
APPENDIX A 

Symbolic Differentiation and Optimization 
of Multivariable Functions 

A.l INTRODUCTION 

In our earlier discussions of multiple regression, principal components analysis, and 
multiple discriminant analysis, matrix equations were employed to solve for the various 
parameter, values of interest. However, relatively little has been said so far about the 
characteristics of the functions being optimized and the process by which the matrix 
equations are derived. 

In each of the three preceding cases, it is the calculus that provides the rationale and 
specific techniques for optimization. Accordingly, this appendix provides a selective 
review of those topics from the calculus that bear on problems of optimizing functions of 
multivariable arguments. No exhaustive treatment is attempted; rather, we confine our 
discussion to specific aspects of optimization involving only the case of differentiable 
variables where all appropriate partial derivatives can be assumed to exist. 

We first provide a rapid review of formulas from the calculus that involve functions of 
one argument. This is followed by a similar discussion that covers functions of two 
variables. At this point, optimization subject to side conditions is introduced, and the 
topic of Lagrange multipliers is described and illustrated numerically. 

The next main section of the appendix deals with symbolic differentiation of 
multivariable functions, with respect to vectors and matrices. Constrained optimization in 
this most general of cases is also discussed. 

We then turn to each of the three major techniques described in the book: 

1. multiple regression, 
2. principal components analysis, 
3. multiple discriminant analysis, 

and show how their respective matrix equations are obtained from application of 
optimization procedures drawn from the calculus. 
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A.2 DIFFERENTIATION OF FUNCTIONS OF ONE ARGUMENT 

In Section 6.2.1, a matrix equation (involving the so-called normal equations of 
multiple regression) was described: 

b = (X'X)-^XV 

where b is the to-be-solved-for vector of regression coefficients, X is the data matrix of 
predictor variables (augmented by a column of unities), and y is the data vector 
representing the criterion variable. The parameter vector b is chosen so as to minimize the 
sum of squared deviations between the original criterion vector and the fitted values 
obtained from the regression equation. 

In Section 6.4, the matrix equation 

(C-Xil)ti = 0 

was set up to find the eigenvalue Xi and its associated eigenvector ti that maximized the 
variance of point projections of the deviation-from-mean data. The axis itself was 
obtained by considering the entries of ti as direction cosines defining the first principal 
component. C denotes the covariance matrix. 

In Section 6.5 we sought a vector Vj that maximized the ratio 

where Xi is a scalar (actually an eigenvalue), A denotes the among-group SSCP matrix, 
and W denotes the pooled within-group SSCP matrix. One solves for Xi via the matrix 
equation 

(A-XiW)vi=0 

The discriminant analysis problem involves finding the eigenstructure of W~̂ A, a 
matrix that is nonsymmetric.^ 

Note that in all three cases we are trying to optimize some function that involves 
multiple arguments. Also recall that in the case of principal components and multiple 
discriminant analysis, certain side conditions, such as ti 'ti or vi 'vi = 1, are imposed. 
Appendix A is motivated by the desire to provide a rationale for the preceding matrix 
equations. As such, we shall need to draw upon various tools from the calculus, starting 
with the simplest case of functions involving one argument and then working up to more 
complex problems involving several variables. 

* In the cases of principal components and (multiple) discriminant analysis, we shall generally find 
successive X^s, subject to meeting stated side conditions with regard to their associated eigenvectors. 



A.2. DIFFERENTIATION OF FUNCTIONS OF ONE ARGUMENT 297 

A. 2.1 Derivatives of Functions of One Argument 

By way of introduction, assume that we have some function of one argument, such as 

the quadratic 

We can find the value of >' =f(x) for each value x of interest. For a given value of x, let 

us next imagine taking a somewhat larger value, such as Xi =XQ + AX. If so, the function 

y will change, as well, fromj; tojv + Ay. That is, 

y + Ay=f(x,)=f{xo + Ax) 

If we plot y versus x, the ratio Ay/Ax can be viewed as the tangent of the angle between 
the X axis and the chord joining the point {XQ, y) to the point (xi, >» + Ay). Furthermore, 
if Ax is made smaller and smaller, the angle that the chord makes with the x axis will 
approximate the angle between the x axis and the tangent line of the point (XQ, y). This 
appears as a dotted line in Fig. A. 1. 

If we let dy/dx denote the Umit of the ratio Ay/Ax as Xi approaches XQ , then we can 
call this limit the (first) derivative of/(x), denoted variously as dy/dx, y\ or / ' (x): 

Note that as Xi =^Xo, Ax =̂  0. 
To illustrate this notion numerically, let us go through the computations for the 

preceding example: 

7 = / ( x ) = 2x^ 

y^•Ay = l{x^r Ax)^ 

= 2x^ + 4x Ax + 2(Ax)^ 

Fig. A.1 Graph of function j = 2JĈ  (-3 < X < 3). Dashed line is tangent line. 
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TABLE A.l 

Derivatives of Elementary Functions 

Constant 

The derivative of a constant is 0. For example, if 

/ W = 1 2 

then 

/ ' ( x ) = 0 

Algebraic 

The derivative of ax" is nax" ~^ (for n i= 0). For example, if 

fix) = 3x* 

then 

/ ' ( J C ) = 1 2 J C ^ 

Exponential 

The derivative of the exponential e^ is e^. The derivative of g/(^) isf'{x)ef^^\ The derivative of 
fl^ is (In a){a^). As one example, if 

fix) = e - 2 ^ 

then 

fix) = - 2 e - 2 ^ 

The derivative of the natural logarithm hix is l/x. The derivative of hi vix) is l/v dv/dx. For 
example, if 

then 

d 
. i\nv) = 

dx 

[ l l 
uj 

[di^ 

Idx] 
= 

r 1 
— ^JC^J 

2 
i2x) = -

JC 

Since y = 2x^, we can simplify the above expression to 

Ay = 4x AJC + 2(Ax)^ 

Dividing both sides by A^ gives us 

Ay I Ax = 4JC + 2 Ax 

However, as Ax becomes smaller and smaller, the second term on the right can be 
neglected, and we get the (first) derivative 

! = / • ( . ) = -
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TABLE A.2 

Basic Rules of Differentiation Involving Simple Functions 

Sum or Difference of Two Functions 

The derivative of a sum (difference) of two functions w(jc) and vix) equals the sum (difference) of 
their derivatives. If u and v are functions oix, then 

l ( " * ' ' ^ = 

w = 2JC + 2 ; 

du 

du dv 
dx ~ dx 

v= 3x-4 

dx 

- ^ ( w + i;)= - 5 - ( 5 x - 2 ) = 5 = 2 + 3 
dx dx 

Product of Two Functions 

The derivative of the product of two functions u(x) and v(x) is given by 

d ^ du dv 
-J- (uv) = v-j- +u -r-
dx dx dx 

Let 

i; = 3x - 4 u = 2x; 

du ^ dv ^ 
-T-=2 ; T T ^ ^ 
dx dx 

S ^"^^ " ^ (6JC' - 8 J C ) = 1 2 x - 8 = 2 ( 3 x - 4 ) + 3(2;c) 

Quotient of Two Functions 

The derivative of the quotient of two functions w(x) and vix) is given by 

d_ 
dx 

v(du/dx) -uidv/dx) 

du 
dx 

•^x' 

v= 3x 

dv 
dx 

Ix 
u 
V 

d 
dx 

~2x'~ 
3x^ = 2/3 = 

3;C"(8JC^)-2X^(9X^) 

(3P)^ 

We could, in turn, take the derivative of the function f (x) = 4x and obtain the second 
derivative f\x) = 4. (Higher-order derivatives are all zero since 4 is a constant.) That is, 
second-order derivatives are simply derivatives of first-order derivatives; third-order 
derivatives are derivatives of second-order derivatives, and so on. 
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The above procedure can be generalized to the case of finding the derivative of any 
algebraic expression of the form y = ax". In general, ify= flx", we have^ 

ax 

By way of review, Table A.l lists this formula and others that involve various elementary 
functions of interest to the applied researcher.^ 

Not only are derivatives of the more common elementary functions of use, but we 
may also be interested in the derivatives of simple functions of these. Accordingly, 
Table A.2 lists the basic rules that are applicable to simple functions of two elementary 
functions, such as their sum or product. 

A.2.2 The Chain Rule 

Another concept of the elementary calculus that should be reviewed is the chain rule. 
The chain rule applies to functions of functions. Suppose we have a function/(g-) where 
g, in turn, is g{x), a function of x. If such is the case, the chain rule states that 

dx 
'df] 

dg\ [-1 
To illustrate application of the chain rule, consider the function/(x) = 2(x^ + 3x)^ —1, 
which in turn, can be written as 

g{x) = x^ + 3x 

The chain rule states that 

dl, 
dx dg 

dg 
dx • 4g{2x + 3) 

Next, we substitute the expression foi g(x) to get 

df 
dx 

= 4(x^ + 3X)(2JC + 3) = 8x^ + 36x^ + 36x 

We can verify this result directly by making the substitution ofg(x) in f{g) to get 

f(x) = 2{x^ + 3x)^-l = 2x^ + 12x^ + 18x^-1 

and 
df 
~=8x^ + 36x^ + 36x 
dx 

as desired. 

^ We assume that« is a real number not equal to 0 and that / (x) is defined and differentiable. 
^ Although not shown in Table A.l, the derivative of sin x is cosx, the derivative of cosx is 

-sin X, and the derivative of tan x is 1/coŝ  x. 
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As a second example, consider the function /(;c) = ln(x^ + 3). This, in turn, can be 
expressed as 

Then, by appHcation of the chain rule, we have 

dx' dg 
dg 
dx 

{2x) 

and, substituting g{x) = ^^ + 3 for g, we have 

df 2x 
dx jĉ  + 3 

The chain rule can be easily extended to three or more functions in terms of the 
following: 

dx 
df 
dg 

dg 
dh 

dh 
dx 

and so on, for additional functions. 
As an example of the case involving three functions, consider the expression 

fix)=Mx+i)r 
This, in turn, can be expressed as 

fig) = g^; g(h) = \nh; h(x) = x + l 

Applying the chain rule leads to 

dx dg 

dg 
dh 

dh 
dx 

The chain rule, augmented by the formulas shown in Tables A.l and A.2, provides a 
flexible procedure for differentiating the more common functions encountered in applied 
research. 

A.2.3 Optimization of Functions of One Argument 

As recalled from the elementary calculus, a function of one argument has a local 
maximum at some point XQ if the values of the function on either side of JCQ are less than 
f(xo). On the other hand, if the values of the function on either side of XQ are greater 
than /(XQ), the function has a local minimum. Maxima and minima are called extreme 
values, and the values of JC for which/(x) takes on an extreme value are cdHedextreme 
points. 

Suppose that f(x) has a continuously varying first derivative in an interval that 
includes XQ. l(f{xo) is a maximum, the first derivative must then change from positive to 
negative. Conversely, if/(:x:o) is a minimum, the first derivative must change from 
negative to positive. These facts relate, of course, to the basic definition off'(x) as the 
slope of the curve y =fix) at the point XQ. Under the preceding conditions then,/ '(x) is 
zero at the point XQ where the curvature off(x) changes direction. 
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More generally, f'{x) = 0 is the necessary condition for a stationary point (that 
includes the instances of maxima and minima as special cases). At a stationary point, the 
function may have either a maximum, a minimum, or neither. For example, each of the 
following functions displays a stationary point at x = 0, but we note that for 

f{x) = x^, the stationary point is a minimum 

f{x) = —(x^), the stationary point is a maximum 

f(x) = x^, the stationary point is neither a maximum nor minimum"* 

Finding local extreme points for differentiable functions of one argument involves the 
following steps: 

1. Since local extreme points can only occur at stationary points, where / ' ( x ) = 0, 
first find all solutions to the equation 

2. For each of the stationary points obtained from the above solutions, compute 
higher-order derivatives / " (x), f" (x), etc., as needed, so as to find the value of the 
/owesr-order derivative that is not zero at the stationary point in question. 

3. Examine the lowest-order derivative that is nonzero to determine if 

a. its order is even. 
(i) If the value of the derivative of this order is positive, the function 

exhibits a local minimum at the stationary point under evaluation. 
(ii) If the value of the derivative of this order is negative, the function 

exhibits a local maximum at the stationary point under evaluation. 
b. its order is odd; if so, the stationary point is an inflection point.^ 

As a simple numerical illustration of the above procedure, consider the function 

/ ( X ) = X^ + 2JC2+X 

Its first derivative is 

/ ' (x ) = 3x2+4x + l 

Next, we solve for the stationary points by setting/'(x) equal to zero: 

/ ' ( X ) = 3 X 2 + 4 J C + 1 = 0 

and find, as solutions, 

Xj = — 1; ^2 ~ ""3 

Next, let us find the second derivative of /(x) . This is, of course, the derivative of/ ' (x). 
That is, 

/ " (x ) = 6x + 4 

* In this case the stationary point is an inflection point where the first derivative f {XQ) is zero 
and, furthermore, the second derivative f"{x) changes sign as the function goes through x^. 

^ As noted earUer, the necessary condition for XQ to be a stationary point is that / ' (Xo) = 0. The 
sufficient conditions appearing above can be obtained by examining successive terms of the Taylor 
series expansion (Lang, 1964). 
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minimum - 4 0 - f 
X2=-1/3 

Fig. A.2 Graph of function / (jc) =^ x^ + 2x^ + x (-4 < x < 4). 

We then evaluate /"(x) at the first stationary point Xi to see if the value of f\x) is 
nonzero: 

/ " ( - I ) = - 6 + 4 = - 2 

Since /"(—I) = - 2 is nonzero, the order of the first nonzero derivative is even; moreover, 
we have a local maximum at this point since/"(—I) is negative. 

Next, the same thing is done for the second stationary point X2 '• 

/ V ^ ) = - 2 + 4 = 2 

Since / " ( - l / 3 ) = 2 is also nonzero, the stationary point is an extreme point; since 
/"(—1/3) is positive, we have a local minimum at this point. 

Figure A.2 shows a plot of the function 

/ ( x ) = x^ + 2x2+jc 

over the (illustrative) domain —4 < jc < 4. At the point Xi = —1 , / (x ) = 0, which is a local 
maximum. At the point X2 = - L / W = -4/27, which is a local minimum. 

It should be kept in mind that what is being found are local stationary points in which 
interest centers on the behavior of the function in a relatively small interval. As indicated 
in Fig. A.2, neither Xi nor X2 represents a global extremum over the domain (—4 < x < 4) 
of interest. 

Figure A.3 further illustrates the distinction between global and local extrema. If we 
consider local extrema within the interval of XQ < X < ^6, a local maximum is found at 
X2 and a local minimum at X4. Also, other stationary points (viz., inflection points) are 
found at Xi, X3, and Xs. However, when the end points XQ and x^ are also considered, 
the global maximum turns out to be at x^, while the global minimum is still at X4. The 
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Fig. A.3 Global versus local extrema. 

search for global extrema can be quite tedious, particularly if various discontinuities 
appear in the function.^ However, further discussion of this specialized process exceeds 
our intended coverage. 

A.3 DIFFERENTIATION OF FUNCTIONS OF TWO 
ARGUMENTS 

The next step in this review discussion of the calculus involves functions of two 
arguments: 

z=f{x,y) 

In the case of functions of one argument we were able to represent / (x) versus x by a 
curve in two dimensions. Analogously, in the present case f{x,y) versus x and y is 
represented by a surface embedded in three dimensions. Graphical devices, such as 
contour lines and projective drawings, are useful in portraying certain three-dimensional 
relationships in two-dimensional space. 

In this part of the appendix we discuss the concepts of level curve, partial 
differentiation, unconstrained optimization, and optimization subject to equality 
constraints. 

A.3.1 Level Curves and Partial Differentiation 

The notion of level curves is employed in a variety of appUcations. For example, in 
map making one may use a series of contour lines to represent altitudes, as schematized in 
Panel I of Fig. A.4. We note that the level of 300 feet consists of all of those points on 
the hill that involve 

/ (x ,7) = 300 

^ If discontinuities appear, the function must be examined at each of these points (as well as at end 
points and stationary points). 
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North 

^—/--h / East 

A: = 16 

South 

Fig. A.4 Illustrations of level curves. Key: I, altitude of land; II, z = x ' + J^^ 

If one were to hike around the hill on that level curve, one would remain at a constant 
height of 300 feet. Similarly, other contour lines show other altitudes, such as 200 feet, 
100 feet, and sea level. 

Level curves appear in many fields, such as pictorial displays of air pressure (as 
isobars), temperature (as isotherms), and consumer utility (as indifference curves). As 
inferred from Panel I, we could "build up" the hill if we imagined that each level curve 
were made of cardboard and we stacked one piece on top of another in building up the 
surface. 

Panel II shows level curves for the function 

In this case we can find any level curve of interest by choosing a fixed number k and then 
finding the set of points Xi and y^ for which 

For example, if we set /: = 9, we have 

If we let j ^ = 0, then x = ±3; conversely if x = 0, then y - ±3. As can be inferred from 
examining the various level curves of Panel II in Fig. A.4, the surface of the function 
looks like that of a bowl with its center point at the origin of the x, j plane. The level 
curves are, of course, circles of varying radius. 

As a third example of level curves, consider the surface, depicted in Panel I of Fig. A.5, 
representing the function 

fix, j ) = Zxy 

where we assume that x,y>^. Panel I shows the surface itself as a conelike figure that is 
cut in half.̂  Panel II shows selected level curves for 

/ : i=0 ; /:2 = 1; A:3 = 3; A:4 = 6; ks=% ke = l2 

We retum to this function after a brief review of partial differentiation. 

^ The plane ABC, depicted as a slice through the surface in Panel I, and dotted line>lC in Panel II 
are discussed later (in Section A.3.3) in the context of Lagrange multipliers. 
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/r, = 12 

Fig. A.5 Surface and level curve plots of f(x, y) = 3xy {x, y > 0). Key: I, response surface,/(x, 
y) = '}>xy (x, y > 0); II, level curves, k - Zxy. 

Partial differentiation is a straightforward generalization of simple differentiation. 
Partial derivatives are found by differentiating the function fix, y^ with respect to each 
variable separately. The variable not involved in the differentiation is treated as a 
constant. For example, for the function portrayed in Fig. A.5, we have 

a/ f{x,y)^2>xy\ 
3JC ^y 

Partial derivatives are usually denoted by 3//3x or/^. 
Second-order partial derivatives involve differentiation of first-order partial derivatives, 

since partial derivatives are, themselves, functions. That is. 

ax and 
9 j 

are second-order derivatives, denoted by the symbols 

aV. aV. ^ ( ^ , > ^ ) or f^A^.yY ^ ( x , ; ; ) or fyyix^y) 

Moreover, the function (3//3x)(x,3^) may also be differentiated with respect to; ; , and 
(V/Bj^Xx, y^ may be differentiated with respect to x. These are called mixed partial 
derivatives and are usually denoted by 

aV (or/-^ ) and aV 
(or/vx) 

respectively. If the mixed partial derivatives of/(x, y) are continuous, then 

ay ^ ay 
3x 3;; dy bx 
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and the order in which differentiation proceeds is irrelevant. Continuing with the example 

we have 

— = 3jv; —T ^ 0 ; =3 
bx dx^ bx by 

¥ , aV ^ aV -
— =3x; —-r=0; ^ ^ =3 
oy dy^ by bx 

As an additional example, consider the more elaborate polynomial 

f(x,y) = 2x'^ •^y'^ + 3xy+x-y + 3 

The first- and second-order partial derivatives are 
bf b^^f b^f 
— = 4x + 3j; + l; ^ = 4 ; -r-4- =3 
bx bx^ bxby 

bf b'^f b'^f 
by by by bx 

Since all second-order partial derivatives are constants, all third- (and higher) order partial 
derivatives are zero. 

A.3.2 Unconstrained Optimization of Functions of Two Arguments 

Analogous to the case involving functions of a single argument, conditions for local 
extrema can be listed for the two-argument case. To be specific, let us continue to 
consider the case of the function 

/(x,>;) = 2x^ + j ^ + 3xy ^rx-y + 3 

A necessary condition that (XQ, j ' o ) be a local stationary point is that the following 
equations are satisfied: 

^ixo,yo) = 0; -^(.xo,yo) = 0 

In the above example we have 

^(x, J ) = 4JC + 3;; + 1 = 0; ^(x,y) = 3x + 2y-l=0 

On solving these equations simultaneously we get 

X = 5; y = -l 

Therefore, (5, —7) is a stationary point. 
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Sufficiency conditions for local extrema involving functions of two arguments are 
somewhat more complex than the counterpart case for one variable. To summarize what 
these are, one first sets up the determinant of second-order partial derivatives as follows: 

62 = 

which, in the illustrative problem, is 

4 : 

aV 

aV 

aĵ ax 

a^a^ 

= ( 4 x 2 ) - ( 3 x 3 ) = - l 

Next, we examine b^ = d^f/bx'^ = 4 and note that its sign is positive. Sufficiency rules, for 
the general case, can now be stated in terms of 61 and 62 • 

1. A local extreme point exists if 62 ^ 0-
a. The local extreme point is a minimum if 51 > 0. 
b. The local extreme point is a maximum if 51 < 0. 

2. A local extreme point does not exist if 62 < 0. 
3. A local extreme point may or may not exist if 62 =0. In general, additional 

examination of the function at the stationary point values is needed to see if an extreme 
point exists and, if so, whether it is a minimum or a maximum.^ 

In the illustrative problem we note that 62 = —1 (^O)^ â d̂, hence, no local extreme point 
exists for this function. 

Since quadratic functions of the general form 

f(Xy y) = ^^^ + bxy -^^ cy'^ -^ dx + ey+f 

appear so frequently in multivariate statistical work, it is useful to examine their 
properties more generally. First, we shall find, as noted earlier, that all second-order 
partial derivatives are constants. Stationary points are found by solving the equations 
a//ajc = 0, bf/by = 0, simultaneously: 

3 / 
-- = 2ax+by^d = 0; 
ox 

by 
= 2cy +Z?x + e =0; 

av 
bx^ 

av 
^y' 

= 2a 

••2c 

which can be expressed as 

2ax -^by = —d\ bx + 2cy = —e 

* In particular, if both b^f/dx^ and d^f/by^ are equal to zero, the stationary pomt is not a local 
extreme point. If b^f/dx by = d^f/dy ax = 0 and if d^f/bx^ and d^f/dy^ have the same sign, the 
stationary point is a local extreme point. Still, specific examination of the function is generally needed 
to see whether the point is a minimum or a maximum. 
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to obtain the solutions 

2cd-eb 2ae-bd 
b -4ac b^-4ac 

Moreover, since the second-order partial derivatives are 

ay 
dx 

2 ~ 2a; = 2c; 9V 9'/ 
dx by by bx 

= b 

we have, as the expression for 62, 

5,= 

3V 
bx-" 

b'f 

aY 
dx by 

••4ac-b^ 

by dx by'^ 

If 4ac-b^ > 0, an extreme point is indicated. That is, 

1. if §2 = 4ac-b^ > 0, the stationary point is an extreme point. 
a. If 5i = b^f/bx^ = 2a>0, then the extreme point is a local minimum. 
b. If 51 = 2fl < 0, then the extreme point is a local maximum. 

2. i f 5 2 ^ 0 j n o extreme point exists. 
3. if 62 = 0, additional examination of the function is needed to see if an extreme 

point exists and, if so, whether it is a minimum or a maximum. 

In the preceding numerical case, XQ ~ 5 and>'o = —7. Substituting these values leads to 

4ac-62 = 4 ( 2 ) ( l ) - ( 3 ) 2 = - l 

and the stationary point (5, —7) is neither a minimum nor a maximum, as was indicated 
earlier. 

A.3.3 Constrained Optimization and Lagrange Multipliers 

In the previous section our concern was with finding local extrema without 
constraining the domain over which jc and y, the two arguments of/(jc, y), might vary. 
However, cases frequently arise where we are interested in setting up certain side 
conditions that must be satisfied in the course of optimizing some function/(x, y). 

Optimization of functions subject to constraints is a vast topic which goes well beyond 
our coverage. Here we concern ourselves with only one technique, the method of 
Lagrange multipliers for optimizing functions subject to equality constraints. 

The basic idea behind Lagrange multipliers involves setting up a more general function 
that includes the constraint and optimizing this more general function. Suppose we have a 
function f(x, y) and a side condition, expressed aiSg(x, y) = 0. If so, we can define a new 
function, composed of three variables: 

w(^, y. X) =f(x,y)-Xg(x,y) 

where X is the Lagrange multiplier. (The variable X is an artificial variable that is 
employed to provide as many unknowns as there are equations.) Having set up the general 
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function u{x, j , X), we can find its partial derivatives with respect to x, y, and X and set 
each of them equal to zero: 

bu du du 
— =0; ^ = 0 ; ^ = 0 
bx by b\ 

Any point that satisfies the above necessary conditions is a stationary point. We continue 
to assume, of course, that both f(x,y) and g(x, y), the latter being the constraint 
equation, are differentiable in the neighborhood of the stationary point. 

Let us illustrate the Lagrange multiplier technique by returning to the function 

f(x,y) = 3xy 

as first depicted in Fig. A.5. However, now let us impose the constraint equation that 

g(x,y) = 2x+y = 4 

or, equivalently, 

g(x,y) = 2x-\-y-4 = 0 

As shown in Fig. A.5, application of this constraint results in a plane (labelled as ABC) 
intersecting the surface in Panel L Furthermore, y4C in Panel II represents the same linear 
constraint as a dotted straight line; this line is the locus of all points on the xy plane that 
satisfy the constraint equation 2x •\-y =4. 

We next set up the function w(jc, y, X) that incorporates the Lagrange multiplier 

u(x,7, X) = 3xy-X(2x-^y-4) 

Then w(jc, y, X) is differentiated with respect to each argument, in turn, and each 
derivative is set equal to zero: 

Notice that the partial derivative with respect to X is just the constraint equation itself. 
The next step is to find the stationary point by solving the three preceding equations for 
X, y, and X. This is easily done by first expressing both y and x in terms of X: 

y = 2X/3; x = X/3 

and solving for X in the third equation: 

2(X/3) + 2X/3-4 = 0; X = 3 

We then find x and y to be 

x = l ; y = 2 

Also we note that in terms of the original function f(x,y) = 3xy, the value of the 
function at the stationary point (1, 2) is 

/ (1 ,2) = 3(1)(2) = 6 
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Panel II of Fig. A.5 provides a graphical representation of what is going on. First, we 
examine the constraint equation, represented by the dotted line AC = g{x,y) = 
2x +y = 4. The one level curve for which AC represents the tangent line is 

k4=f(x,y) = 6 

Thus, when the stationary point (JCQ, yo) = (1.2) is found wi th / ( l , 2) = 6, we see that its 
tangent line is represented by the constraint equation g{x, y) = 2x -^y = 4. The value of 
the function/(I, 2) = 6 coincides with the highest level curve that can be reached via^C. 
Furthermore, in looking at the plane ABC, slicing through the surface in Panel I, we also 
see that the local extreme value is a maximum point B on the arch traced out by ABC. 

One additional point of interest concerns the value of X itself; in this case X = 3. If we 
examine the original function 

f{x,y) = 3xy 

and assume that the (negative) constraint equation 2JC+J^ = 4 were "relaxed" to 
2x + jv = 5, we would have an extra unit of (say) j to work with. If so, we could compute 
the value of f(x,y) before and after allowing for one unit increase in y. Letting XQ = 1, 
the X coordinate at the original stationary point, we have 

f{x^y) = 3(l)y = 3y 

f(x,y + l) = 3{l){y^l) = 3y^3 

Hence, an increase in f(x,y) of 3 units could be effected if one more unit of y were 
available. This is equal to X, the value of the Lagrange multiplier, as found in the earlier 
computations. 

In summary, Lagrange multipliers are useful in handling one (or possibly more) 
equality constraints in cases where it would be difficult to solve the problem via direct 
substitution of the constraint equation(s) into/(x, y).^ Since a necessary condition for a 
stationary point is that each first-order partial derivative equals zero, introduction of the 
Lagrange multiplier X adds a needed artificial variable to balance out the number of 
equations with the number of unknowns. In terms of the numerical example 

u(x,y, X) = 3xy-\(2x +y-4) 

we see that partial differentiation with respect to x, y, and X separately leads to three 
equations in three unknowns. 

Furthermore, if the constraint equation is always met, then the term (2x +y —4) in 
the general function w(x, y, X) will always equal zero so that u{x, y, X) will behave in the 
same way as/(x, y), the original function.^^ 

^ With only two original variables, one would not generally deal with more than a single constraint 
equation since two constraint equations in two variables would normally have only a single point in 
common. With a large number of original variables, however, two (or more) equality constraints might 
be employed. 

^^ Sufficiency conditions for local extrema in the context of Lagrange multiphers are found in 
Hancock (1960). 
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A.4 SYMBOLIC DIFFERENTIATION 

The most complex cases in partial differentiation and function optimization involve 
functions of several arguments. Often, this situation is portrayed by vector and matrix 
notation. The term "symbolic differentiation" has been coined to refer to partial 
differentiation of vector or matrix functions whose results are also described in the same 
format. For example, symbolic differentiation of a function with respect to a vector 
involves finding the partial derivative of the function with respect to each entry of the 
vector; the partial derivatives themselves are then arranged in vector form. 

To illustrate, if y =/(x) , where x is a column vector with elements Xi, X2,. . . ,x„, 
then one can express its symbolic derivative by means of the column vector 

ax 

df/dx, 

a//ax2 

Notice that each entry of bf/dx is a partial derivative of / (x) with respect to a specific 
variable. By the same token, one can find a row vector of partial derivatives:^^ 

ax 

In applied multivariate analysis, we frequently have occasion to find the symbolic 
derivatives of functions that are bilinear or quadratic forms, such as 

u = x'Ay (where A may be rectangular) 

V = X'AX (where A is square, nonsymmetric) 

w = X'AX (where A is symmetric) 

t = x'lx (where I is the identity matrix) 

We first consider symbolic differentiation with respect to vectors. We can then turn to 
problems of optimization of functions involving multivariable arguments. 

A.4.1 Symbolic Differentiation with Respect to Vectors 

If we take one of the simplest cases first, namely, the linear combination j ; = a'x, 
where a' is a row vector of coefficients, the symbolic derivative of y with respect to x is 
simply the row vector 

'* Note that 8x' appears as a row vector in the denominator since bf/bx is being 
expressed explicitly in this form. That is, we shall adopt the notation of ax or dx' on the basis of how 
the final vector of derivatives is displayed—in column or row form, respectively. 
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This follows from the fact that we can write y expHcitly as 

y =aiXi +^2^2 + * • • -^a^Xn 

Then, each partial derivative of y is found, in turn: dy/bxi=ai, 
dyldx2 =a2,. . ., byl^x^ =a„. These elements can then be arranged in the row vector 
a. 

Next, suppose we have the bilinear form 

u = x'Ay 

which can be written out explicitly (for A of order m x /?) as 

u=x^anyi +^1^12^2 + • • • -^^xainyn 

+ X2^2lJ^l +^2^22;^2 + • • '"^^idlnyn 

+ • • • 

The partial derivative bu/dxi ofu = x'Ay with respect to the first element Xi is 

bu 
3 ^ =^iiJ^i +«i2;^2 + • • • +^i«7« 

which can be written as the scalar product 

du , 

By the same procedure the other partial derivatives are obtained: 

du , 

9M , 

which can all be arranged in the m x 1 column vector 

du 

By a similar rationale we can obtain bu/dy as the I xn row vector 

bu ,. 
—, = x A 
9y 

By taking appropriate transposes of the two preceding equations, we could also write 

bu , bu . 

as a row and column vector, respectively. 
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By similar reasoning we can find that the symboUc derivative of 

V = X'AX (for square, nonsymmetric A) 

with respect to x is the column vector 

dv 
dx 

(̂A + A')x 

Furthermore, the symbolic derivative of 

w = X'AX (for symmetric A, so that A = A') 

is the column vector 

bw 
T - =2Ax 
ox 

In particular, if A = I, we have the special case of the sum of squares 

t = x'lx = x'x; 

As a numerical illustration of the case involving a bilinear form, consider the function 

yi 

T— = 2x 
3x 

" = (^1,^2) 
1 3 1 

2 4 3 yi 

ys 

= xiyi +2x2yi +3xij^2 +4^23^2 +^i>^3 + 3x2^3 

If we differentiate u with respect to x, we have the column vector 

yi +372+J^3 

2yi + 4^2 +33^3 i Ox 
:Ay = 

In a similar way, we could find symbolic derivatives of other functions with respect to x 
or y. As would be surmised, however, no new principles are involved.^^ 

A.4.2 Some Aspects of Optimization in Matrix Notation 

Extreme values can be found for functions of vectors in much the same way as 
described earlier for functions of scalars. In particular, suppose we had the function 

7 = 2 J C I ^ + 3 X 2 ^ 

subject to the constraint equation 

g{x) = Xi-X2-l = 0 

^̂  Bilinear and quadratic forms can also be differentiated with respect to A, the matrix of the 
form. For example, for nonsymmetric A, (a/aA)(x'Ax) is xx'. However, this more advanced topic 
exceeds our scope. The interested reader is referred to Tatsuoka (1971). 
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We could, of course, apply the same Lagrange multiplier procedure described in Section 
A.3.3 to find the extreme values (if any) of this function. However, let us express the 
equations in vector or matrix form and work through their solution in this format: 

y = X'AX = (:vi,X2) 
2 0 

0 3 
subject to 

g = c x - l = 0 = ^ ( 1 , ^ 1 ) 
X2 

Xi 

X2 

- 1 = 0 

In matrix equation form, the general function is, analogously, 

u - X'AX—X(c'x—1) 

We set its partial derivatives equal to the zero column vector: 

3w 

ax 
= 2Ax-Xc = 0 

and find the vector solution 

x= XA *c/2 

Moreover, since c'x —1=0, then c'x = 1, so that after multiplying both sides of the 
preceding equation by c', we have 

1 = c'x = XC'A ^C/2 

and X can then be found from 

X=2(C 'A-^C) - ' 

Substituting this expression for X in x = XA"^c/2 gives us 

x = (c'A-^c)-^A-^c 

In the simple numerical illustration shown above, we have 

c' A-^ c 

X = 2^( l , -1 ) 

12 1 
^ = 1 - 2 

1/2 0 

0 1/3 

1/2 0 

0 1/3 

12/5 

3/5 

-2/5 

At the stationary point x' = (3/5, -2/5), the value of the function is 

;; = 2(3/5)2 + \-2\Sf = 0 

file:///-2/Sf
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and it is noted that the constraint equation 

^(x) = 3 / 5 - ( - 2 / 5 ) - l = 0 

is alsosatisfied.^^ 
In summary, use of matrix notation provides a compact way to set down procedures 

for function optimization, in this case optimization under a constraint equation. 

A.4.3 Conditions for the Optimization of Functions Involving 
Multivariable Arguments 

In preceding sections of the appendix, necessary and sufficient conditions for 
identifying local extreme points have been listed for the single-argument and (uncon
strained) two-argument cases. Things become considerably more compHcated when we 
consider functions of multivariable arguments. Accordingly, we do not delve into the 
topic in much detail; in particular, all proofs are omitted. The reader interested in a more 
detailed discussion is referred to books by Beveridge and Schechter (1970) and Wilde and 
Beightler(1967). 

In the case of a multivariable function, the necessary condition for a stationary point 
continues to be the vanishing of all first-order derivatives. That is, at a staionary point, we 
have the condition 

- ^ =0; - ^ = 0 ; . . . ; - ^ = 0 

This condition holds for either unconstrained or constrained functions (in the context of 
Lagrange multipliers). 

However, as was observed in the cases of one or two arguments, a multivariable 
function does not necessarily have a local extremum at the stationary point of interest. 
To examine sufficiency conditions for a local extreme point, use is again made of the 
determinant of second-order partial derivatives: 

ay ay 

3V 3V 
3x2 ajci 

3V 3V 

3Xi dXn 

ay 
3x2 3x„ 

3V 
3x„2 3x„ 3x i bXyi 3x2 

' Although we do not delve into details, the stationary point (3/5, —2/5) is a minimum. 
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As was the case with two arguments, we set up the principal minors of 5„ as follows:'" 

§1 = 
9^/ 

5,= 

9V 

ay 
dX2 dXi 

ay 

dxi bx2 

9V 

6 . = 

9V aV 9V 
9x,' 

9V 
3JC2 3^1 

JIL. 

dxi bx2 

9V 
9X2^ 

9V 

3JCI 8x3 

9V 

8x3 3^1 3x3 3x2 

. . . , up to, and including, 6„. 
Having done this, we evaluate each of the n determinants. In order for a stationary 

point to be an extreme point, all of the n determinants must be nonzero. A local 
minimum is distinguished from a local maximum in terms of the pattern of signs of the 
(evaluated) determinants: 

1. If 6y > 0 for «/// = 1, 2 , . . . , «, then the stationary point is a local minimum. 
2. If 61 < 0, 62 > 0, §3 < 0, 64 > 0, . . . , then the stationary point is a local 

maximum. 
3. If neither situation occurs, one must examine the specific nature of the stationary 

point by computing values of the function in the neighborhood of the point. 

Notice, then, that these conditions generaUze what was discussed earlier for functions of 
one and two arguments.^^ 

In case the function is subject to an equality constraint of the type illustrated in the 
context of Lagrange multipliers, the necessary condition for an extreme point involves 
finding a vector XQ that satisfies the n + 1 equations 

3/(x) \ dgix) 
= 0; ^(x) = 0 

3x 3x 

that are obtained by setting the derivatives of 

w(x,X)=/ (x) -Xg(x) 

with respect to x and X each equal to zero. 
Sufficiency conditions for a local extremum in the case of Lagrange constraints 

become rather complex, particularly if more than one constraint equation is involved. 
Accordingly, the interested reader is referred to more specialized books on the subject, 
such as the book by Hancock (1960). 

*̂ By the term principal minors is meant successive determinants computed for submatrices of 
order 1, order 2, etc., formed along the main (principal) diagonal of the original n xn matrix. 

^̂  It should also be mentioned that a rather elegant approach to examining sufficiency conditions 
utilizes the matrix of partial derivatives as the matrix of a quadratic form. One then checks on whether 
the form is positive definite, negative definite, etc., and the type of definiteness is related to the type 
of extremum represented by the stationary point. This approach is fully compatible with the principal 
minor procedure, described above. 
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A.5 APPLICATION OF THE CALCULUS TO 
MULTIVARIATE ANALYSIS 

At this point we have discussed (albeit selectively and rapidly) a number of concepts 
from the calculus that relate to the development of various matrix equations that arise in 
solving problems in multiple regression, principal components, and multiple discriminant 
analysis. It is now time to examine the specific nature of these central equations in 
multivariate analysis. 

A.5.1 Multiple Regression Equations 

The so-called normal equations of multiple regression theory represent a straight
forward application of function minimization that utilizes the least-squares criterion. In 
multiple regression we have the case in which the matrix equation 

y = Xb 

has more equations (one for each case) than unknowns. As recalled from Chapters 1 and 
6, X is the data matrix of predictors (augmented by a column vector of unities); y is the 
data vector representing the criterion variable; b is the to-be-solved-for vector of 
regression coefficients (including the intercept term); and = denotes least-squares 
approximation. 

The vector of prediction errors can be written as 

e = y - y 

where y denotes the set of predicted values for y. As we know, the least-squares criterion 
seeks a vector b that minimizes 

Since y = Xb, we have 

/= (y -y ) ' (y -y ) 

/= (y -Xby(y -Xb) 

= y'y-b'X'y-y'Xb + b'X'Xb 

= b'X'Xb-2y'Xb + y'y 

where y'Xb = b'X'y since each term denotes the same scalar. Our objective is to find a 
vector of parameters b that minimizes/. This suggests finding the symboHc derivative and 
setting it equal to the 0 column vector: 

~ =2X'Xb-2Xy = 0 

We note that X'X in b'X'Xb is symmetric, with derivative 2X'Xb. Furthermore, we 
observe that the partial derivative with respect to the row vector b' is being found; hence, 
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we take the transpose of 2y'X to obtain 2XV, the second term in the preceding equation. 
Dividing both sides by 2 and transposing leads to 

X'Xb = X'y 

and solving for b, we get 

b = (X'X)-^XV 

We now recognize the matrix equation as that appearing in the discussion of multiple 
regression in Chapter 6. Although no check of sufficiency conditions has been made here, 
it tums out that b is the vector of parameters that does, indeed, minimize the function/. 

A.5.2 Principal Components Analysis 

In principal components analysis, we recall that interest centers on rotation of a 
deviation-from-mean data matrix Xj so as to maximize the quadratic form 

/=t '(Xd'Xd)t 

where we denote the SSCP matrix by X^'X^, the minor product moment of Xj. 
(Alternatively, we could use the raw cross products, covariance, or correlation matrix.) 
Furthermore, we want to restrict the vector t to be a set of direction cosines that define 
the vector of linear composites: 

y = Xjt, where t't = 1 

If we let A = Xj'X^, the principal components problem is to maximize 

/ = t'At 

subject to the constraint that t't = 1. 
Based on our discussion of Lagrange multipliers, we can formaUze the task by writing 

w = t 'At -X( t ' t - l ) 

where t't - 1 = 0 represents the constraint equation. As we know, the problem is to find 
the symbolic partial derivative of u with respect to t and set this equal to the 0 vector. 
Remembering that A is symmetric, we obtain 

bu 
T- =2At-2Xt = 0 

Next, dividing through by 2 and factoring out t, we get 

(A-XI)t = 0 

This represents the necessary condition to be satisfied by a stationary point t in which the 
constraint equation t't = 1 is also satisfied. Again, we do not delve into the more complex 
topic of checking on sufficiency conditions, other than to say that the eigenvector ti 
associated with the largest eigenvalue Xi of A is the vector of direction cosines that 
maximizes the function u. 
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A.5.3 Multiple Discriminant Analysis 

As recalled from Chapter 6, in multiple discriminant analysis we seek a vector vwith 
the property of maximizing the ratio 

_ V'AV 
A — —-, 

vWv 
where A is the among-group SSCP matrix and W is the pooled within-group SSCP matrix. 
(Again, we could place some restriction on the vector v, such as vV = 1.) Note, however, 
that X, the discriminant ratio in the present context, is simply the quotient of two 
functions (as illustrated in Table A.2). We can then find the symbolic derivative of X with 
respect to v, by means of the quotient rule, and set it equal to the 0 vector: 

3X ^ 2[(Av)(v^Wv)-(v^Av)(Wv)] 

Bv (v'Wv)' 

This can be simplified by dividing numerator and denominator by (v'Wv) and making the 
substitution 

V'AV 
X — —;; 

vWv 

to obtain 
2[Av-XWv] 

v'Wv 

Next, we divide both sides by the scalar 2 and further simplify to 

(A-XW)v = 0 

Next, assuming that W is nonsingular, we have the familiar expression of Chapter 6: 

(W-'A-XI)v = 0 

where, as we know, W~^A is nonsymmetric. Again, we omit discussion of the sufficiency 
conditions, indicating that a maximum has been found. Suffice it to say that all three 
procedures: 

1. multiple regression, 
2. principal components analysis, and 
3. multiple discriminant analysis 

involve aspects of the calculus that deal with the optimization of functions of 
multivariable arguments. The concept of symboUc differentiation is central to the topic as 
well as the techniques of function optimization, either unconstrained or constrained 
optimization, as the case may be. 

A.6 SUMMARY 

This appendix has dealt with those aspects of the calculus—particularly symbolic 
differentiation and optimization theory—related to the matrix equations that appear in 
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various multivariate methods, such as multiple regression, principal components, and 
multiple discriminant analysis. 

The review was brief and selective. We first discussed the differentiation of functions 
of one argument, including the statement of necessary and sufficient conditions for local 
extrema. This was followed by a similar discussion of the case involving functions of two 
arguments. Also, the technique of Lagrange multipliers was introduced at this point. 

We next described the most general case of functions of multivariable arguments and 
the concept of symbolic differentiation. SymboUc derivatives of common matrix 
functions were illustrated, and necessary and sufficient conditions for local extrema of 
multivariable functions were also listed. We concluded the appendix with applications of 
the calculus to the derivation of matrix equations in multiple regression, principal 
components, and multiple discriminant analysis. 

REVIEW QUESTIONS 

1. By means of the chain rule, find the derivative of the following functions: 

a. ln (2x-x^) b. 
l - 2 x 

c. e x^ + 4 

2. Find (and identify) extreme points for the function 

6x 

2 x ^ 1 

f(x)-
JC^+ 1 

over the domain—2 < jc < 2. 
3. Find the partial derivative o f / ( x , y) a t / ( I , 3) where 

/(jc, 7) = jc^ + 2JC + 4j; + ln(x^ + y'^) 

4. Find the minimum of f(x, j ) = 2x^ + 4x + 87 + j ^ . 
5. Find (and identify) a stationary point of the function 

subject to the constraint 

x^ly^l 

6. Find the derivative with respect to x of the quadratic form 

2 3 

3 1 

^4 2 

Evaluate the derivative at x' = (3, 1, 2). 
7. If ^(x) = X'AX + b'x + c where A is symmetric, then it can be shown that the 
derivative of this general quadratic function with respect to x is 

^(x) = (x i , X2, X3) 

4] 
2 

3J 

pi 
X 2 

L 3̂_ 

ax 2Ax + b 
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Furthermore, a stationary point is given by 

2AxH-b = 0; x = - ^ A ~ ^ b 

If 

x' A X b X c 

(xi, X2) 
1 2 

ij 

r̂ i 

L̂2 
+ (2,2) 

JCi 

X2 

is the function ^(x), find (and identify) a stationary point of ^(x). 


