noted in 
Section 5.2, if C{X) is of order n xn, V/Q shall obtain n eigenvalues and n associated 
eigenvectors. 

5.4.3 Finding the Eigenvalues and Eigenvectors of Q{X) 

It is rather interesting that following either (a) the (present) variance-maximizing path 
or (b) the basis vector transformation path that seeks a new basis in which vectors are 
mapped onto scalar multiples of themselves leads to the same result—the characteristic 
equation. However, let us now concentrate our attention on the variance-maximizing path 
as the one that appears more appropriate from an intuitive standpoint in the context of 
the current problem. 

* It should be mentioned, however, that C(X), the covariance matrix, exhibits special properties in 
that it is symmetric and represents the minor product moment of another matrix (in this case 
X^l\/m). As such, all of its eigenvalues will be real and nonnegative and T will be orthogonal. We 
discuss these special properties later on. 
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The problem now is to solve for the eigenstructure of C(X). First, we shall want to 
find the eigenvalues of the characteristic equation 

|C(X)-X,I| = 0 
14.19--X,- 10.69 

10.69 8.91-X/l 

Expansion of the second-order determinant is quite easy. In terms of the above 
problem we can express the characteristic equation as 

(14.19-X,)(8.91-X,)-(10.69)' =0 

X,-^-23.1X,- + 126.433-114.276 = 0 

X,-^-23.1X, + 12.157 =0 

The simplest way of solving the above equation is to use the quadratic formula of the 
general form y = ax^ +Z7X + c. First, we note that the coefficients in the preceding 
expression are 

a=l; Z7 = -23 .1 ; c=12.157 

Next, let us substitute these in the general quadratic formula: 

-b ± y/b^~^^^Aac _ 23.1 ± >/(=^23:1)2-4(12.157) 
X,- = 

23.1 ± V484.982 

2a 

Xi= 22.56; X2 = 0.54 

As could be inferred from the sign of the discriminant (b^ — 4ac) of the general 
quadratic, we have a case in which the roots Xi and X2 are both real and are unequal. If 
we go back to our original problem of trying to optimize F[C(X)] subject tot ' t = 1, we 
see that Xi = 22.56 denotes the maximum variance achievable along one dimension by a 
linear composite of the original basis vectors. 

In the 2 x 2 case, solving for the eigenvectors ti and t2 is rather simple. Let us first 
substitute the value of Xi = 22.56 in the expression Q{X) — XI: 

14.19-22.56 10.69 

10.69 8.91-22.56 

C(X)-XiI 

-8.37 10.69' 

10.69 -13.65 

The next step is to set up the simultaneous equations needed to solve for t i , the first 
eigenvector: 

C(X)-XiI 

-8.37 

10.69 

10.69 

-13.65 

^11 

hi 

0 

0 

If we set 2̂1 = 1 in the first of the two equations: 

-8.37^11 + 10.69^21 = 0 
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we obtain tu = 1.277. (Note that these values also satisfy the second equation.) This gives 
us the first (nonnormaUzed) eigenvector: 

t, = 
1.277^ 

lA: 

As we know, we can then divide the components of ti by ||ti || = 1.622, its length, to get 
the normalized version: 

(norm)ti 
0.787 

0.617 

In exactly the same way, we substitute X2 = 0.54 and perform the following calculations: 

C(X)-X2l 

14.19-0.54 10.69 

10.69 8.91-0.54 

1̂3.65 

10.69 

c w - X j i 

13.65 10.69] 

10.69 8.37 

\t12~ 

tz2 

0' 

0 

10.69 

8.37 

Next, we set 2̂2 = 1 in the first of the two equations: 

13.65ri2 +10.69^22 = 0 

to obtain ti2 = -0.783 and note, further, that these values also satisfy the second 
equation. We then obtain 

t2 = 
-0.783A: 

\k 
(norm)t2 = 

-0.617 

0.787 

Let us now assemble the two normaUzed eigenvectors into the matrix, which we shall 
denote by T^: 

T , = 
0.787 -0.617 

0.617 0.787 

Then, as before, we can collect the various terms of the decomposition into the following 
triple product: 

Z. = D. 
22.56 0 

0 0.54 
:T^^C(X)T^ 

file:///t12~
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While we have just found Z^ and T^, and we know C(X) to begin with, we must still solve 
for T^^ We obtain T^̂  from 

T,,= 
0.787 

0.617 

-0.617 

0.787 

by the now-familiar adjoint matrix method, first described in Chapter 4. 

T;'=i^adKT,)=l 
0.787 0.617 

-0.617 0.787 

0.787 0.617 

-0.617 0.787 

Here we see the somewhat surprising result that T^^ = T^'. 
However, as recalled from Chapter 4, one of the properties of an orthogonal matrix is 

that its inverse equals its transpose: 

T' 

and we see that such is the case here. Moreover, it is easily seen that T^ exhibits the 
orthogonality conditions of tj^ t2 ,̂ = 0 and tj^ti^ = t2ftt2ft = 1. 

Thus, in the case of a symmetric matrix, illustrated by C{X), the general diagonal 
representation 

D = U-^AU 

of Section 5.2 now can be written as 

D = T'C(X)T 

where T is orthogonal and D continues to be diagonal. 
By the same token we can write 

A = UDU"^ 

in the case of a symmetric matrix as 

C(Z) = TDT' 

Thus, the rather interesting outcome of all of this is that starting with a symmetric 
matrix C(X), we obtain an eigenstructure in which the matrix of eigenvectors is orthogonal. 
That is, not only is the transformation represented by a stretch (as also found in 
Section 5.2), but the basis vectors themselves, in the symmetric matrix case, are 
orthonormal. We shall return to this finding in due course. For the moment, however, let 
us pull together the results so far, particularly as they relate to the problem of computing 
some "best" linear composite for the sample problem. 
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5.4.4 Comparing the Results 

When we rather arbitrarily tried a 45° rotation of the original axes in order to obtain 
the linear composites Z^ shown in Panel I of Table 5.1, we noted that the covariance 
matrix derived from this transformation was 

C(ZJ = T;C(X)T. 
22.23 -2.64 

-2.64 0.87 

Let us now compare this result with the maximum variance attainable from T^. From the 
immediately preceding discussion, we know that the comparable results are 

T^' CiX) Tt 

C(Z,) = 
0.787 0.617] 

-0.617 0.787] 

22.56 0 

0 0.54 

14.19 10.69 

10.69 8.91 

0.787 -0.617 

0.617 0.787 

The matrix T^ in the present case involves a counterclockwise rotation of 38°. 
Panel II of Table 5.1 shows the computed Z^ values. Also, Fig. 5.5 shows this optimal 

rotation as a dashed line for comparison with the 45° rotation tried earlier. Clearly, the 
two rotations are quite close to each other. Moreover, when we compare the first 
(selected to be the largest) eigenvalues above: 

Xi = 22.23 (for 45° rotation) 

Xi = 22.56 (for 38° optimal rotation) 

we again see how close the 45° rotation, which was just guessed at for expository 
purposes, is to the optimal. 

Another point to note is that the off-diagonal elements of C(Zft), after the optimal 
rotation, are zero, and hence, Zi^ and Z2ft the two linear composites obtained from the 
optimal rotation, are uncorrelated. This is a bonus provided by the fact that C(X) is 
symmetric and, hence, T^ is orthogonal. 

To recapitulate, we have demonstrated how a set of vectors represented by the matrix 
Xa and a transformation of those vectors C(X) = (l/m)XJX^ can be rotated such that 
the projections of the points X^T^ (with T^ orthogonal) onto the first axis Zi^have the 
property of maximum variance. Moreover, at the same time it turns out that the new 
covariance matrix 

C(Z^)=l/m[Tft'Xd'XdT^] = 
22.56 0 

0 0.54 

is diagonal That is, all vectors referenced according to this new basis will be mapped onto 
scalar multiples of themselves by a stretch. This means that all cross products in the 
C(Zft) matrix vanish, as noted above. 
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Hence, we have diagonalized the original transformation C{X) by finding a rotation T ,̂ 
of the Xd space that has the effect of making C(Zfy) a diagonal matrix. The second axis 
Z2b will be orthogonal to the first or variance-maximizing axis Zi^ 

Reflecting a bit on the above example and observing the configuration of points in 
Fig. 5.5, it would appear that the point pattern roughly resembles an ellipse. 
Furthermore, the new axes, Zi^ and Z2^, correspond, respectively, to the major and 
minor axes of that eUipse, called principal axes in multivariate analysis. 

If the distribution of points is multivariate normal, it turns out that the loci of equal 
probabiHty are represented by a family of concentric ellipses (in two dimensions) or 
ellipsoids or hypereUipsoids (in higher dimensions). The "ellipse" in Fig. 5.5 could be 
construed as an estimate of one of these concentration ellipses. 

It also turns out that by solving for the eigenstructure of C(X), we also obtain the axes 
of the "eUipse." This reorientation of the plane along the axes of the implied ellipse in 
Fig. 5.5 (via the 38° rotation of basis vectors) will also be relevant to quadratic forms, a 
topic that is discussed later in the chapter. 

5.5 PROPERTIES OF MATRIX EIGENSTRUCTURES 

At this point we have discussed eigenstructures from two different, and comple
mentary, points of view: 

1. finding a new basis of some linear transformation so that the transformation 
relative to that new basis assumes a particularly simple form, such as a stretch or a stretch 
followed by reflection; 

2. finding a new basis—by means of a rotation—so that the variance of a set of points 
is maximized if they are projected onto the first axis of the new basis; the second axis 
maximizes residual variance for that dimensionality, and so on. 

In the first approach no mention was made of any need for the basis transformation to be 
symmetric. In the second case the presence of a symmetric matrix possessed the 
advantage of producing an orthonormal basis of eigenvectors (a rotation). 

In the recapitulation of Section 5.2.5, we alerted the reader to a number of problems 
concerning the eigenstructure of nonsymmetric matrices. In general, even though we 
assume throughout that A has all real-valued entries, if A is nonsymmetric, 

1. we may not be able to diagonalize it via U"^AU;̂  
2. even if it can be diagonalized, the eigenvalues and eigenvectors of A need not all 

be real; 
3. even if the eigenvalues (and eigenvectors) of A are all real valued, they need not be 

all nonzero;* 
4. even if they are all nonzero, they need not be all distinct.^ 

"̂  However, any matrix can be made similar to an upper triangular matrix (a square matrix with all 
zeros below the main diagonal). We do not pursue this more general topic here. 

^ If A has at least one zero eigenvalue, it is singular, a point that will be discussed in more detail in 
Section 5.6. 

' Points 3 and 4 pertain to symmetric matrices as well. 
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Delving into the properties of eigenstructures involving complex eigenvalues and 
eigenvectors would take us too far afield in this book. 

Fortunately for the reader all nonsymmetric matrices of interest to us in multivariate 
analysis will have real eigenvalues and real eigenvectors. However, if A is nonsymmetric, 
then U, the new basis of eigenvectors, is not orthogonal. Moreover, the problem of 
dealing with zero (or nonzero but nondistinct) eigenvalues must be contended with in any 
case, and will be discussed in the context of symmetric matrices. 

5.5.1 Properties of Symmetric Matrices 

As could be inferred from earlier discussion, in order to satisfy the expression 

D = U-'AU 

U"̂  must, of course, exist. However, it turns out that in order for some (not necessarily 
symmetric) matrix Anxn to be made diagonal, it is necessary and sufficient that U consist 
of linearly independent vectors and, hence, forms a basis (and possesses an inverse). If this 
condition is not met, then A is not diagonalizable. However, even if a matrix is 
diagonalizable, it may not necessarily be orthogonally so. And, even if a matrix can be 
made diagonal, it need not consist of eigenvalues and eigenvectors that are all real valued. 

Symmetric matrices take care of these problems. If A is symmetric, it is not only 
always diagonalizable but, in addition, it is orthogonally diagonalizable where we have the 
relation 

U"̂  =U' 

This is a very important condition since it states that for any pair of distinct eigenvectors 
U/, uy their scalar product u/uy = 0. 

Notice that this was the situation in Section 5.4.3 in which we had the result 

C(Z,) = 
0.787 -0.617 

0.617 0.787 

T^' C(X) 

0.787 O.6I7] [14.19 10.69 

-0.617 0.787 I I 10.69 8.91 

22.56 0 

0 0.54 

Not only is 0(2^) diagonal, but T̂ , is orthogonal. Since orthonormal basis vectors are 
highly convenient to work with in multivariate analysis, orthogonally diagonalizable 
matrices are useful to have. 

A further differentiating property for symmetric matrices versus their nonsymmetric 
counterparts is also useful in multivariate applications. If a symmetric matrix A consists 
of all real-valued entries, then all of its eigenvalues and associated eigenvectors will be real 
valued. 
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In practice, however, even the nonsymmetric matrices that we encounter in 
multivariate analysis—such as those that arise in mukiple discriminant analysis and 
canonical correlation—will have real eigenvalues. Hence, in the kinds of applications of 
relevance to multivariate analysis, the researcher does not need to worry very much about 
cases involving complex eigenvalues and eigenvectors. Still it is nice to know that the 
problem of complex eigenvalues and eigenvectors does not arise if A is symmetric. 

Now, let us next examine the case of equal eigenvalues in symmetric matrices. Suppose 
we have tied Xfs of multiplicities Ij^ for blocks k= 1,2, . . . ,s where 

s 

k = l 

First, it is comforting to know that the orthogonality property is maintained across 
subsets of eigenvectors associated with tied eigenvalues. That is, if t/ and ty are drawn 
from different sets, then t/ty = 0. The problem, then, is to obtain a set of orthogonal 
eigenvectors within each tied set of eigenvalues. Since this can usually be done in an 
infinity of ways, the solution will not be unique. 

To illustrate, suppose we have eigenvalues Xi = 1, X2 "̂  2, X3 = 2 with associated 
eigenvectors t i , t2, and ta. We note that X2 and X3 are tied. In the present case there is, 
in a sense, too much freedom with regard to the eigenvectors associated with X2 and X3. 
What can be done, however, is 

1. Find the eigenvector ti associated with the distinct eigenvalue Xi; this is done 
routinely in the course of substituting Xi in the equation (A—Xil)ti = 0. 

2. Choose eigenvectors t2 and ts (e.g., via Gram-Schmidt orthonormalization) so 
that they form an orthonormal set within themselves. Each, of course, will already be 
orthogonal to t i . 

While the above orientation is arbitrary, in view of the equality of X2 and X3, it does 
represent a way to deal with the problem of subsets of eigenvalues that are equal to each 
other. 

If it turned out that all eigenvalues were equal, that is, Xi = X2 = X3, then we have a 
case in which the transformation of A is a scalar transformation with coefficient X (i.e., 
just the scalar X times an identity transformation). As such, all (nonzero) vectors in the 
original space can serve as eigenvectors. Thus, any set of mutually orthonormal 
vectors—including the original orthonormal basis that could lead to this condition—can 
serve as a new basis. 

In general, if we have k eigenvalues, all with the same value X, then we must first find k 
linearly independent eigenvectors, all having eigenvalue X. Then we orthonormalize them 
via some process like Gram-Schmidt. If we have two or more subsets of tied eigenvalues, 
the orthonormalizing process is done separately within set. As noted earlier, all 
eigenvectors in different sets, where the eigenvalues differ, will already be orthogonal. 

However, tied eigenvalues arise only rarely in data-based product-moment matrices, 
such as C{X) and R(X). However, if they do, the analyst should be aware that the 
representation of A in terms of its eigenstructure is not unique, even though A may be 
nonsingular. 
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by 

In summary, if A^xn is symmetric, we can say the following: 

1. An orthogonal transformation T can be found such that A can be made diagonal 

D = T'AT 

\\^ere D is diagonal, and the columns of T are eigenvectors of A. 
2. All eigenvalues and eigenvectors are real. 
3. IfX,-9^Xy,thent/ty = 0. 
4. If tied eigenvalues occur, of multiplicity /^ for some block k, then A has Ij^ but 

not more than Ij^ mutually orthogonal eigenvectors corresponding to the A;th block of tied 
eigenvalues. In such cases, the eigenstructure of A will not be unique, but T, the n xn 
matrix of eigenvectors, will still be nonsingular. 

The topic of zero eigenvalues—2ind their relationship to matrix rank—is so important that 
a special section in the chapter is reserved for it. For the moment, however, we turn to 
some additional properties of eigenstructures, appropriate (unless stated otherwise) for 
both the symmetric and nonsymmetric cases. 

5.5.2 Additional Properties of Eigenstructures 

Two quite general properties of eigenstructures that apply to either the nonsymmetric 
or symmetric cases are: 

1. The sum of the eigenvalues of the eigenstructure of a matrix equals the sum of the 
main diagonal elements (called the trace) of the matrix. That is, for some matrix W^xw, 

n 

^ 
i = l 

h 
n 

= 1 
/= 1 

^ii 

2. The product of the eigenvalues of W equals the determinant of W: 

Notice here that if W is singular, at least one of its eigenvalues must be zero in order that 
|W| = 0, the condition that must be met in order for W to be singular. However, even 
though W may be singular, T in the expression 

D = T'WT 

is still orthogonal (and, hence, nonsingular). 
In addition to the above, a number of other properties related to sums, products, 

powers, and roots should also be mentioned. (The last two properties that are Hsted 
pertain only to symmetric matrices with nonnegative eigenvalues.) 
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3. If we have the matrix B = A + M, where /: is a scalar, then the eigenvectors of B 
are the same as those of A, and the ith eigenvalue of B is 

X/ + A: 

where X/is the ith eigenvalue of A. 
4. If we have the matrix C = /cA, where kisa scalar, then C has the same eigenvectors 

as A and 

^X,-

is the ith eigenvalue of C, where X/ is the zth eigenvalue of A. 
5. If we have the matrix A^ (where p is a positive integer), then A^ has the same 

eigenvectors as A and 

h" 

is the rth eigenvalue of A^, where X/ is the ith eigenvalue of A. 
6. If A~̂  exists, then A"^ has the same eigenvectors as A and 

xr" 

is the eigenvalue of A""̂  corresponding to the ith eigenvalue of A. In particular, 1/X/ is the 
eigenvalue of A~̂  corresponding to X/, the ith eigenvalue of A. 

7. If a symmetric matrix A can be written as the product 

A = TDT' 

where D is diagonal with all entries nonnegative and T is an orthogonal matrix of 
eigenvectors, then 

and it is the case that Â ^̂ Â ^̂  = A.̂ ^ 
8. If a symmetric matrix A~̂  can be written as the product 

where D~̂  is diagonal with all entries nonnegative and T is an orthogonal matrix of 
eigenvectors, then 

A-l/2 = JD-l/2 J ' 

and it is the case that A -1/2^-1/2 ^ A -

*̂  In Chapter 2 the square root of a diagonal matrix was defined as D*'̂ D*^^ = D where the 
diagonal elements of D*̂ ^ are yjdji and it was assumed that all dff in D are nonnegative to begin with. 
In the present case A^̂ ^A*̂ ^ = A, where A need not be diagonal, but the conditions stated in point 7 
must be met. In the present context we see that (TD^^^T')(TD^^^T') = TD^^^D^^^T' = TDT' = A. 
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We can illustrate these properties of eigenstructures by means of a simple example: 

~1 1 
A = 

1 2 

The eigenvalues of A are Xi = 3 and \i^\. The associated (and normalized) eigenvectors 
are 

^0.70?] r 0.707 

0.707J [-0.707 

Since A is symmetric, we can write the decomposition as 

D = T'AT 
0.707 0.707 

0.707 -0.707 

2 ^^ 0.707 0.707 

1 2J ^0.707 -0.707 

3 0 

0 1 

The various properties, discussed above, are now illustrated: 

Trace of A 

t r (A) = a n + ^22 = ^1 + ^2 = 3 + 1 = 4 

Eigenvalues of A + 21 

r4 r 
A + 21 = 

1 4 

X^-8X+ 15 - 0 

Xi = 5; X2 - 3 

Eigenvalues of A^ 

[4 5j 
X'-10X + 9 = 0 

X, = 9 
X2 = 1 

Determinant of A 

|A| = XiX2 = 3(l) = 3 

Eigenvalues of 2A 

[4 2~ 
2A = 

I 2 4 

X^-8X+ 12 =0 

Xi = 6; X2=2 

Eigenvalues of A 

; 2/3 -1/3 
A-^ =1 

L-1/3 2/3 

X^-4/3X+1/3 = 0 

Xi = 1/3 
X2 = 1 

5/9 -4/9 

-4/9 5/9 

X^-10/9X+1/9=0 

Xi = 1/9 
X2 = 1 

The Square Root of A The Square Root of A ̂  

1/2 _ 

= 

TD'^T 
0.707 

0.707 

1.366 

0.366 

0.707] 

-O.707J 

0.366] 

1.366 

TN/S OJ 

0 N / I J 

A"-A' 

1 0.707 

[0.707 

^-
2 

1 

0.707 

-0.707 

2j 

A-''^ = 

= 

y j ) - l / 2 j 

"0.707 

0.707 

0.788 

-0.211 

0.707] 

-0.707J 

-0.211 

0.788 

ri/N/3 

L 0 

!• A 

J ' 

0 ] 

i/Vi^ 

- 1 / 2 ^ -

[0.707 0.707 

[o.707 -0.707^ 

n _ 
2/3 -1/3 

-1/3 2/3 J 



A"^ 

Pi.366 0.366 

0.366 1.366 

^-1/2 

0.788 -0.211 

-0.211 0.788 
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I 

1 0 

0 1 

The preceding properties are quite useful in various aspects of multivariate analysis, 
and we shall return to a discussion of some of them later in the chapter. 

5.6 EIGENSTRUCTURES AND MATRIX RANK 

In Chapter 4 we described two procedures for finding the rank of a matrix, square or 
rectangular, as the case may be: 

1. The examination of various square submatrices in order to find that one with the 
largest order for which the determinant is nonzero. 

2. The echelon matrix approach followed by a count of the number of rows with at 
least one nonzero entry. 

Eigenstructures are computed only for square matrices. However, by some procedures to 
be described in this section, we shall see how eigenstructures also provide a way to 
determine the rank of any matrix, even if the matrix is rectangular. 

In addition, it is now time to discuss the topic of zero eigenvalues in solving for the 
eigenstructure of a matrix.^^ As noted in Section 5.5, the presence of one or more zero 
eigenvalues is sufficient evidence that the matrix A is singular. 

5.6.1 Square Matrices 

First, we recall that if Xnxn is symmetric, then all of its eigenvalues are real. It is 
possible, of course, that some may be positive, others negative, and some even zero. Also, 
from the previous section we know that 

n 

iAi=n \i 
i=\ 

Hence, if any \- is zero, A is singular. But what about the rank of A? Or, if A is 
rectangular, how can its rank be found by means of eigenstructures? 

In the case where A^x« 
is symmetric, finding the rank of A is simple. We first find the 

eigenstructure of A and then count the number—including multiple values, if any are 
present—of nonzero (either positive or negative) eigenvalues. The number of nonzero 
eigenvalues of A is equal to its rank. Since we assume here that any square matrix 
(symmetric or nonsymmetric) of interest to us in multivariate analysis will have real 
eigenvalues—this, of course, must be the case if A is symmetric—we can use this same 
procedure for finding the rank of any A as long as A is square. 

^ ̂  Our remarks will pertain to nonsymmetric as well as symmetric matrices. 
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5.6.2 Rectangular Matrices 

Finding the rank of A^xn » where mi^n, by means of eigenstructures rests on an 
important fact about the minor and major product moments of a matrix: 

A'A; minor product moment of A 

AA' ; major product moment of A 

and that fact is 

r(A'A) = r(AA') = r(A) 

The rank of either a minor or major product moment is the same as the rank of the 
matrix itself 

Since r(A'A) =r(AA'), we should, of course, find the eigenstructure of the smaller of 
these two orders, so as to reduce computational time and effort. And, if the researcher 
finds it easier to work with the eigenstructures of symmetric matrices, if A„x« is square 
but nonsymmetric, one can also compute its product moment, either minor or major, and 
find the eigenstructure of the symmetrized matrix. 

Another virtue attaches to finding the eigenstructure of a product moment matrix, 
A'A or AA', and that is that all eigenvalues will be either positive or zero. In the process 
of finding the product moment, any negative eigenvalues of A will become positive in the 
case of either A'A or AA', as we shall note later on. 

For the moment, however, let us set down the procedure for rank determination in a 
step-by-step way. First, if A is originally nonsymmetric or rectangular, we can always find 
the minor product moment (A'A) or the major product moment (AA') of A, whichever is 
of smaller order. The product-moment matrix will be square and symmetric. Further
more, the eigenstructure of the product-moment matrix will exhibit either positive or 
zero eigenvalues, and a general procedure for rank determination can be followed. This 
general procedure, appUcable to finding the rank of square but nonsymmetric and 
rectangular matrices alike, is as follows: 

1. Find A'A or AA' , whichever is of smaller order in the case of rectangular matrices. 
Their product will be symmetric, and all eigenvalues will be nonnegative. The number of 
positive eigenvalues of A'A (or AA') equals the rank of A. 

2. If r(A) -n and A is « x AI, then the vectors, either row or column vectors in A, are 
linearly independent. 

3. If /*(A) =n and n<m (where A is of order m x n), then the row vectors are 
linearly dependent. If/*(A) =m < n, then the column vectors are linearly dependent. 

4. If r ( A ) < n < m , then the set of either row or column vectors are linearly 
dependent and r(A) =/: is the largest number of linearly independent vectors in A. (The 
number k is the number of positive eigenvalues in A A or AA .) 

Next, suppose that the symmetric matrix being examined is still of the form A 'A or 
AA', where we have adopted this form because A is either rectangular or nonsymmetric. 
However, even if A'A (or AA') is nonsingular, some of the (positive) \- may be equal to 
each other. If so, their multiplicities are still counted up in finding the rank of A. If A (or 
A'A or A A ' ) is singular with a subset of l^ nondistinct eigenvalues, we can still find a 
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mutually orthonormal set of eigenvectors of rank l^ by some process, such as the 
Gram-Schmidt orthonormalization process, for the tied block kP 

In summary, finding the eigenstructure of a matrix—either symmetric to begin with or 
else a derived product-moment matrix—is a highly useful procedure for determining 
matrix rank. If thtrixn original symmetric matrix has rank r(A) = k, then k<n nonzero 
eigenvalues will be found. If the derived matrix 

A'A or AA' (whichever is of smaller order) 

has r(A'A) or r(AA') equal to k, then k < min(m, n) positive eigenvalues will be found. In 
short, one can always fmd the rank of a matrix via the eigenstructure approach. 

5.6.3 Special Characteristics of Product-Moment Matrices 

Product-moment matrices, like the SSCP, covariance, and correlation matrices, play a 
unique role in multivariate analysis. For example, let us return to the covariance matrix 
used in the eigenstructure problem of Section 5.4: 

C(Z): 
Xl 14.19 

10.69 

X2 

10.69 

8.91 

We recall that this represents the minor product moment found from 

C(X) = (l/m)Xd'Xd 

where X^ is the matrix of deviations about column means. 
By way of summarizing some aspects of matrix rank and their relationship to 

eigenstructures, let us set down a few properties of product-moment matrices, such as 
C{X). We can illustrate the properties in terms of the covariance matrix: 

1. If C(X), the covariance matrix, has all distinct eigenvalues, it can be written 
uniquely as the triple product 

C(X) = TDT' 

wdiere D is diagonal, and T is an orthogonal matrix of associated eigenvectors. 
2. Since C{X) is of product-moment form, all of its eigenvalues are nonnegative, and 

we can always order the eigenvalues of C{X) from large to small. 
3. Whether nonsingular or not, the rank of C{X) equals the number of positive 

eigenvalues in its eigenstructure (since all eigenvalues in this case are nonnegative). 
4. It is generally the case that if any square matrix A is symmetric with nonnegative 

eigenvalues, then A = B'B. One way of writing the relationship involves defining B' as 

B' = TD 1/2 

*̂  In a sense, then, the problem of deaUng with tied (but nonzero) eigenvalues is independent of 
the problem of determining the rank of a matrix. 
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where D '̂'̂  is a diagonal matrix of the square roots of the eigenvalues of A, and T is the 
orthogonal matrix whose columns are the associated eigenvectors of A. 

5. Since all of the eigenvalues of C(X) are either positive or zero, there exists a 
matrix B of order k xn such that 

C(X) = B'B 

6. The preceding definition of B' = TD^̂ ^ is, however, not unique. If Bi = VB is the 
product of an orthogonal matrix V and B, then A can also be written, equally 
appropriately, as 

A = B/Bi = (VBy(VB) = B V V B 

The last three points can be illustrated by returning to the eigenstructure of C(Z) in the 
sample problem. First, we can write C{X) as 

Tz, D^ Tft' 

C(X)-
0.787 

0.617 

-0.617 

0.787 

22.56 0 

0 0.54 

0.787 0.617 

-0.617 0.787 

Next, we define B' = T^ D '̂̂  and B = Dj,̂ ^ T^ and, furthermore, restate C(X): 

B' = 
r3.74 

L 2.93 

-0.45 

0.58 
B = 

3.74 2.93 

-0.45 0.58 
B'B 

14.19 10.69 

10.69 8.81 

We can then check to see that B'B = C{X). 

Next, however, let us take some orthogonal matrix V and write 

V B 

r 
Bi 

Then, we can write 

C(X) = 

0.707 0.707 

-0.707 0.707 

B i ' 

2.33 -2.96 

2.48 -1.66 

3.74 2.93 

-0.45 0.58 

Bi 

2.33 2.48 

-2.96 -1.66 

2.33 2.48 

2.96 -1.66 

14.19 

10.69 

10.69 

8.91 

and see that C(X) can be reproduced in this way just as well as the original way. This 
latter property : 

C(Z) = B'B = BVVB 

where V is orthogonal (V'V = VV' = I) is of particular relevance to factor analysis and has 
to do with the so-called rotation problem. That is, suppose we were first to find the 
eigenstructure of C(X) and then write C(X) in the context of the sample problem as 

C(X) = B ' B = [ T , D r D i ' % ' ] 
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By means of the preceding argument, B' = T^D^̂ ^ is not unique, and we are free to rotate 
B as we please. This, of course, introduces a certain ambiguity into the question of what 
factor dimensions are "correct." As recalled, the principal components axes found from 
the unique representation: 

C(X) = T ,̂D^T ,̂' 

are unambiguous in the sense of maximizing variance in the derived covariance matrix 
C(Z,). 

In summary, data-based product-moment matrices exhibit a number of virtues, such as 
real-valued eigenstructures and orthogonal transformations for rotating the matrix to 
diagonal form. As we saw in the sample problem, one can order the eigenvalues from 
largest to smallest in the process of transforming a data matrix into a set of linear 
composites that are mutually orthogonal. Finally, the rank of product-moment matrices 
is easily discerned by simply counting up the number of positive eigenvalues. In most 
data-based problems the rank of C(X), and other types of derived product-moment 
matrices, will equal the order of the (minor) product-moment matrix. 

5.6.4 Recapitulation 

At this point we have covered quite a bit of ground regarding eigenstructures and 
matrix rank. In the case of nonsymmetric matrices in general, we noted that even if a 
(square) matrix A could be diagonalized via 

D = U-^AU 

the eigenvalues and eigenvectors need not be all real valued. (Fortunately, in the types of 
matrices encountered in multivariate analysis, we shall always be dealing with real-valued 
eigenvalues and eigenvectors.) 

In the case of symmetric matrices, any such matrix A is diagonalizable, and 
orthogonally so, via 

D = T'AT 

where T ' = T~̂  since T is orthogonal.^^ Moreover, all eigenvalues and eigenvectors are 
necessarily real. If the eigenvalues are not all distinct, an orthogonal basis—albeit not a 
unique one—can still be constructed. Furthermore, eigenvectors associated with distinct 
eigenvalues are already orthogonal to begin with. 

The rank of any matrix A, square or rectangular, can be found from its eigenstructure 
or that of its product moment matrices. If Anxn is symmetric, we merely count up the 
number of nonzero eigenvalues k and note that r(A) = /: ^ w. If A is nonsymmetric or 
rectangular, we can fmd its minor (or major) product moment and then compute the 
eigenstructure. In this case, all eigenvalues are real and nonnegative. To find the rank of 
A, we simply count up the number of positive eigenvalues k and observe that r(A) = /: ^ 
min(m, n) if A is rectangular or r(A) = /: ^ ẑ if A is square. 

'^ Note also that A = TD^'^D^'^j' = jj^j' ^^ desired. 
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Finally, if A is of product-moment form to begin with, or if A is symmetric with 
nonnegative eigenvalues, then it can be written-although not uniquely so-as A = B'B. 
The lack of uniqueness of B was illustrated in the context of axis rotation in factor 
analysis. 

5.7 THE SINGULAR VALUE DECOMPOSITION (SVD) OF A MATRIX 

With some oversimpUfication, we can summarize the intent of the chapter so far by 
saying that, given a transformation matrix A, we would like to find a representation of it 
in some way that simplifies its geometric nature. 

In the case of a square, but nonsymmetric, matrix A, we found that under fairly 
general circumstances (in which the vectors of U are linearly independent), A could be 
written as 

A = UDU" 

where U is nonsingular and D is diagonal. The eigenvalues and eigenvectors of A need not 
all be real valued, however. 

In the case of a symmetric matrix A, orthogonal diagonaHzation can be achieved. In 
this case the above equation is satisfied and, in addition, we have 

A = TDT' 

since, given an orthogonal matrix T, we know that T' = T"^ Moreover, all real-valued 
symmetric matrices are orthogonally diagonahzable with real-valued eigenvalues and 
eigenvectors. 

Not all matrix transformations are symmetric, however, and not all matrices are 
square. Thus, with the exception of the preceding discussion of matrix rank, we have said 
relatively httle on the topics of (a) the eigenstructure of square, nonsymmetric matrices 
and (b) the role of eigenstructure analysis in dealing with rectangular matrices which, by 
definition, do not have eigenstructures. It is now time to bring up these aspects, 
particularly the latter one. 

This section of the chapter deals with singular value decomposition, the most general 
decomposition of a transformation matrix that is discussed in the book. As we shall see, 
any matrix can be decomposed into its basic structure (although not necessarily uniquely 
so). As such, basic structure represents an extremely powerful concept in multivariate 
analysis and unifies much of our earlier discussion of matrix decomposition.̂ "^ Again, we 
shall tie in the current material with some comments made on related matters in Chapter 4. 

In Section 4.5.5 we demonstrated that an arbitrary nonsingular matrix 

V = 
1 2 

3 4 

"̂̂  While eigenstructure analysis plays a central role in finding the basic structure of a matrix, it 
should be stressed that the concepts are distinct. 
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Fig. 5.6 Decomposition of general linear transformation V = PAQ' (reproduced from Fig. 4.13). 

could be uniquely decomposed into the triple product 

P A 

V = PAQ' 
-0.41 -0.91 

-0.91 0.41 

5.47 0 

0 0.37 

Q' 

-0.58 -0.82 

0.82 -0.58 

wdiere P is orthogonal (specifically, an improper rotation), A is diagonal (a stretch), and 
Q' is orthogonal (a proper rotation). 

For ease of reference, Fig. 5.6 reproduces Fig. 4.13 in which a square lattice of points 
(shown in Panel II of Fig. 4.10) was transformed, in three stages, by the matrices making 
up the specific decomposition of V. Each stage is shown in Fig. 5.6. Moreover, at that 
point we indicated that any nonsingular matrix could be uniquely decomposed into the 
product of (a) a rotation-stretch-rotation or (b) a rotation-reflection-stretch-rotation. 
It turns out, however, that this type of decomposition is a very general type of 
decomposition. It is so general, in fact, that any matrix, square or rectangular, 
nonsingular or singular, symmetric or nonsymmetric, can be so decomposed, albeit not 
necessarily uniquely so. 

In the case of symmetric matrices, we know, of course, that the geometric relationship 
does hold: 

A = TDT' 

since, in this case, T and T ' are orthogonal (rotations), and D is diagonal (a stretch).^^ 
Thus, if A is symmetric, the above decomposition holds as a special case. 

However, as already observed in describing the eigenstructure of nonsymmetric 
matrices, there is no requirement that T be orthogonal. Furthermore, no such 
decomposition—orthogonal or otherwise—has been discussed for rectangular matrices. 

We now consider the cases in which A is either square but nonsymmetric or A is 
rectangular. As it turns out, both cases can be handled by the same procedure, and we 
shall illustrate the approach by assuming that A is rectangular, of order mxn. For 
convenience, assume that A is "vertical" with m> n, although this is not essential. We 
shall also assume for the moment that rank of A is A: (^ ^ « < m). 

' Or, possibly, a stretch preceded by a reflection. 
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We first examine some of the algebra of this type of decomposition. Then we apply 
the decomposition to an illustrative problem. Let us set down our objective at the outset. 
And that is: Given an arbitrary rectangular transformation matrix A, we wish to fmd a 
way to express A in terms of the product of three, relatively simple, matrices: 

1. ?in mxk matrix P which is orthonormal by columns and, hence, satisfies the 
relation P'P = I; 

2. 2L k xk matrix A which is diagonal and consists of k positive diagonal entries 
ordered from large to small (with ties allowed); 

3. an « X A: matrix Q which is orthonormal by columns and, hence, satisfies the 
relation Q 'Q = L 

The representation of the matrix A as the triple product FAQ' is called its singular value 
decomposition (abbreviated SVD for reasons of brevity from now on). It is occasionally 
referred to as basic structure (Horst, 1963). 

5.7.1 The Algebra of Singular Value Decomposition (SVD) 

The mathematical aspects of SVD become rather complex, and so we shall settle for a 
less technical discussion. Given an arbitrary rectangular matrix A,„ x «. where m> n and 
r(A) = /: ^ « < m, its SVD involves the triple product 

^m xn ~ * m x k^k x k^k xn 

where P and Q are each orthonormal by columns (P'P = Ikxk'^ QQ = Ifcxfc)? ^^^ ^kxk is 
diagonal with ordered positive entries. 

Note, in particular, that Q cannot be orthogonal (where QQ' = lnxn) unless k = n. 
Moreover, P cannot be orthogonal (where PP' = I^xm) unless k = n = m. As such, P^XA: 
^ d Qnxk might be called orthonormal sections in which all columns are of unit length 
and mutually orthogonal. 

Next, let us comment on the diagonal matrix Akxh which we will call the singular 
value {or SV) matrix. First, as we shall see, all elements of A^x/: can be 

1. taken to be positive; 
2. ordered from large to small (with ties allowed). 

Moreover, it will turn out that there is one and only one SV matrix for any given matrix; 
that is, the singular values, which are the diagonal entries of the SV matrix of the 
decomposition, are always unique, and this will be true regardless of whether A is of full 
rank, square, or rectangular. It may happen, however, that some entries in A/:x/: are tied. 
If such is the case, only those portions of P and Q that relate to distinct entries in Akxk 
will be unique, a point to which we return later. Finally, the rank of A is given quite 
simply by the number of positive entries in A, the SV matrix. 

For the moment, let us examine the relationship of A = PAQ' to its major and minor 
product moments, A A ' and A'A, respectively: 

AA' = (PAQ')(PAQ')' = PAQ'QAP' 

but since Q'Q = I and letting A^ = D, we see that D is still diagonal. Thus, we get 

AA' = POP' 
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Furthermore, 

A'A = (PAQ'y(PAQ') = QAP'PAQ' 

but since P'P = I and A^ = D, we get 

A'A = QDQ' 
Note that in both cases we have the eigenstructure formulation shown earUer for the case 
of symmetric matrices, namely, the triple product of an orthogonal, diagonal, and 
transposed orthogonal matrix. This is not surprising since both AA and A A are 
symmetric. However, the diagonal matrix D of each triple product is the same for both 
product moments A A' and A'A. Furthermore, 

1. all entries of D are real; 
2. all entries of D are nonnegative; 
3. all positive entries of D can be ordered from large to small (with possible ties, of 

course). 

We take advantage of these facts in describing A, the ^ x /: portion of D that has positive 
(as opposed to zero) entries, in terms of the following definition: 

At this point, then, we are starting to get some hints about how to fmd P^ x/c? ̂ kxk ? ^"^^ 
Qkxn As observed above, P^xfc represents the first k columns of the orthogonal matrix 
^mxm obtained from the eigenstructure of AA', while Q^XA: represents the first k 
columns of the orthogonal matrix Qnxn obtained from the eigenstructure of A'A. Their 
common diagonal matrix D has all nonnegative entries. Furthermore, we can order (with 
ties allowed) the positive entries of D from large to small, until we get k of them. The 
remaining entries on the main diagonal will all be zero. The columns of P and Q can, of 
course, be made to correspond to the ordered diagonal elements in D and, hence, to their 
square roots in A. 

Next, let us take the argument one step further. If we let A be the first k rows and k 
columns embedded in a (larger) mxn rectangular matrix, with m - k rows and n - k 
columns of zeros elsewhere, both P and Q' could be made fully orthogonal and, in this 
sense, properly constitute rotation matrices of order mx m and n x n, respectively. This 
generalization can be called the full SVD of a matrix. 

The preceding generaUzation is a significant one. It tells us that any matrix—not just 
square, nonsingular ones—with real-valued entries can be represented as the product of 

1. a rotation (possibly followed by a reflection), followed by 
2. a stretch, followed by 
3. a rotation. 

Note further that if, indeed, A is symmetric to begin with, we have the special case 

A = TDT' 

since AA'= A 'A, and therefore P ' = Q' = T' . Hence, this same approach to matrix 
decomposition can be applied even to the more famiUar case of a symmetric matrix. 
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However, the diagonal D is to be interpreted as A in the current context since we refer to 
A rather than to its product moments AA' or A 'A. 

In summary, any matrix of real entries has a S VD and can be written as 

A = PAQ' 

where A is diagonal, and P and Q are orthonormal by columns. The concept of full SVD 
embeds iht kxk diagonal matrix of positive entries in an m x « matrix in which m - k 
rows and n - k columns are zeros. Alternatively, we can require A to be kxk with all 
positive entries and, hence, P and Q will not, in general, be rotation matrices, although 
they will still be orthonormal by columns and constitute orthonormal sections. 

Finally, a special case of the above involves the case in which A is symmetric to begin 
with. If so, it can be written as 

A = TDT' 

where T, of course, is an orthogonal matrix and D = A in the present discussion. 
Figure 5.7 shows schematically the two cases that we have been considering. Panel I 

shows the case in which P is orthonormal by columns (P'P = I) but is not orthogonal. 
Similarly, Q is orthonormal by columns ( Q ' Q = I) but is not orthogonal. The diagonal 
matrix A has k positive eigenvalues, where k <n< m. 

Panel II shows the full SVD in the sense that P and Q can be made orthogonal 
by embedding A in a larger matrix, consisting of m - k rows and n - k columns of zeros 
(in addition, of course, to the zeros in the off-diagonal entries of the /: x /: portion). Not 
surprisingly, the m - / : columns of P and the n -k rows of Q—while they could be made 
orthogonal—are mainly of theoretical interest since those dimensions would be anni
hilated by the m - /: rows of zeros and the n - k columns of zeros in the mx n matrix in 
which A is embedded. 

5.7.2 Conditions for Full Rank Matrices 

The foregoing discussion applies to any matrix of interest since any matrix possesses 
a SVD, written as the triple product PAQ'. While any matrix can be decomposed into its 
SVD, not all matrices are full rank. This distinction needs to be made in discussing the 
rank of a matrix. 

A Ar 0 

A = 

^^— 
k xk 

0 

0 

0 

Fig. 5.7 Alternative formulations of the basic structure of A„ 
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A full rank matrix A is one whose rank equals its smaller order. If A is m x n 
(and m> n), and if A is full rank then r(A) = k = n. 

If A is square and full rank, then r(A) equals its (common) order, and we have called 
this kind of matrix nonsingular. If A is rectangular and full rank, then the rank of the 
major product moment AA' or the minor product moment A 'A is equal to the smaller 
order of A. If A is not full rank, then its rank is k{k <n^m). 

This can all be summarized by saying that any matrix A can be decomposed into 
the SVD 

^mxn '^m xk^k xk^k y 

where k ^ min(m, n). Then A is full rank if and only ifk = min{m,n). 

5.7.3 Finding the Singular Value Decomposition (SVD) 

It is one thing to define the SVD of a matrix A and quite another to solve for its 
representation as A = PAQ'. Finding the SVD of a matrix A makes use of concepts 
already discussed under the topic of eigenstructure. First, as previously discussed, if 
A = PAQ', then 

A'A = QAP' FAQ' 

and, since P is orthonormal by columns, we have 

A'A = QA^Q' 
Then, after we solve for A^ and Q by finding the eigenstructure of the symmetric matrix 
A'A, we can find A and then find P from 

P=AQA^ 

Since A is diagonal, A ^ consists simply of the reciprocals of the diagonal entries of A. At 
this point, then, we have a procedure for solving for the triple product 

A = PAQ' 

Note that the above implies the singular value matrix for the SVD of A is the square 
root of the diagonal matrix of eigenvalues of the minor product moment matrix of 
A, A'A. The diagonal entries of A are called "singular values" (thus the term "singular 
value matrix" for A), so that the singular values of A are the square roots of the eigenvalues 
of A'A. The matrix Q is the matrix of principal eigenvectors (those associated with positive 
eigenvalues) of A'A, but it is also called the matrix of principal right singular vectors of 
A. It has already been seen that the k nonzero eigenvalues of the minor product moment 
of A (A'A) are identical to the {k) nonzero eigenvalues of its major product moment matrix 
(AA'). It tums out that P is the matrix whose columns are the principal eigenvectors of A A' 
(those associated with its k nonzero eigenvalues and ordered in the same descending order in 
which those eigenvalues themselves are conventionally ordered in the diagonal eigenvalue 
matrix D = A )̂. The columns of P are also called principal left singular vectors of A. 
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Thus the singular value decomposition (SVD) decomposes A into a triple product of 
three matrices, the first that of its left singular vectors (P), the second the diagonal singu
lar value matrix(A), and the third being the transpose of the matrix of right singular vec
tors (Q')- These matrices, as we have seen, all are very closely related to, and can be defined 
via, the eigenvectors of the minor and major product moment matrices of A. (We could, for 
example, estimate P directly by computing the eigenvectors of AA', instead of using the 
equation P = AQA"̂  above, but this approach would be computationally more expensive, in 
general, and could also lead to certain indeterminacy problems in case of tied eigenvalues— 
so the approach discussed above is definitely preferable to this alternative approach.) 

The procedure involves the following steps, assuming first that A is of order m x « with 
« < m: 

1. Compute the minor product moment A'A which results in a square symmetric 
matrix of order A? x «, where n ^ m. 

2. Find the eigenstructure of A'A, thus yielding the matrix of eigenvalues A^ of rank 
k{k<n) and the matrix Q where Q is the matrix of associated eigenvectors that are 
orthonormal by columns. 

3. Find the square roots of the diagonal entries of A^. 
These are called "singular values of P". 

4. Find A ' ^ the reciprocals of the diagonal entries of A. 
5. FindP = AQA-^ 

It turns out that 'ifk = n, then A is full rank. lfk<n, then A is not full rank but of rank k. 

On the other hand, if « > m we apply the same type of procedure to A' and transpose 
the result. That is, let 

A'=PiAiQi' 

Then its transpose is 

Then, if we defme 

A = (PiA,Q/y = QiAiP/ 

P=Qi; A^Ar, Q = Pi 

it turns out that we have the desired decomposition of A into the SVD 

A = PAQ' 
5.7.4 Illustrating the Singular Value Decomposition (SVD) Procedure 

To illustrate the procedure described above, let us take a particularly simple case 
involving a 3 x 2 matrix: 

Since m > «, we first find the (smaller) minor product-moment matrix: 

" 1 

0 

- 1 

2~ 

2 

1 

A'A = 
2 1 

1 9 

0 

2 

- 1 

1 

r 1 

0 

|_-i 

2~ 

2 

1_ 
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Table 5.2 shows a summary of the computations involved in fmding the eigenstructure of 
A 'A. Note that this part of the problem is a standard one in finding the eigenstructure of 
a symmetric matrix. 

After fmding A^ and Q, by means of solving the characteristic equation, we find A 
and then A " .̂ The last step is to solve for P in the equation 

P = AQA-' 

These results also appear in Table 5.2. Finally, we assemble the triple product 

F A Q ' 

1 2 

0 2 

1 1_ 

= 

-0.70 

-0.65 

_-0.28 

0.52, 

-0.20 

-0.83 J 

[3.02 

Lo 

0 ] 

1.36J 

r-0.14 

L 0.99 

-0.99 

-0.14 

As can be noted, after taking the transpose of Q, the matrix A has been decomposed into 
the product of an orthonormal (by columns) matrix times a diagonal times a (square) or
thogonal matrix. In general, however, Q' will be orthonormal by rows if A is not full rank. 

TABLE 5,2 

Finding the Eigenstructure o /A 'A 

Minor product-moment matrix 

"2 f 
A'A = 

1 9 

Quadratic formula 

y - ax^ + bx + c 

Characteristic equation 

| ( A ' A ) - M | = 
2~X 1 

1 9 -A 
= 0 

X ' - 1 U + 17 = 0 
Substitution in general quadratic 

-b ± yjb^~4ac 11 ± V ( - l l ) 2 - 4 ( 1 7 ) 

2a 

Eigenvalues of A' A 

\ i = 9 . 1 4 

\^ = 1.86 

Diagonal singular value (SV) matrix 

(9.14)'^' 0 

Matrix of eigenvectors of A'A 

-0.14 0.99 

-0 .99 -0 .14 

0 (1.86)'^' 

3.02 0 

0 1.36 

Solving for the matrix P 

A Q 

1 2 

0 2 

-1 1 

-0.14 0.99 

-0.99 -0 .14 

1/3.02 0 

0 1/1.36_ 

-0 .70 0.52 

-0 .65 -0 .20 

-0 .28 -0 .8 3 
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A = 
1 2 
0 2 

-1 1 

c=(-^,^)^ i + 

H h 

b = (0, 2) 

• a=(1 ,2) 

H h 

I h-
1 -0.5 

II 
I T 

0.5 + 

III 

2T 

+ PA 

I h 
-2m by 

H 1 

IV 

^ = (0,2) 
y t ^ ^ ^ a = (1,2) 

I / 1 1 — 

^2 I 

^2 

Fig. 5.8 Decomposition of A to SVD A = PAQ'. Key: I, "target" configuration as defined by A = PAQ'; 
II, orthonormal-by-columns matrix P; III, application of stretch (defined by A) to P; IV, rotation of PA 
via matrix Q'. 

Fi gure 5.8 shows the separate aspects of the decomposition. We first start with the 
matrix P. P is then differentially stretched in accordance with A. Finally, the points of 
PA are rotated in accordance with Q , leading to a reproduction of what we started out 
with, namely, the matrix A shown at the top of the figure. 

5.7.5 The SVD of the Sample Problem Matrix of Predictors 

In Section 5.4 we found the eigenstructure of the covariance matrix of the two 
predictor variables in the sample problem. As recalled, 

C{X) = X^'Xjm = TDT' 

T D T' 
~0.787 0.787 0.617 

0.617 -0.787 

22.56 0 

0 0.54 0.617 

0.617 

0.787 

14.19 10.69 

10.69 8.91 

where T and T' are orthogonal and D is diagonal. 
Suppose, now, that we wished to find the SVD of Xd/Vw ,̂ the mean-corrected matrix 

of predictors, scaled by the square root of the sample size. 
Based on what we have just covered, we know how to proceed. First, we find 
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A-' = D-
1/V22.56 0 0.211 0 

0 l / \ /a54 I [o 1.361 

Next, analogous to solving for P in the expression P = AQA"^, we now solve for U in the 
expression 

which leads to the SVD of Xd/Vm^ in the present notation as 

Xd/\ /w=UAT' 

Since no new principles are involved, we do not go through the extensive computations to 
find U, which is of order 12x2 . What can be said, however, is that any data matrix, X, 
Xd, Xs, X/\/m, Xs/\/m can be expressed in terms of SVD injust the way described above. 

5.7.6 Recapitulation 

The concept of SVD represents the most general of decompositions that are considered 
in this chapter. We have only provided introductory material on the topic, but, having 
done so, it seems useful to recapitulate the main results and add a few more comments as 
well: 

1. Any matrix A can be decomposed into the triple product: 

A = PAQ' 

where P and Q are each orthonormal by columns, and A is diagonal with ordered 
positive elements. 

2. The number of positive elements in A, the singular value (SV) matrix, is equal 
to the rank of A. Moreover, the SV matrix is unique. 

3. If all entries of A are distinct, then P and Q' are also unique (up to a possible 
reflection). 

4. If some entries of A are tied, then those portions of P and Q' corresponding to 
tied blocks of entries are not unique. The portions of P and Q corresponding to the subset 
of distinct entries of A are unique (up to a reflection), however. 

5. Mutually orthogonal vectors for tied blocks of entries in A can also be found by 
the Gram-Schmidt process, after first finding a set of r linearly independent vectors in 
the tied block. (These are unique up to orthogonal rotation within the r-dimensional 
subspace corresponding to the r tied eigenvalues.) 

6. A full rank matrix is one whose rank equals its smaller dimension. 
7. A square full rank matrix is one whose rank equals its smaller order. More 

commonly, a square full rank matrix is called nonsingular. 
8. If A is nonsingular, then P'P = PP' = I; Q 'Q = Q Q ' = I, and we have the case of 

rotation-stretch-rotation or rotation-reflection-stretch-rotation. 
9. If A is rectangular or square but singular, the concept of full SVD, in which 

Aŷ xŷ  is embedded in a larger m x n matrix (see Fig. 5.7), still involves the sequence of 
transformations shown immediately above. Some dimensions of P and/or Q are 
annihilated, however. 
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10. The orthogonal diagonalization of a symmetric matrix 

A = TDT' 

was shown to be a special case of SVD. 
11. The concepts of matrix nonsingularity and decomposition uniqueness should be 

kept separate. A square matrix Anxn can be nonsingular but still nonunique in terms of 
its SVD if it contains tied (positive) entries in Anxn-

12. A square matrix A^ x n can be singular but still unique in terms of its SVD 
if it contains all distinct entries in A^ x «» thus implying that only one entry is 
zero. 

13. A square matrix A^xn can, of course, be both nonsingular and unique in terms 
of SVD if all entries in A„ x A? are positive and distinct. 

As we know at this point, if a matrix is of rank k, then the SVD procedure will repro
duce it in terms of the triple product PAQ', where the diagonal SV matrix A is ^ x ^. 

What has not been covered is the case in which we would like to approximate A with a 
triple product whose diagonal is of order less than k xk. This type of problem crops up in 
principal components analysis, among other things, when we wish to reduce the original 
space to fewer dimensions with the least loss of information. 

Fortunately, SVD provides a reduced-rank approximation to A whose sum of squared 
deviations between A and PAQ' is minimal for the order of the diagonal being retained. 
While it would take us too far afield to explore the topic of matrix approximation via 
SVD, this turns out to be another valuable aspect of the technique. Not surprisingly, the 
fact that the entries of A are ordered from large to small figures prominently in this type 
of approximation. 

5.8 QUADRATIC FORMS 

In multivariate analysis one often encounters situations in which the mapping of some 
vector entails a quadratic, rather than linear, function.^^ At first blush it may seem 
surprising that matrix algebra is relevant for this situation. After all, thus far we have 
emphasized the appUcabihty of matrices to linear transformations. It is now time to 
expand the topic and consider quadratic functions and, in particular, quadratic forms. 

5.8.1 Linear Forms 

We have already encountered linear forms in our discussion of simultaneous equations 
in Chapter 4. If we have a set of variables Xf and a set of coefficients flp a linear form can 
be written in scalar notation as 

n 

g(x) = aiXi + ̂ 2^2 + • • • + a^Xn = X ^iXi 

in which all X/, as noted, are of the first degree. In vector notation we have 

^̂  Clearly, the idea of the variance of some variable entails a quadratic function, and variances 
represent a central concept in statistical analysis. 
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^(x) = a'x = (dri,^2,- • • ,^n)j 
X2 

which, of course, equals some scalar, once we assign numerical values to a and x. 

Next, suppose we consider a set of several linear forms, with the matrix of coefficients 
given by A and the vector of constants given by c. Then we have 

A X c 

Ax = c = 

an ai2 " ' ^i« I I ^i | | Ci 

^2 1 2̂2 • • • ^2« I I -̂ 2 I I C2 

This, of course, represents a set of simultaneous linear equations. Hence, a linear form is 
simply a linear function in a set of variables X/. 

5.8.2 Bilinear Forms 

Bilinear forms involve only a slight extension of the above. Here we have two sets of 
variables Xi and^'y, each of the first degree, as illustrated specifically by 

/(X, j ) = X i J i +6X2;^i-4X3ji +2Xi72 +3X2^2 +2X3^2 

in which exactly one X/ and one yj (each of the first degree) appears in each term. More 
generally, expressions of this type can be written in scalar notation as 

m n 

f(x, y)= T T aifX^yf 
/ = 1 7 = 1 

and are called bilinear forms in X/ and yj. If we write the vectors x' = (xi, X2, • . - , x ^ ) 
^ d y' = (yi, y2^' • • * yn), a bilinear form involves terms in which every possible 
combination of vector components is formed. In matrix notation we can write a bilinear 
form as 

/(x,y) = x'Ay 

In the numerical example above, we have 

1̂1 = 1; 1̂2 = 2; ^̂ 21= 6; 2̂2 = 3; ^31 = ~4; 3̂2 = 2 

and the function can be expressed as 
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x' A y 

/(x,y) = (xi,X2,X3) 
^ 1 1̂ 

6 3 

_-4 2] 

hi 

iy2_ 

(xi + 6X2-4JC3,2XI + 3^2 +2x3) 
yi 

= Xiyi +6x2>'i-4x3j^i +2xij;2 + 3x2j^2 +2x3>^2 

The matrix A is called the matrix of the bilinear form, and it determines the form 
completely. Note that, in general, A need not be square. 

By assigning different values to x and y one obtains different values of the bilinear 
form, each of which is a scalar. The set of all such scalars, for a given domain of x and y, 
is the range of the bilinear form. 

5.8.3 Quadratic Forms 

Next, let us speciaUze the bilinear form to the specific case in which x = y. In this case 
we assume that y can be replaced by x and, given their same dimensionality, the matrix of 
coefficients A will be square rather than rectangular. For example, 

/(Xi,X2) = 2Xi^ + 5X1X2 + 3X1X2 + 6X2^ 

can now be written in matrix form as 

/ ( x ) = (Xi,X2) 
"2 3] 

5 6j 

r̂ i 

[^2 
= (2xi + 5x2,3xi + 6x2) 

Xi 

X2 

= 2xi^ + 5x1X2 + 3x1X2 + 6x2^ 

and the result, again, is a scalar, once numerical values are assigned to Xi and X2. Also, by 
assigning different values to x over its domain, we can obtain the range o f / (x ) , the 
quadratic form. 

By way of formal definition, a quadratic form is a polynomial function o / x i , 
X2,. . . , x„ that is homogeneous and of second degree. For example, in the case of two 
variables, we have 

/(Xi,X2)=Xi^ +6X1X2 +9X2^ 

However, we can also write this as 

/(x)=Xi^ + 6X1X2 +9X2^ 

in which the vector x' = (xi,X2) is mapped from a two-dimensional space into a 
one-dimensional space. Similarly, an example of a quadratic form in three variables is 

/(x)=Xi^+X2^+X3^ 

where the vector x' = (xi, X2, X3) is mapped from three dimensions to one dimension. 
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In general, a quadratic form in n dimensions can be written in scalar notation as 
n 

Qiu)= Z aijUiUj 

where u' = (wi, W2> • • • , w«), the Utj are real-valued coefficients and the Ut Uj are the 
preimages of the mapping. If / = /, we obtain the squared term fif/W/^, and if i i=^ /, we 
obtain the cross-product term UijUiUj. 

By "homogeneous" we mean that all terms are of the above form and, in particular, 
there are no linear terms in the w/s nor is there a constant term. While the function 

V=Xi^ + IX-i" + JC1JC2 + Xi + 3^2 

is a second-degree polynomial, it is not a quadratic form since the last two terms are not 
of the general form UijUiUj, 

Quadratic forms are of particular interest to multivariate data analysis inasmuch as we 
are often concerned with what happens to variances and covariances under various linear 
functions of a set of multivariate data. 

While we did not bring up the topic of quadratic forms at that time, our 
diagonalization of the sample problem covariance matrix in Sections 5.3 and 5.4 involved 
a quadratic form, with matrix Q{X). Indeed, all of the cross-product matrices employed in 
multivariate analysis, such as the raw cross product, SSCP, covariance, and correlation 
matrices, are illustrations of quadratic forms. In these cases the diagonal entries are some 
measure of single-variable dispersion, and the off-diagonal entries are some measure of 
covariation between a pair of variables. 

In working with quadratic forms, our motivation is similar to diagonalizing 
transformation matrices. That is, we shall wish to fmd a linear function of the original 
data that has the effect of leading to a cross-products matrix in which two things are 
desired: (a) an arrangement of the linear composites so that the main diagonal entries in 
the cross-product matrix decrease in size and (b) off-diagonal entries of the cross-products 
matrix being zero, indicating uncorrelatedness of all pairs of composites. This, of course, 
is the same motivation underlying principal components analysis, as illustrated in 
Section 5.4. 

5.8.4 An Illustrative Problem 

Suppose we have the quadratic form ^(x) = 66x1^ + 24x1^2 + 59x2^. This can be 
expressed in matrix product form as 

I 66 12 
q'Aq = (Xi,X2) 

^1 

X2 12 59 

= (66x1 + 12x2, 12xi + 59x2) 
Xi 

X2 

= 66x1^ + 12x1X2 + 12x1X2 + 59x2^ 

q'Aq = 66x1^ + 24xiX2 + 59x2^ 

Notice that we set the off-diagonal entries of A to half the coefficient of x 1X2 which is 
24/2=12. 
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Fig. 5.9 Change of basis vectors of matrix representing quadratic form. 

Notice further that a quadratic form involves a transformation into one dimension of 
an /7-component vector in which the transformation is characterized by an n xn 
symmetric matrix.^^ On the other hand, a Unear mapping of a vector in n dimensions into 
one dimension entails a single vector (either a 1 x « or an « x 1 matrix), whose entries are 
usually expressed as direction cosines. 

Now let us see what happens when we take various values of Xi and X2 and substitute 
them in q'Aq. The way this can be done graphically, as shown in Fig. 5.9, is to take 
various pairs of Xi, X2 values on the unit circle in which we have the condition 

(^l,->^2) 
^1 

X2 
= 1 

For example let 

Xi = \; X2 = 0 

Xi = 0 ; ^2 = 1 

Xi = -0.707; X2=-0.707 

Xi =0.707; X2 = 0.707 

Xi =-0.707; X2 = 0.707 

Xi= 0.707; X2 =-0.707 

We can select still other vectors of points on the unit circle and multiply the length or 
distance from the origin of each by (q'Aq)*^^. This "stretching" of q on the unit circle 

q'Aq = 66 

= 59 

= 74.5 

= 74.5 

= 50.5 

= 50.5 

(q'Aq)^/^ = 8.1 

= 7.7 

= 8.7 

= 8.7 

= 7.1 

= 7.1 

^'^ The matrix of a quadratic form does not have to be represented by a symmetric matrix. 
However, the original matrix can always be symmetrized by setting each off-diagonal entry equal to 
half the sum of the original off-diagonal entries; that is, (ajj + aji)/2. 
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into the point [(q'Aq)̂ ^ ]̂q results in the eUipse shown in Fig. 5.9. This eUipse may be 
viewed as a geometric representation of the quadratic form. 

Now, however, suppose we consider another quadratic form: 

u Bu = ISxr + 50x1" 

that can, in tum, be represented as 

U'BU = ( X I * , X 2 * ) 
75 0 

0 50 X2' 

We see from Fig. 5.9 that if we rotate the coordinate system 37° to the axes :vi * and ̂ 2* 
then this function also lies on the previously obtained ellipse. Vector lengths of the major 
and minor semiaxes of the ellipse are \/75 = 8.7 and \/50 = 7.1, respectively. That is, by a 
change in orientation of the axes, we obtain a new representation of the quadratic form 
in which the X1JC2 cross product vanishes. Moreover, one axis of this form coincides with 
the major axis of the ellipse, while the other corresponds to the minor axis of the eUipse. 
These axes are usually referred to as principal axes. By eliminating the cross-product term 
the second matrix is seen to be a simpler representation of the quadratic form than the 
first. Moreover, the entries of the diagonal matrix B are in decreasing order. 

5.8.5 Finding the New Basis Vectors 

As the reader has probably surmised already, the new representation of the quadratic 
form U'BU is obtained by solving for the eigenstructure of A. Primarily in the nature of 
review we set up the characteristic equation 

lA-XIl 
66-X 12 

12 59-X 
0 

and solve for its eigenvalues by finding the second-order determinant and setting it equal 
to zero: 

X'-125X +3750 = 0 

(X-75)(X-50) = 0 

Xi=75; X2 = 50 

After substitution of Xi and X2, we find the normaHzed eigenvectors [̂ Q*^ ] and {J^% ] , 
which can be arranged in the matrix Q. 

-0.8 

-0.6 

0.6 

-0.8 

Notice that |Q| = 1 and QQ' = Q'Q = I. That is, Q is orthogonal and represents a proper 
rotation. 
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We then have the relationship 

-0.8 -0.6 

0.6 -0.8 

Q'AQ = D 

66 12 

12 59 

0.8 

0.6 

0.6 

-0.8 J 

75 

0 

0 

50 

Finally, we see that the last matrix on the right is equal to B, the diagonal matrix of the 
new quadratic form that reorients the axes. Furthermore, if we reflect the first column of 
Q, we note that cos 37° =0.8, indicating that Xi* makes an angle of 37° with the 
horizontal axis, while X2* makes an angle of —53° with the horizontal axis. 

In brief, no new principles are involved in the present diagonalization process. As 
noted, A is symmetric to begin with, so all of our previous discussion about diagonalizing 
symmetric matrices is relevant here. We note that the present formula 

D = Q'AQ 

is the same as that found in Section 5.2: 

D = T'AT 

where D is diagonal. The matrix Q, an orthogonal matrix, is the same as T in the context 
of Section 5.2. 

5.8.6 Types of Quadratic Forms 

Quadratic forms can be classified according to the nature of the eigenvalues of the 
matrix of the quadratic form: 

1. If all X/ are positive, the form is said to be positive definite. 
2. If all X/ are negative, the form is said to be negative definite. 
3. If all X| are nonnegative (positive or zero), the form is said to be positive 

semidefinite. 
4. If all X/ are nonpositive (zero or negative), the form is said to be negative 

semidefinite. 
5. If the \i represent a mixture of positive, zero, and negative values, the form is said 

to be indefinite 

In multivariate analysis we are generally interested in forms that are either positive 
definite or positive semidefinite. For example, if a symmetric matrix is of product-
moment form (either A'A or AA'), then it is either positive definite or positive 
semidefinite. Since various types of cross-products matrices are of this form, the cases of 
positive definite or positive semidefinite are of most interest to us in multivariate analysis. 

5.8.7 Relating Quadratic Forms to Matrix Transformations 

As might be surmised from our earlier discussion of matrix eigenstructure and basic 
structure, quadratic forms are intimately connected with much of the preceding material. 
For example, suppose we have the point transformation 

u = Xv 
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\s^ere X, whose rows are sets of direction cosines, maps v, considered as a column vector, 
onto u in some space of interest. 

To illustrate, we let 

Hence, if v = [o] ^ we have 

X = 
0.8 0.6 

0.71 0.71 

u = Xv = 
0.8 0.6 

0.71 0.71 

0.8 

0.71 

Now suppose we want to find the squared length of u. 
The squared length of u is defined to be u'u. Given v and the linear transformation X, 

we set up the expression 

u'u = (Xv)'(Xv) = V X'Xv 

But now we see that X'X is just the minor product moment of X which we have already 
discussed. We can denote this as A. Thus, we have 

u'u = V'AV = (1,0) 

u'u=1.14 

1.14 0.98 

0.98 0.86 

Hence, product-moment matrices, which were discussed earlier in the context of 
eigenstructure and SVD, also appear in the present context as matrices defining 
quadratic forms. That is, A = X'X = S(X) is the matrix of the quadratic form that finds 
the squared length of\ under the linear transformation X. 

Up to this point we have said relatively little about the process of finding 
eigenstructures of nonsymmetrie matrices. We did indicate, however, that for the matrices 
of interest to us in multivariate analysis their eigenstructures will involve real-valued 
eigenvalues and eigenvectors. Be that as it may, it is now time to discuss their 
eigenstructure computation. 

5.9 EIGENSTRUCTURES OF NONSYMMETRIC MATRICES 
IN MULTIVARIATE ANALYSIS 

In multivariate analysis it is not infrequently the case that we encounter various types 
of nonsymme trie matrices for which we desire to find an eigenstructure. Canonical 
correlation, multiple discriminant analysis, and multivariate analysis of variance are 
illustrative of techniques where this may occur. 

As a case in point, let us examine the third sample problem presented in Section 1.6.4. 
As recalled, the twelve employees were divided into three groups on the basis of level of 
absenteeism. While an underlying variable, degree of absenteeism, is present in this 
example, let us assume that the three groups represent only an unordered polytomy. 
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Fig. 5.10 Mean-corrected predictor variables (from Fig. 1.5). Key: 
Group 3. 

Group 1; o Group 2; x 

The two predictor variables were Xi (attitude toward the firm) and X2 (number of 
years employed by the firm). Figure 5.10 reproduces the scatter plot of the mean-
corrected values of A'd2 versus X^i , as first shown in Fig. 1.5. The three groups have been 
appropriately coded by dots, circles, and small JC'S. We note from the figure that the 
individuals in the three groups show some tendency to cluster. 

However, we wonder if a linear composite of Xdi and X^2 could be found that would 
have the property of maximally separating the three groups in the sense of maximizing 
their among-group variation relative to their within-group variation on this composite. 
Somewhat more formally, we seek a linear composite with values 

W/(l) = l^lXd/i + y 2 ^ d / 2 

with the intent of maximizing the ratio 

\\diere SS/^ and 5'5'w denote the among-group and within-group sums of squares of the 
linear composite Wi. 

We can rewrite the preceding expression in terms of quadratic forms by means of 

file:////diere
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where A and W denote among-group and (pooled) within-group SSCP matrices, 
respectively. Thus, we wish to find a new axis in Fig. 5.10, that can be denoted Wi, with 
the property of maximizing the among- to within-group variation of the twelve points, 
when they are projected onto it. 

The reader will note the similarity of this problem to the motivation underlying 
principal components analysis. Again we wish to maximize a quantity Xi, with respect to 
vi. However, Xi is now considered as a ratio of two different quadratic forms. As such, 
this problem differs from principal components analysis in several significant ways. 

As shown in Appendix A, the following matrix equation 

(A-XiW)v = 0 

is involved in the present maximization task. However, if W is nonsingular and hence W ^ 
exists, we can multiply both sides by W~̂ : 

(W" 'A-XiI )v-0 

with the resulting characteristic equation 

|W-'A-XiI| = 0 

and the problem now is to solve for the eigenstructure of W~̂ A. 
So far, nothing new except for the important fact that W~̂ A is nonsymmetric, even 

though both W~̂  and A are symmetric. Up to this point relatively Httle has been said 
about finding the eigenstructure of a nonsymmetric matrix. We can, however, proceed in 
two different, but related, ways.^^ First, we solve directly for the eigenstructure of the 
matrix involved in the current sample problem. This approach is a straightforward 
extension of earlier discussion involving the eigenstructure of symmetric matrices (as well 
as material covered in Section 5.3). 

Second, we can show geometrically and algebraically an equivalent approach that 
involves the simultaneous diagonalization of two different quadratic forms. This 
presentation ties in some of the material here with previous comments on principal 
components analysis. 

5.9.1 The Eigenstructure of W~̂ A 

Probably the most popular approach to solving for the eigenstructure of W~̂  A is to 
find the eigenvalues and eigenvectors directly, in the same general way as discussed earlier 
for symmetric matrices. In this case, however, W"^A is nonsymmetric; hence V, the 
matrix of eigenvectors, will not be orthogonal. 

Table 5.3 shows the prehminary calculations needed for finding the (pooled) 
within-group SSCP matrix W and the among-group SSCP matrix A. 

Table 5.4 shows the various quantities needed to solve for the eigenstructure of W"̂ A 
in terms of the characteristic equation 

*̂ As a matter of fact still other ways are available to solve this problem. The interested reader can 
see McDonald (1968). 
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TABLE 5.3 

Preliminary Calculations for Multiple Discriminant Analysis 

Employee ^dl ^A2 

Within-group 
deviations 

Xfc-X 
Among-group 

deviations 

5.25 
4.25 
4.25 
3.25 
4.25 

1.25 
1.25 
0.25 
0.75 
0.50 

3.75 
4.75 
4.75 
5.75 
4.75 

-3.92 
-3.92 
-2.92 
-2.92 
-3.42 

-0.92 
1.08 
0.08 

-0.92 
-0.17 

3.08 
2.08 
4.08 
5.08 
3.58 

- 1 
0 
0 
1 

-0.75 
-0.75 

0.25 
1.25 

- 1 
0 
0 
1 

-0.5 
-0.5 

0.5 
0.5 

-0.75 
1.25 
0.25 

-0.75 

-0.50 
-1.50 

0.50 
1.50 

-4.25 
-4.25 
-4.25 
-4.25 

-0.5 
-0.5 
-0.5 
-0.5 

4.75 
4.75 
4.75 
4.75 

-3.42 
-3.42 
-3.42 
-3.42 

-0.17 
-0.17 
-0.17 
-0.17 

3.58 
3.58 
3.58 
3.58 

Within-group SSCP matrix Among-gioup SSCP matrix 

A = (X; , -^) ' (X; , -^) 

|W-^A-X,I| = 0 

As noted in Table 5.4, we first compute the (pooled) within-group SSCP matrix W and 
the among-group SSCP matrix A. 

One then finds W"̂  and the matrix product W~*A. From here on, the same general 
procedure appHes for finding the eigenvalues. These turn out to be 

Xj = 29.444; •• 0.0295 

which appear in Table 5.4 along with the matrix V whose columns are eigenvectors of 
W"̂  A. And, as indicated earlier, V is, in general, not orthogonal. 

Returning to Fig. 5.10, we note that the first column of V entails direction cosines 
related to a 25° angle with the horizontal axis. The resulting linear composite Wi has 
scores that maximize among- to within-group variation. The second discriminant axis W2 
(with an associated eigenvalue of only 0.0295) produces very little separation and, in 
cases of practical interest, would no doubt be discarded. 

Other parallels with the principal components analysis of Sections 5.3 and 5.4 are 
found here. For example, discriminant scores—analogous to component scores—are found 
by projecting the points onto the discriminant axes. The discriminant score of the first 
observation on Wi is 

wi(i) = 0.905(-5.25) + 0.425(-3.92) = -6.42 

as shown in Fig. 5.10. 
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TABLE 5.4 

Finding the Eigenstructure o/W"^A 

SSCP matrices of sample problem 
Within-group SSCP matrix Among-group SSCP matrix 

W = 
6.75 1.75 

1.75 8.75 

Solving for the eigenstructure of W ̂ A 

0.156 -0.031' 

-0.031 0.121 
w-» = W-'A = 

163.50 126.50 

126.50 98.17 

21.594 16.698" 

10.138 7.880 

Eigenvalues of W"*A 

29.444 0 

0 0.0295 

Eigenvectors of W *A 

'0.905 -0.612 

0.425 0.791 

However, unlike principal components analysis, we can observe from the figure that Vi 
and V2 are not orthogonal, even though the scores on Wi versus W2 are uncorrelated. 
From the V matrix in Table 5.4 we can compute the cosine between Vi and V2 as follows: 

cos "^ = (0.905 0.425) 
-0.612 

0.791 
-0.21 

The angle ^ separating Vi and V2 is 90° + 12° = 102°, as shown in Fig. 5.10. 
In summary, finding the eigenstructure of the nonsymmetric matrix W~ Â proceeds in 

an analogous fashion to the procedure followed in the case of symmetric matrices. Note, 
however, that the matrix of eigenvectors V is not orthogonal even though the 
discriminant scores on Wi and W2 are uncorrelated. 

5.9.2 Diagonalizing Two Different Quadratic Forms 

The preceding solution, while straightforward and efficient, does not provide much in 
the way of an intuitive guide to what goes on in the simultaneous diagonalization of two 
different quadratic forms: 

Vi'Wvi; Vi'Avi 

However, we can sketch out briefly a complementary geometric and algebraic approach 
that relates this diagonalization problem to the earlier discussion of principal components 
analysis. 

As recalled from Chapter 2, variances and covariances can be represented as vector 
lengths and angles in person space. Moreover, as shown in Fig. 5.9, quadratic forms can be 
pictured geometrically as ellipses in two variables, or ellipsoids in three variables, or 
hypereUipsoids in more than three variables.^^ The thinner the ellipse, the greater the 
correlation between the two variables. The tilt of the ellipse and the relative lengths of its 

*' Of course, if more than three dimensions are involved, a literal "picture" is not possible. 
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2 A (among-groups) 

Principal 
axes of W 

W (within-groups) 

III IV 

A (transformed) 

W (spherized) 

Principal axes 
of A (transformed) 

W (spherized) 

Fig. 5.11 Simultaneous diagonalization of two different quadratic forms. 

axes are functions of the covariances and variances of the two variables. As we know, 
larger variances lead to longer (squared) lengths and also tilt the ellipse in the direction of 
the variable with the larger variance. 

For what follows we shall use the matrix Qi to refer to the matrix of eigenvectors of 
W~ ^̂  ^and the matrix Q2 to refer to the matrix of eigenvectors of the transformed matrix 
W" '^ ^AW ^̂  2(as will be explained). 

As motivation for this discussion, suppose we wished to find a single change of basis 
vectors in Panel I of Fig. 5.11 that diagonaHzes both quadratic forms.^^ One quadratic 
form could involve a pooled within-group SSCP matrix W. Similarly, the second form 
could be represented by an among-group SSCP matrix A. We assume that the quadratic 
form denoting the within-group variation is positive definite. (One of the two forms must 
be positive definite for what follows.) 

Geometrically, what is involved is first to rotate the within-group ellipse in Panel I to 
principal axes, as shown in Panel II. We then change scale, deforming the reoriented 
ellipse W to a circle in Panel III. This, in general, is called "spherizing." After this is done, 
any direction can serve as a principal axis. Hence, we can rotate the new axes to line them 

^̂  By diagonalization we mean a transformation in which off-diagonal elements vanish in the 
matrix of the quadratic form. 
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up with the principal axes of the second eUipse A, representing the among-group SSCP 
matrix in Panel IV. And that, basically, is what simultaneous diagonalization is all about. 

Let us see what these geometric operations mean algebraically. First, any observation 
X^ij in Table 5.3 can be represented as the sum of 

^dij - O^k-^k) "•" O^k-^k) 

Xd = J + G 

where J denotes the matrix of within-group deviations and G the matrix of among-group 
deviations. For example, the first observation on variable Xi in Table 5.3 is 

-5.25 = - 1 + ( - 4 . 2 5 ) 

where - 1 indicates that it is one unit less than its group mean, and —4.25 indicates that 
its group mean is 4.25 units less than the grand mean. If we can fmd a transformation of 
Xd that spherizes the J portion (the within-group variation), we could then fmd the 
eigenstructure of the adjusted cross-products matrix. 

The J portion can be readily spherized by the transformation: 

X H W -

where W"̂ ^̂ , in tum, can be written as Qi A'^^^Q/. In this case A"̂ ^̂  is a diagonal matrix 
of the reciprocals of the square roots of the eigenvalues of W, and Qi is an orthogonal 
matrix of associated eigenvectors (since W is symmetric).^^ 

Note, then, that what is being done here is to fmd the "square root" of W~\ the 
inverse of the (pooled) within-group SSCP matrix. To do so we recall that if W is 
symmetric and possesses an inverse W~^ we can write 

^ - 1 / 2 ^ - 1 / 2 ^ ^ - 1 

where 

Geometrically, the multiplication of X^ by W"̂ ^̂  has the effect of normalizing the 
within-group portion of the vectors in Xd to unit length, after rotation to the principal 
axes of W by means of the direction cosines represented by Qi. Subsequent rotation by 
Qi' has no effect on what happens next, since the spherizing has already occurred. 

Next we set up the equation 

[W-^/^AW-^^']Q2 = Q2A 

where Q2 is the matrix of eigenvectors, and A the matrix of eigenvalues of 
[ W - ' ^ ^ A W ^ ^ ] . This, in tum, follows from 

(XdW-^/^y(XdW-^/^) = w-^/^Xd'XdW-^/^ = w"^ym-"^ + W-^^'G'GW-^'^ 

= I + W-̂ '̂̂ G'GW'̂ /̂  = I + W^'^kW"'' 

'̂ The square root of a symmetric matrix was discussed in Section 5.5.2. 
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where the within-group portion has been transformed to an identity matrix I, as 
desired.^^ 

We then find the eigenstructure of [W^^^AW"^^^] which, given the preUminary 
spherization, is tantamount to a rotation to principal axes orientation. A nice feature of 
this procedure is that [W^^^AW"^^^] is also symmetric. The final transformation to be 
applied to the original matrix of mean-corrected scores Xj involves 

Y = X H W -

\\iiich effects the desired simultaneous diagonahzation of W and A. Note, however, that 
W"̂ ^̂ Q2 is not a rotation since the data are rescaled so that the J portion is spherized. In 
summary, then, a principal components analysis of data that are first spherized in terms 
of pooled within-group variation provides a counterpart approach to the direct attack on 
finding the eigenstructure of W"̂ A. 

5.9.3 Recap itulation 

While two methods have been discussed for solving 

(A-XW)v=0 

the first method, utilizing a direct approach to computing the eigenstructure of a 
nonsymmetric matrix, is probably the better known. The second procedure appears 
useful in its own right, however, as well as serving as an alternative method to the more 
usual decomposition. 

If we return to the ratio of quadratic forms, stated earlier: 

_ v /Avi 
Ai ; 

vi Wvi 

the problem of multiple discriminant analysis can be stated as one of finding extreme 
values of the above function where V, the matrix of discriminant weights, exhibits the 
properties: 

V'AV = A 

V'WV=I 

Thus, V diagonalizes A (since A is diagonal) and converts W to an identity matrix. Notice, 
then, that the correlation of group means on any of the linear composite(s) is zero, since 
A is diagonal. Similarly, the average within-group correlation of individuals on each 
discriminant function (linear composite) is also zero, since I is an identity. 

However, it should be remembered, as shown in Fig. 5.10, that V is not orthogonal 
since W"^A, the matrix to be diagonalized, is not symmetric. Moreover, a preliminary 
transformation such as that applied in the second method described above, still ends up 
with a V that is not orthogonal. 

" Since W-'^' is symmetric, W"̂ '̂ = (}N~"^)'. Since J'J = W, W^^' rm"^ = I. 

file:////iiich
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5.10 SUMMARY 

This chapter has primarily been concerned with various types of matrix decom
positions—eigenstructures, singular value decompositions, and quadratic forms. The 
common motivation has been to search for special kinds of basis vector transformations 
that can be expressed in simple ways, for example, as the product of a set of matrices 
that individually permit straightforward geometric interpretations. In addition, such 
decomposition provides new perspectives on the concepts of matrix singularity and rank. 

The topic was introduced by first reviewing the nature of point and basis vector 
changes. This introduction led to a discussion of the role of eigenstructures in rendering a 
given matrix (not necessarily symmetric) diagonal via nonsingular transformations. The 
geometric aspects of eigenstructures were stressed at this point. 

We next discussed eigenstructures from a complementary view, one involving the 
development of linear composites with the property of maximizing the variance of point 
projections, subject to all composites being orthogonal with previously found composites. 
This time we discussed the eigenstructure of symmetric matrices with real-valued entries. 
In such cases all eigenvalues and eigenvectors of the matrix are real. 

Since eigenstructures are not defined for rectangular matrices and their computation 
can present problems in the case of square, nonsymmetric matrices, we discussed these 
cases next in the context of the S VD. Matrix decomposition in this case involves finding 
a triple matrix product by which any matrix can be expressed as 

A = PAQ' 

where P and Q are orthonormal by columns and A is diagonal. This form of matrix 
decomposition represents a powerful organizing concept in matrix algebra, since it can be 
applied to any matrix of full, or less than full, rank. Furthermore, it shows that any 
matrix transformation can be considered as the product of a rotation-stretch-rotation or 
rotation-reflection-stretch-rotation under a suitable change in basis vectors. 

By using product-moment matrices—A'A or AA' , whichever has the smaller order—we 
were able to relate the SVD of a matrix to earlier ideas involving symmetric matrices. 
One can solve for the eigenstructure of A'A (or AA') in order to find Q' and A and then 
solve finally for P. The net result is the determination of matrix rank as well as 
the specific geometric character of the transformation. And, if A is symmetric to begin 
with, the general procedure leads to the special case of Q'AQ = D = A^ . 

Related ideas were presented in our discussion of quadratic forms, a function that 
maps n-dimensional vectors into one dimension. Again, the motivation is to find a new set 
of basis vectors, via rotation, in which the function assumes a particularly simple form, 
namely, one in which cross-product terms vanish. 

The last main section of the chapter dealt with ways of finding the eigenstructure of 
nonsymmetric matrices as they may arise in the simultaneous diagonalization of two 
different quadratic forms. The geometric character of this type of transformation was 
described and illustrated graphically. 

The material of this chapter represents a major part of the more basic mathematical 
aspects of multivariate procedures. Typically, in multivariate analysis we are trying to 
find linear combinations of the original variables that optimize some quantity of interest 
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to the researcher. As Appendix A shows, function optimization subject to certain 
constraints, such as Lagrange muUipUers, is used time and time again in many of the 
statistical techniques that appear in mukivariate data analysis. 

REVIEW QUESTIONS 

1. Form the characteristic equations of the following matrices and determine their 
eigenvalues and eigenvectors: 

d. 

A = 
5 

7 

2 

6 

0 

8J 

- 1 

7 

b. 

e. 

A = 
-1 - 2 

2 2 - 4 

-2 4 2 

0 2 - 2 

A = 

A = 

5 

- 2 

3 0 

0 3 

-9 9 

2. Calculate the trace and determinant of each of the first four of the matrices above 
and verify that 

n n 

tr(A)= Z X,-; |A|= 0 X,-
/ = i /=! 

3. Find the invariant vectors (i.e., eigenvectors) under the following transformations: 

a. 

c. 

A shear 

' ^ 1 * " 

_ ^ 2 * _ 

-1 0-1 

-3 .J 
[xi 

[X2^ 

A central dilation 

J C i * 

J C 2 * _ 

'3 o1 

_o 3J 
[xi 

L-^2j 

b. 

d. 

A stre 

X i * 

_ ^ 2 ^ 

tch 

^3 OI 

_0 2J 
1̂ 1 
L^2_ 

A rotation 

Xi* 

X2* 

0.707 0.707] 

-0 .70 ' 7 0 .707J 

fxi 

L^2_ 

4. Starting with the matrix 

"5 f 
1 3 

find the eigenstructures of the following matrices: 

a. 3A b. A + 21 c. A - 3 I 

d. A^ e. f. A' 



REVIEW QUESTIONS 257 

5. Given the set of linearly independent vectors 

ai = 32 

and the matrix 

2 

-1 

0 

2 

3 

2 

a3 = 

show that B can be made diagonal via the 3 x 3 matrix A (made up from the linearly 
independent vectors) and its inverse. 
6. Find an orthogonal matrix U such that U~^AU is diagonal, where 

A = 

- 2 

10 

- 2 

7. Using the minor product-moment procedure, and subsequent calculation of 
eigenstructure, what is the rank of the following matrices: 

1 

2 

3 

2 

1 

4 

2 

1 

1 

A = 

0 

1 

0 

0 

2 

0 

0 

1 

3 

1 

0 

- 1 

d. 

' l 

2 

3 

4 

5 

1̂ 
2 

0 

0 

3_ 

A = 

"l 

2 

3 

5 

2 " 

4 

6 

10 

Find the SVD and rank of each of the following matrices: 

a. ^ -, b. 
0 1 

1 0 

0.707 0.707 

-0.707 0.707 

A = 

d. 
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9. In the first two examples of Question 8, what is the SVD of 

a. [ A ' A ] ^ b. [ A ' A ] ^ ^ ' 

10. Compute A^̂ '̂  and K'^'^ , by finding eigenstructures for the matrices: 

a. ,_ _, b. ^ ^ c. 
4 3 

3 4 
A = 

7 1 

1 7 
A = 

8 2 

2 5 

d. 

A = 

11. Represent each of the following quadratic forms by a real symmetric matrix and 
determine its rank 

a. Xi + 2xiJC2 +^2^ 

c. 9JCI^ —6JC1X2 +^2^ 

b. jci^ + 2JC2^ —4JCIX2 

d. 2^1^ —3xiJC2 + 3^2^ 

12. Diagonalize the matrix of each quadratic form in Question 11 and describe its 
geometric character. 
13. In the sample problem, whose mean-corrected data appear in Table 1.2: 

a. Find the covariance matrix of the full set of three variables. 
b. Compute the principal components of the three-variable covariance matrix 

and the matrix of component scores. 
c. Compare these results with those found in the present chapter. 

14. Simplify the following quadratic forms and indicate the type of definiteness of each 
form: 

J 9 -3 

L-3 l_ 
X 

,[ 2 -1.5" 
L-1.5 : 3 

- 4 

2 

- 1 

4 

2 

- 2 

2 

- 4 

2 

2 

4 

2 

15. Returning to the multiple discriminant function problem considered in Section 5.9: 

a. Spherize the (pooled) within-group SSCP matrix and compute the eigenstruc-
ture in accordance with the procedure outlined in Section 5.9.2. 

b. Compare these results with those found from the procedure used in 
Section 5.9.1. 


