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Linear Equations and Generalized Inverses 

B.l INTRODUCTION 

In various sections of the book, and particularly in Section 4.6, we have discussed how 
one solves a set of simultaneous linear equations where the matrix of coefficients has a 
regular inverse. Moreover, the pivotal method has been described as an illustrative 
computational procedure for obtaining the desired inverse. 

In this appendix interest centers on a matrix of coefficients A for which no regular 
inverse A"^ exists. That is, A may be rectangular or, even if square, it may be singular.^ 
The generalized inverse is a concept that provides a way to solve a set of consistent linear 
equations in which a regular inverse does not exist. As we shall note later, several 
different types of generalized inverse have been defined, although we concentrate here on 
only two variations, the Moore-Penrose inverse (Penrose, 1955) and the g inverse (Rao, 
1962). 

Before discussing generalized inverses, we provide a review of the types of solutions: 
(a) none, (b) one, or (c) infinitely many, that one can obtain in attempting to solve a set 
of simultaneous linear equations. Aspects of homogeneous equations and nonhomo-
geneous equations are described and illustrated numerically. Finally, a general method is 
evolved for solving sets of equations. 

We then introduce the topic of generalized inverse in terms of a set of properties that 
such inverses are designed to satisfy. Following this, the Moore-Penrose type of inverse is 
defined and related to the concept of basic structure (or singular value decomposition) 
discussed in Chapter 5. 

The second type of inverse, called the g inverse, is then introduced. This inverse is 
required to satisfy only one of the Penrose properties and, in practice, is easier to 
compute. Illustrations of its computation are presented, and this type of generalized 
inverse is related to procedures for solving linear equations. In so doing, a general 
procedure for computing inverses—regular or generaHzed—is described and related to 
earlier material involving the solution of simultaneous equations. 

* That is, its determinant is zero. 
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B.2 SIMULTANEOUS LINEAR EQUATIONS 

In the examples considered in the book we often had occasion to solve the system of 
equations 

Ax = b 

by means of matrix inversion. Recall that A is the matrix of coefficients, x is the vector 
of unknowns, and b is the vector of constants. In this case A was n xn and r(A)=n. That 
is, A was square and nonsingular. The pivotal method was employed as a general solution 
technique. 

However, suppose A is either rectangular or square singular so that a regular inverse 
does not exist. What happens then? Before launching into this topic, let us review some of 
the basic results related to solving a system of simultaneous linear equations. First, let us 
consider the set of equations 

3xi +X2 = 5 

5JCI +2X2 = 9 

This set of equations, as could be easily verified, has the solution Xi = 1, X2 =2. 
Furthermore, the solution is unique—only that specific set of values satisfies the set of 
equations. 

Let us next consider the simultaneous equations 

3JCI +JC2 = 5 

6X1 + 2X2 = 11 

If we try to eliminate Xi by taking twice the first equation and subtracting it from the 
second, we get the result 

0= 1 

and, of course, something is wrong. This is most easily observed by noting that insofar as 
the left-hand side of the equations is concemed, the second equation is twice that of the 
first, but this relationship is not true for the right-hand side. The equations in this case are 
said to be inconsistent, and no solution exists. 

Next, let us take the three equations 

Xi +X2 + 3x3 = 8 

Xi + 2x2 +6x3 = 14 

X2 + 3x3 = 6 

We first eliminate Xi from the second equation by subtracting the first from the second 
to get the pair of equations 

X2 + 3x3 = 6 

X2 + 3x3 = 6 
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Ax = b 

Consistent Inconsistent set-
set no solution 

Unique Infinite number 
solution of solutions 

Fig. B.l Tree diagram of types of solutions to a set of linear equations. 

Note that these are identical. Thus, we have 

X2 = 6 — 3x3 

Xi = S-(6-3x3)-3x3 = 2 

In this case, then, more than a single solution exists. For example, we have 

Xi = 2; X2 = 3; x^ - 1 

Xi = 2; ^2 = 0; X3 = 2 

Xi = 2; X2 = - 3 ; X3 = 3 

and so on. 
The tree diagram in Fig. B.l shows the three cases of interest. We first want to 

examine whether the set of equations is consistent or not. If inconsistent, no solutions 
exist. If consistent, either a single (and unique) solution exists or an infinite number of 
solutions exist. 

The three theorems^ of interest in determining which condition prevails are: 

1. A set of linear equations is consistent if and only if the rank of the augmented 
matrix (found by appending the b vector to the matrix of coefficients A) is equal to the 
rank of the original coefficients matrix. 

2. A set of consistent linear equations has a unique solution if and only if the rank of 
the coefficients matrix A equals its order; that is, if and only if r(A) -n, where A is of 
order ny.n and n unknowns are present. 

3. A consistent set of linear equations, where A is of rank k, can be solved for k 
unknowns in terms of the remaining n -k unknowns if and only if the submatrix of 
coefficients (obtained from A) is of rank k. 

With these theorems to guide us, let us retum to the pair of equations 

DX \ T Xi ~ J 

6X1 + 2X2 = 11 

^ Proofs can be bound in Graybill (1969). 
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and now form the matrix of coefficients A and the augmented matrix M: 

A = 

By inspection we see that the second row of A is twice the first; hence r(A) = 1. However, 
if we apply the reduction to echelon form procedure (from Section 4.7) to M we get the 
echelon matrix H^: 

3 1 

6 2 
; M = 

3 1 

6 2 

5" 

11 

HM -
1 1/3 

0 0 

5/3 

1 

We note that both rows of Hj^ have at least one nonzero entry. Hence, ^(HM) = ̂ (M) = 2 
while r(A) = 1; the set of equations is not consistent, and no solution exists. 

Next, talcing the equations 

3A: 1 + JC2 = 5 

5xi + 2JC2 = 9 

we have the matrices 

3̂ f 
5 2_ 

After reduction to echelon form we obtain 

A = M = 

HA = 
1 1/3 

0 1 
HM -

1/3 

1 

5/3 

2 

and note, then, that r(A) = r(M) = 2, which is also equal to the order of A. In this case the 
equations are consistent, and a unique solution exists. 

Finally, if we take the set of the three equations 

Xi +X2 + 3JC3 = 8 

jCj + 2x2 + 6 x 3 = 14 

X2 + 3x3 = 6 

we have 

M 

8 

14 

6 

with associated echelon forms 

1 1 

H A = 1 0 1 

0 0 0 

3 

3 

0 

; HM -

1 1 3 

0 1 3 

0 0 0 

8 

6 

0 
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and, we note that the rank in each case is 2, while the order of A is 3. Thus, we can solve 
for k = 2 unknowns in terms oin — k = 3 — 2 = 1 remaining unknown. The results 
suggest a general approach to solving sets of simultaneous linear equations. 

B.2.1 A General Procedure for Solving Linear Equations 

As might be surmised at this point, in solving sets of linear equations we must 
determine whether a solution exists and, if so, whether the solution is unique or whether 
an infinity of solutions exists. The reduction of the matrix to echelon form via 
elementary row (or column) operations provides a practical way to find the rank of the 
coefficients matrix A and the rank of the augmented matrix M. As it turns out, however, 
reduction of a matrix to echelon form, followed by a few additional operations, provides 
us with a very general method for solving sets of simultaneous equations. As recalled, 
elementary row (column) operations permit 

1. the interchange of two rows (columns); 
2. the multipUcation of each entry in a row (column) by any scalar X #=0; 
3. the addition, to each entry of some row (column), of X times the corresponding 

element of some other row (column). 

Each of these operations can be carried out on the rows of A by means of premultiplying 
A by a matrix that, in tum, can be obtained by performing the given elementary row 
operation on the identity matrix.^ For example, let 

A = 

1 4 

2 5 

3 6 

and assume that we wish to 

1. interchange rows 1 and 2; 
2. multiply row 2 by the scalar 4; 
3. add twice row 3 to row 1. 

If these three operations are separately performed on the identity matrix I, of order 
3 X 3, we have, respectively, 

" l 0 2 [o 1 o~ 

1 0 0 

0 0 1 

; 

1 0 0 

0 4 0 

0 0 1 

5 0 1 0 

0 0 1 

The reader can convince himself that premultiplication of A by each of the three matrices 
above will effect the desired row operation. Similarly, elementary column operations can 
be carried out by performing the indicated operation on the columns of a 2 x 2 identity 
matrix and postmultipfying A by the appropriate matrix. Successive operations are 
represented, of course, by a set of matrices whose sequence is determined by the desired 
sequence in which the elementary operations are to be performed. 

^ In the case of elementary column operations, the matrix A is postmultiplied by the specified 
elementary column operation on the identity matrix. 
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To illustrate the notion of a sequence of elementary row operations, let us 
simultaneously transform A and I by the three operations noted above, in the order 
given: 

Interchange rows 1 and 2: 

Ai = 

Multiply row 2 by the scalar 4: 

A.= 

Add twice row 3 to row 1: 

2 

1 

3 

2 

4 

3 

8 

4 

3 

5 

4 

6j 

5 

16 

6 

17 

16 

6 

Bi 

B,= 

0 

1 

0 

0 

4 

0 

0 

4 

0 

1 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1 

1 

0 

1 

Finally, we note that A3 can be obtained from the combined row operations—in the 
indicated order—hy 

B3 

0 1 2 

A 3 = | 4 0 0 

0 0 1 

A 

Ti 4 

2 5 

3 6 

= 

8 

4 

3 

17 

16 

6 

Moreover, we also recaU from Chapter 4 that Bi, B2 , . . . , is each nonsingular and that 
the rank of A is unaffected by elementary row (column) operations. 

With this review information out of the way, the formal method for solving sets of 
simultaneous equations can be stated. First, we start with the augmented matrix M. Then 
we carry out elementary operations to reduce M to echelon form H^. As a final step we 
carry out additional elementary row operations on H^ so as to obtain an identity matrix 
in the subset of columns corresponding to A, the matrix of coefficients. To illustrate, let 
us take the matrix M, as used earlier for the set of two simultaneous equations for which 
the unique solution was Xi = 1, JC2 =2. We then apply the echelon reduction procedure 
to get HM. That is. 

5^1 +2x2 = 9 
M = 

3 1 

5 2 

5 

9 
> Hjvi -

1 1/3 

0 1 

: 5/3 

2 
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Next, subtract 1/3 of the second row of H^ from the first row to get 

N = 
1 0 

0 1 

Now, let us consider N in its original context of two linear equations 
Ixi + 0JC2 = 1 

Oxi + 1̂ :2 = 2 

with the desired solution Xi = 1, X2 =2 . 
Next, let us take the case of the two inconsistent equations: 

3:JCI +X2 = 5 

6X1 + 2^2 = 1 1 
M = 

~3 1 

6 2 

5~ 

11 
j H M -

'1 1/3 

0 0 

5/3 

1 

In this case we need go no further since in the second row of H^ we note the 
inconsistency: 

Oxi + 0^2 = 1 

which, of course, shows that this set of equations has no solution. Further evidence for 
this is found by examining the left-hand submatrix of H]vi;it is of rank 1 while HM itself 
is of rank 2. 

Finally, let us take the third example: 

Xi +X2 + 3^3 = 8 

Xi + 2 x 2 + 6x3 = 14; 

X2 + 3x3 = 6 

M = 

1 1 3 

1 2 6 

0 1 3 

14 

6 

HM -

1 1 3 

0 1 3 

0 0 0 

8 

6 

0 

If we subtract the second row of H^ from the first, we get 

1 0 0 : 2I Ijci + 0x2 + 0x3 = 2 

N = p 1 3 ; 6 ; 0x1 + 1x2 + 3x3 = 6 

[ 0 0 0 : 0 ] 0x1+0x2 + 0x3 = 0 

In this case the best we can do is obtain a 2 x 2 identity matrix for the first two rows and 
columns of N. As illustrated earlier, we can then transfer X3 to the right-hand side, giving 
us 

Xi = 2; X2 = 6—3x3 

If we then treat X3 as a parameter, by setting it equal to (say) 73, we have 

Xi = 2; X2 = 6-373; ^3 = 73 

or, in vector form, 

' 2 

x = | 6-373 

73 

and an infinity of solutions exists depending upon what value we choose for 73. 



330 APPENDIX B 

B.2.2 Other Cases 

In the cases examined so far we deah with square matrices A of order n xn and 
vectors x and b, each of order n x \. 

In the more general case, A can be of order mxn. First, let us assume that 
r(A)=r(M) =/:. If so, then at least one solution must exist. Next, let us assume that 
k = n, the number of unknowns. Since k cannot exceed m, the number of rows of A (or 
M), and^ = 2̂, then either m = n or m> n.Um = n = k, then we know that A is square and 
nonsingular, and the solution is unique. However, if m > «, the echelon matrix HM will 
have m - k rows of zeros, and we can say that m - k equations are redundant. If so, we 
proceed as before and solve k equations in n = k variables. The submatrix N, of order 
k xk,is still nonsingular, and the solution is still unique. 

Next, suppose that k< n. If this case exists, then either k = m or k< m. (We know 
that k cannot exceed m.) If we assume that k = m< n,wQ shall have an infinite number 
of solutions, as illustrated earlier. That is, n - k of the unknowns can be treated as 
parameters. 

Finally, assume that k< m (and k< n). In this case, we have not only unknowns to 
spare but redundant equations as well. Not surprisingly, by following the formal method 
outhned earlier, we shall end up with an infinity of solutions and redundant equations in 
the bargain. To illustrate. 

Xi + ^ 2 + 3X3 = 8 

JCi + 2 x 2 + 6 x 3 = 14 

X2 + 3JC3 = 6 

2xi +3x2 + 9^3 = 22 

M = 

1 

1 

0 

2 

1 

2 

1 

3 

3 

6 

3 

9 

8 

14 

6 

22 

If we then reduce M to echelon form, we get 

HM -

1 1 

0 1 

0 0 

0 0 

3 

3 

0 

0 

8 

6 

0 

0 

As can be noted from H^, r{k) =r(M) = 2, and at least one solution exists. The next step 
is to find an identity submatrix by further elementary row operations on H^, giving us 

N: 

I 

0 

0 

0 

0 

1 

0 

0 

0 

3 

0 

0 

2 

6 

0 

: 0 
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with the solution 

x = l 6-373 

73 

as found earlier. We see in this case that the fourth equation is redundant with the others. 
As a matter of fact, it is simply the sum of the first two equations (whereas the third 
equation represents their difference). 

Thus, if we have m equations in n unknowns (of the form Ax = b) in which 
r(A) = r(M) = k, while k<n and k< m,'we have an infinite number of solutions in which 
n- k variables can be treated as parameters and m - k equations are redundant. In 
effect, then, the relationship between k and n deals with the question of a single versus 
infinite number of solutions, while the relationship between k and m concerns whether 
some of the equations (viz., m - k) are redundant. 

B.2.3 Homogeneous Equations 

Up to this point we have been discussing the case of Ax = b, involving nonhomo-
geneous equations. Sometimes the multivariate analyst will encounter sets of linear 
equations of the form 

Ax = 0 

These are called homogeneous equations. First of all, we note that one possible solution is 
to let X = 0. That is, if we assign 0 to each unknown, the equation is satisfied, since 
AO = 0. This is called the trivial solution. 

Viewed another way, if we append the zero vector to A to get the augmented matrix 
M, then r(A) will always equal r(M), and the equations will always be consistent. Hence, 
we shall always have at least one solution, namely, the trivial solution. 

The basic question, then, becomes one of determining the conditions under which 
solutions other than the trivial one exist. As with the case for nonhomogeneous 
equations, the answer depends on the relationship between r(A)=r(M) = ̂  and n, the 
number of unknowns. Since k cannot exceed n, we are left with the two cases: (a) A: = « 
and {b)k<n. The results in each case are contained in the following assertions: 

1. Given a set of homogeneous Unear equations Ax = 0, involving m equations in n 
unknowns, a unique (and trivial) solution x = 0 exists if r(A) = k = n. 

2. Given a set of homogeneous linear equations Ax = 0, involving m equations in n 
unknowns, an infinite number of solutions exist if r(A) = k<n. 

We can illustrate these cases by the following set of m = 3 equations inn = 2 unknowns: 

2JCI + X 2 = 0 

3JCI + 2 X 2 = 0; 

7xi + 4x2 = 0 

A = 

2 1 

3 2 

7 4 
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With homogeneous equations, there is no point in obtaining M, the augmented matrix, 
since the appended column would be the zero vector. Rather, we can reduce A itself to 
echelon form, so as to get 

^1 1/2 

HA =10 1 

0 0 

From H^ we see that r(A) ~k = n =2. Next, if we subtract j times row 2 from row 1, we 
get 

N = 

with the trivial solution JCi = 0, ^2 =0. Moreover, the third original equation is redundant 
and, as a matter of fact, equals twice the first equation plus the second. 

An illustration of the second case, r(A) = ̂  < AI, is the following set of m = 2 equations 
inn = 3 unknowns: 

2Xi + ^ 2 + 3 X 3 = 0 

Xi •^X2-X2 = 0 

As before we find the echelon form of A as 

'l 1/2 3/2' 

1 0 

0 1 

0 0 

IXi + 0 X 2 = 0 

; 0^1 + 1x2 = 0 

OJCI + 0 ^ 2 = 0 

HA = 
0 1 

and note that A'(HA) =r(A) = 2 and, hence, k<n. Next, we find the identity submatrix 
for the first two rows and two columns by subtracting 5 of row 2 from row 1: 

N = 
1 0 

0 1 

The equations can now be written"* as 

Ixi +0^2 = -4x3 

Oxi + 1x2 = 5x3 

and if we let X3 = 73, we have the general solution, in vector form, as 

x = 

* Note here that the implied vector I _5jf̂  J in the third column of the preceding matrix has simply 
been transposed to the right-hand side of the equation. 

- 4 7 3 

573 

73 

= 7 3 ' 

~-4~ 

5 

1 
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Note, here, that m<n; hence, k<n.lfthe number of equations is less than the number 
of unknowns, we must have an infinite number of solutions.^ 

One point of major difference between the present case and the counterpart case 
involving nonhomogeneous equations concerns the solution vector in situations involving 
k<n. In the case of homogeneous equations, we find that 

-473 

X = I 573 

73 

and observe that each entry of x involves the arbitrary parameter 73. Thus, if we set 
73 = 0, then X = 0, and the trivial solution is included. Also, in the present illustration, 
where we have only one parameter 73, each solution is a scalar multiple of each other 
solution. For example, if we let 73 = 1 and then let 73 = 2, we have 

Xi = 

- 4 

5 

1 

X2 = 10 

2 

= 2xi 

In contrast, if we reproduce the solution 

x = l 6-373 

73 

in Section B.2.2 dealing with nonhomogeneous equations, we see that the first entry (2) 
does not involve 73. 

To sum up, if some x° 9̂  0 is a solution, then Xx° (where X is an arbitrary scalar) is 
also a solution in the case of homogeneous equations (a fact that was noted in Chapter 5 
in the context of matrix eigenstructures), provided that n-k= I. If more than one free 
parameter is found (i.e., n-k> \), then it no longer follows that all solutions are scalar 
multiples of each other. However, if x° 9̂  0 is a solution, it still follows that Xx° is also 
a solution. This can be easily seen by noting that 

XAx''=A(Xx°) = 0 

Again, as recalled from the discussion of eigenstructures in Chapter 5, if A is nonsingular 
and r(A) =k = n, then nontrivial solutions cannot exist. 

In summary, we can recapitulate the general method for solving either case: 

1. nonhomogeneous equations of the form Ax = b; 
2. homogeneous equations of the form Ax = 0. 

^ As observed, in the case of homogeneous equations, either one solution exists (i.e., the trivial 
solution) or an infinity of solutions exists, depending upon the relationship between matrix rank and 
number of unknowns. 
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In the nonhomogeneous equations case the augmented matrix M is reduced to echelon 
form and then, via additional elementary row operations, to identity matrix form for the 
appropriate submatrix.^ In the homogeneous equations case the analogous operations are 
carried out on the coefficients matrix A. 

Figure B.2 recapitulates the various outcomes in tree diagram form. If we examine the 
case of nonhomogeneous equations first, we see that the primary outcomes are (a) none, 
(b) one, and (c) infinitely many solutions. We check r(A) versus r(M) to ascertain which 
condition prevails. 

Assuming that r(A) =r(M) = /:-and, hence, at least one solution exists—we check to 
see whether k = n, the number of unknowns. If so, then a unique solution exists. Next, if 
/: = m, all equations are independent, while if A: < m, some equations {m - k o{ them) are 
redundant. Part (a) designates the first case in the tree diagram, while Part (b) designates 
the second. 

\i k<n, an infinite number of solutions exist. Again, we check to see \{k = m or 
A: < m so as to see if the equations are either all independent or not. Similar remarks 
pertain to the case of homogeneous equations with the exception, of course, that just one 
(the trivial solution) or infinitely many solutions exist in this instance; that is, if the 
system is homogeneous, it is consistent. 

B.3 INTRODUCTORY ASPECTS OF GENERALIZED 
INVERSES 

In Section B.2 a general method, utilizing reduction to echelon form followed by 
additional elementary row operations for finding an appropriate identity submatrix, was 
illustrated for solving sets of simultaneous equations. As was noted, provided that the 
equations are consistent, a solution—indeed an infinite number of solutions—can be found 
if A~^ the regular inverse of the coefficients matrix, does not exist. 

At this point our interest centers on cases in which A"\ in the usual sense, does not 
exist, and yet we would still like to solve the set of equations of interest. This is the type 
of problem that the concept oigeneralized inverse has been developed to solve. 

The literature on generalized inverses is of relatively recent origin, and its 
nomenclature and mathematical notation are not standard across authors. Two basic 
types of generalized inverse are discussed here: 

1. the Moore-Penrose inverse (sometimes referred to as the pseudoinverse), written 
a sA^ 

2. the g inverse (sometimes referred to as the conditional inverse), written as A~. 

However, the reader should be made aware of the fact that many types of generalized 
inverses exist—each obeying a particular set of properties.^ Also, different ways have been 
developed to define these inverses. Our discussion in this appendix merely scratches the 
surface of an already broad and still expanding topic. 

^ The general procedure for converting the echelon reduced form to an identity submatrix is 
formalized in Section B.4. As noted there, the complete procedure involves reduction of M to what is 
known as Hermite form (in the case of a square coefficients matrix). 

^ The names and symbols for the Moore-Penrose and the g inverse follow those of Good (1969); 
other authors use different names, symbols, or both. 
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B.3.1 The Penrose Conditions 

Research on generalized inverses goes back at least to 1920 with the work of Moore. 
Working independently, Penrose (1955) later defined the concept of 2i unique generalized 
inverse (now often called the Moore-Penrose inverse, denoted by A"̂ ) as a matrix that, in 
conjunction with the matrix A from which it is derived, satisfies four conditions: 

(i) AA^A = A (ii) A^AA^ = A^ 

(iii) (AA'^)' = AA'̂  (symmetry) (iv) (A'^A)'=A"^A (symmetry) 

There are alternative contexts in which to discuss A"̂ . One context concems the familiar 
case of solving a set of nonhomogeneous linear equations: 

Ax = b 

As we know, if A is nonsingular, a unique solution exists and is given by 

x = A-^b 

Moreover, the reader can easily observe that A"S the regular inverse, satisfies the four 
Penrose conditions. Still, cases might exist where A is either rectangular or else square and 
singular so that A"^ does not exist. 

Suppose, then, that we defme a matrix A of order m xn where r(A) = A: < min(m, n). 
If a Moore-Penrose inverse A"̂  exists, it will be of order nxm; this must be so because 
AA^ is symmetric and, hence, square. It can be proved that for any matrix A, there exists 
a unique matrix A"*" that satisfies the four Penrose conditions.^ 

However, in solving a set of simultaneous equations, it is not always necessary that the 
solution be unique, as pointed out in Section B.2 in the context of echelon matrices. 
Moreover, it might be of interest to consider generalized inverses that obey only one (or 
more) of the four Penrose conditions. For example, if 

x = A-b 

is a solution to a set of consistent equations, A" (also of order n xmif Aism xn) need 
not be unique. 

Indeed, in order for A~, called the g inverse, to exist, only the //A'^/'of Penrose's four 
conditions, namely. 

AA-A = A 

need be satisfied. Thus, if our interest centers on solving simultaneous equations, and we 
do not require the generalized inverse to be unique, it may be easier to compute A"—and 
usually it is—than to compute A"̂ , the Moore-Penrose generalized inverse. 

Accordingly, we shall wish to examine both the "stronger" (Moore-Penrose inverse) 
case and the "weaker" (g inverse) case. We say "stronger" since all Moore-Penrose 
generalized inverses are g inverses but not the converse. 

A proof of this assertion can be found in Graybill (1969, p. 97). 
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We start with the Moore-Penrose generalized inverse by showing its relevance to basic 
structure (or singular value decomposition), a concept already discussed in Chapter 5. Not 
only does the concept of basic structure provide one way to define A"̂ , but the present 
discussion should also help illuminate earlier remarks on matrix decomposition into its 
basic structure. 

Then we tum to a discussion of A", the g inverse. Our interest in this type of 
(nonunique) generalized inverse stems from the relative ease with which it can be 
computed and its close connection with solution methods for simultaneous equations 
that have already been discussed in Section B.2. 

B.3.2 Left and Right General Inverses 

In the discussion (Section 5.7) of the basic structure of an arbitrary matrix A, we 
recall that A, of order m xn, can be decomposed into the triple product 

A = PAQ' 

where P'P = Q'Q = I and A is diagonal of order k xk, with k < min(m, n) positive entries 
that can be arranged in decreasing order of magnitude. 

For the moment, let us place no restrictions on A—it need be neither square nor basic 
and, hence, the rank of A may be less than its smaller order. Next, let us consider the 
following matrix A"̂ , defined as being of rank k and of order n xm:^ 

A^ = QA-^P' 

We obtain A"̂  from A = PAQ' by taking the reciprocals of the diagonal entries of A and 
then transposing the triple product PA"^Q' into QA"^P'. 

Let us see what happens if we then premultiply A by A"̂ : 

A^A = (QA-ip')(PAQ') = QA-HP'P)AQ' = QA-^(I^xfc)AQ' 

= Q(A-^A)Q' = Q(I;,,^)Q' = QQ' 

What is found here is the major product moment of the right orthonormal section of A. 
As we know QQ' is symmetric, since it is a product moment matrix. 

Suppose next that A is postmultiplied by A"". Without going through the algebra, the 
result is 

AA^ = PP' 

where P is the left orthonormal section of A. Again, PP' is symmetric since it is a (major) 
product-moment matrix. 

The reader will observe that A^ A and AA"̂  are each symmetric. Moreover, we also 
have 

(i) AA^A = A (ii) A^AA^ = A^ 

PP'PAQ' = PAQ' QQ'QA-^P' = QA'^P' 

= A =A" 
^ As recalled from Chapter 5, decomposition to basic structure is unique; also A^ is unique, given 

that QA~* P' is also of rank k. 
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and, hence, conclude that all four of the Penrose conditions are met. Notice that 
r(A"^) =r(A) =/: where k < min(m, n). 

Next, let us suppose that Ay„x« (with m> n) is basic (as described in Chapter 5). If 
so,k = n and Q' in the triple product PAQ' will be square, of order nxn, resulting in 

A^A = QQ' = Q'Q = I „ , „ 

If this relation is met, we let A"̂  = L; the matrix L is sometimes referred to as the left 
pseudoinverse of A. 

By the same token, if A is "horizontal," of order m xn{m< n), and basic, then k=m 
and P will be square, of order m xm, and we shall have 

AA^ = PP' = P'P = K 

If this relation is met, we let A "̂  = R; the matrix R is sometimes referred to as the right 
pseudoinverse of A. Finally, it should be clear that if and only if A is both square and 
basic (i.e., nonsingular) will it possess both a left and right pseudoinverse and these 
inverses will be the same. ^^ 

However, suppose we retum to the first case in which A is nonbasic: 

r(A) = k<min(m, n) 

It is possible, of course, to find a generalized inverse of A that meets only the first 
Penrose condition 

AAA = A 

by defining A~ in terms of the square roots of all of the eigenvalues of either AA', if 
m < rt, or A 'A, if m > «, including those eigenvalues that turn out to be zero. 

If so, we refer to this case as a ^ inverse of A and continue to denote it as A". In this 
version of the generalized inverse the basic diagonal A of A(=PAQ') has mm(m, n)-k 
zeros, and P and Q' are no longer unique. It tums out, however, that 

x = A-b 

is still a solution to the set of consistent equations 

Ax = b 

and, in this sense, A is still a generalized inverse, specifically a^ inverse. 

®̂ Still, it should be pointed out that although A"̂  is unique, the matrix A- i f basic but 
singular-will, in general, have an infinity of other matrices that satisfy LA = I or AR = I, as the case 
may be. However, only one of this infinity of matrices will be the Moore-Penrose inverse. 
Furthermore, if A is nonsingular, only one matrix A"^ (=A^) exists. Thus, A, if nonsingular, has 
exactly one inverse, A"'. If A is singular, it has an infinity of generalized inverses, one of which is the 
(uniquely specified) Moore-Penrose inverse, A"̂ . 
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Why should we ever want to find a version of QA"^P' whose diagonal is of larger order 
than k xk, where r(A) =kl Again, the motivation may be pragmatic in that it may be 
easier to compute A" (as defined above) even though it is no longer unique. 

We now turn to computational methods for finding the Moore-Penrose inverse, after 
which the g inverse A" is discussed. 

B.3.3 Some Numerical Procedures for Computing A^ 

To illustrate the computation of A"*", let us consider the 3 x 2 matrix 

1 3 

A = | 1 2 

2 1 

If r(A) = 71 = 2, we should be able to find a left general inverse such that LA = I2 x2 • 
Using the procedure described in Section 5.7.3, we first find the product-moment 

matrix with the smaller order, in this case the minor product moment 

A'A = 
7 

14 

and solve for its eigenstructure 

[18.062 0 
D = 

L 0 1.938 
We then compute the basic diagonal and its inverse 

4.250 0 

-0.502 

-0.865 

0.865 

-0.502 

and then solve for P: 

P = AQA"̂  = 

0 1.392 

-0.502 

-0.865 

A-̂  = 

0.865 

-0.502 

0.235 0 

0 0.718 

0.235 0 

0 0.718 

-0.728 -0.460 

-0.525 -0.099 

-0.439 -0.882 

The matrix A is now expressed in terms of basic structure as A = PAQ'. The left general 
inverse is then 

A'̂  = L = QA-^P' = 
-0.2 0 0.6 

0.313 0.142 -0.228 
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-0.2 0 

0.313 0.142 

0.6 ] 

•0.228 J 

fl 3 

1 2 

[2 1 

= 
1 0 

0 1 
L. _J 

and we have the desired result: 

[-0.2 
LA = 

L 0.31 

However, now let us take the case where A is nonbasic. To illustrate, consider 

1 i 
A = | 1 2 

2 4 

In this case we know that A is not basic since the second column is twice that of the first 
column and r(A) = 1. We first find 

A'A: 

By procedures identical to those just illustrated, the basic structure of A is then found to 
be 

P A Q' 

6 12 

12 24 
= 6 

1 2 

2 4 

A = 

-0.408 

-0.408 

-0.816 

[5.477] [-0.477 -0.894] = 

1 2 

1 2 

2 4 

and A"*", of rank /^(A) = 1, is 

A^ =Qi ^-ip' = 
0.033 0.033 0.067 

0.067 0.067 0.133 

The reader can verify that the four Penrose conditions are met, although now it is no 
longer true that A'̂ A = I. 

Computing A"̂  after first solving for the basic structure of a matrix is only one of 
many solution methods. By way of contrast, let us consider another method, due to 
Penrose himself (1956), that can also be used to find A"̂ . This method involves 
implementation of a fairly simple algorithm that entails the following steps: 

1. Compute B = A 'A . 
2. Let Ci = I, the identity matrix. 
3. Compute C/ + i = I(l//)tr(C/B)-C/B for / = 1,2,. . . , k-\}^ 
4. Compute /:CfcA7tr(C;,B), to get A"". 
5. Also, it will be found that C^ + iB = 0; trCC^̂ B) ̂  0, so that r(B) = r(A) = k. 

* * The reader should recall that the trace (tr) of a square matrix A„x« is equal to the sum of its 
main diagonal elements: 

n 
tr(A)= Z Hi 

/ = 1 
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Applying the procedure to the last problem (where A is nonbasic) gives us 

1. B = A'A 
6 12 

12 24 

2. Ci = 
1 0 

0 1 
CiB = 

3. C2=Itr(CiB)-CiB 

1 0 

0 1 

30 O' 

0 30 

6 12 

12 24 

6 12 

12 24 

6 12 

12 24 

24 "12 

12 6 

trCiB = 30 

CoB = 
0 0 

0 0 

Since C2 B = 0 and tr(Ci B) i= 0, we know that r(B) =r(A) = 1; we can then go on to find 

4. A" = 
ICiA' 

tr(C,B) 
1 

30 

1 1 2 

2 2 4 

0.033 0.033 0.067 

0.067 0.067 0.133 

We find, of course, the same solution for A"̂  as found earlier. The Penrose procedure, like 
the basic structure approach, can be used to find A"̂ , whether or not A is basic. To 
complete the discussion, let us apply the Penrose computational procedure to the first 
case, where A is basic: 

1. A^ 

A" = 

1 3 

1 2 

2 1 

I ( 

3 

I ( 

3 

2C2A^ 
tr(C2B) 

14 

- 7 

B = A'A = 
6 7 

7 14 

2. 

3. 

Ci = 

C2 = 

1 0 

0 1 

~1 0~ 

0 1 2 0 -

CiB = 

6 

7 1 

6 

7 

7~ 

4 = 

7 

14_ 

' lA 

-1 

; t 

6j 

tr(CiB) = 20 

C2B = 

where tr(C2B) = 70 

_2_ 
70 

1 1 2 

3 2 1 

-0.2 0 

0.313 0.142 

35 0 

0 35 

0.6 

-0.228 

Note that the Penrose computational procedure involves less computation— 
particularly, no need to find eigenstructures—than the method based on matrix 
decomposition via basic structure.^^ 

Note also that 

€3 = 
1 0 

0 ij 
( 7 0 / 2 ) -

"35 0' 

_ 0 35J 
and, Xi{Q^B) i= 0; hence, /-(A) = 2. 
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B.3.4 Some Properties of the Moore-Penrose Inverse 

In many respects the Moore-Penrose inverse A"*" acts Uke a regular inverse A"^ 
(Indeed, A"̂  equals A"^ if A is nonsingular.) However, even in other cases. A"*" possesses a 
number of properties, many of which are similar to those displayed by the regular inverse. 
Some of the more important of these properties are Usted below: 

1. The Moore-Penrose inverse of the transpose of A is the transpose of the 
Moore-Penrose inverse of A: (A')"^ = (A"^)'. 

2. The Moore-Penrose inverse of A"*" is equal to A: (A"̂ )"̂  = A. 
3. The rank of the Moore-Penrose inverse of A is equal to the rank of A: 

r(A^) = r(A). 
4. For any matrix A, (A'A)* = A^CA')"" . 
5. For any matrix A, (AA^)^ = AA^; (A^A)^ = A^A. 
6. If A = A', then A^=(A^y. 
7. If A = A',thenAA^ = A'"A. 
8. If A is nonsingular, then A~̂  = A"*̂ . 
9. If A is an m X « matrix of rank m, then A"*" = A ' (AA')"^ and AA"*" = I (as related to 

Section B.3.2). 
10. If A is an m X « matrix of rank n, then A"̂  = (A 'A)"^A' and A'̂ A = I (as related 

to Section B.3.2). 

In addition to the properties Usted above, the Moore-Penrose inverse figures 
prominently in the solution of sets of linear equations. More specifically, given the set of 
nonhomogeneous equations 

Ax = b 

where A is of order m xn and b is an m x 1 vector of constants, the system of equations 
is consistent if and only if 

AA^b = b 

Second, given that the system is consistent (and, hence, has at least one solution), then 
for each nx\ vector 7, the « x 1 vector x is a solution where 

x = A''b + (I-A^A)y 

and every solution to the system can be so written for some nx\ vector y. 
As just indicated, the Moore-Penrose generalized inverse, assuming it can be found 

easily, provides a way to solve sets of linear equations. While in principle, we could always 
compute A"̂  in solving sets of simultaneous equations, it is usually the case that we do 
not need the stronger properties of the Moore-Penrose inverse to get the job done. 

However, as recalled, a g inverse A" also provides a solution to a set of consistent 
equations, albeit one that is not unique but, on the other hand, one that is relatively easy 
to compute. Accordingly, we now tum to a discussion of the g inverse A" and its role in 
solving sets of simultaneous equations. 
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B.4 THE g INVERSE 

If we let A be an m x/? matrix, a matrix A", of order n xm, is defined to be a ^ 
inverse of A if and only if it satisfies the first of the Penrose conditions 

AAA = A 

As pointed out earlier, the Moore-Penrose inverse of A is also a g inverse of A, but the 
converse does not hold in general. Moreover, in general A" is not unique for a given A. 

A g inverse is particularly useful in the practical setting of solving sets of simultaneous 
equations. Fully analogous to the Moore-Penrose inverse, the system of equations Ax = b 
has a solution if and only if 

AA-b = b 

Second, given that the system is consistent, then for each nxl vector 7, the « x 1 vector 
X is a solution where x is 

x = A-b + (I-A-A)y 

Finally, every solution to the system can be so written for some nxl vector y. 
The value of a ^ inverse relates to its relative ease of calculation, particularly by means 

of the echelon form of a matrix, as considered in Section B.2. However, before discussing 
a general approach to computing A" (in the context of solving sets of equations), we 
consider the concept of Hermite form. The Hermite form of a matrix provides the key 
concept for obtaining A". 

B.4.1 The Hermite Form of a Square Matrix 

A square {n x n) matrix J is defined to be in (upper) Hermite form if and only if it 
satisfies the following conditions: 

1. J is upper triangular. 
2. Only zeros and ones are on its main diagonal. 
3. If a row has a zero on the diagonal, then every entry in the row is zero. 
4. If a row has a one on the diagonal, then every other entry is zero in the column in 

which the one appears. 

If J is of Hermite form, it is also the case that 

- T2 J = J 

and J is said to be idempotent. Moreover, for any nxn matrix A, there exists a 
nonsingular matrix G such that 

GA = JA 
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and so A can always be reduced to Hermite form via G. (However, G is nonunique, in 
general, although J^ will be.) 

Just as was the case in reducing A to echelon form H^, we can use elementary row 
operations to reduce A„XM to Hermite form J^ ^̂  The matrix G is the nonsingular matrix 
that brings about the reduction of A„x« to Hermite form. 

Moreover, once this is done it turns out that the job is finished since A" can be defined 
as 

A- = G 

That is, G is the g inverse of A, and all we have to do to find G is to reduce A to Hermite 
form via elementary row operations while performing companion operations on I. 

However, since the Hermite form does not exist for rectangular matrices, a slight 
modification is required to find A" = G when A is rectangular. If A is vertical Qn xn, 
with m >«), we can append a set of 0 column vectors to make A square. That is, 

Ao = 

where AQ is m x m. Then, if G is a nonsingular matrix, such that GQAQ = JAO ' where J^^ 
is the Hermite form of AQ , we have 

Go = 
G 
Gi 

where G is the upper n xm submatrix of Go. This is the g inverse of A. Similarly, if A is 
horizontal (m xn, with n > m), we can append a set of 0' row vectors to make A square 
and proceed to find Qyixm ? the left-hand submatrix of GQ.̂ "* 

The strategy should now be clear. In the rectangular case, we make A square by adding 
columns or rows of zeros, as the case may be. We then find a nonsingular matrix that 
reduces AQ to Hermite form. The matrix G is the g inverse of A. 

However, one more facet of the problem has to be introduced before proceeding to 
find A~. In Section B.2 a general procedure was introduced for solving sets of 
simultaneous equations via reduction of either the coefficients matrix A or the 
augmented matrix M to echelon form. As might be surmised, if A is already square, or 
made square by appending columns (or rows) of zeros, the Hermite form JA of A can be 
obtained from its echelon form H^. This is done by transforming rows of H, via 
additional elementary row operations, until JA is found. The matrix G that summarizes 
the full set of elementary row operations used in reducing A to HA and then HA to JA is 

^̂  As will be shown, if A is square to begin with (or can be made square by procedures to be 
described later), we can compute J A via additional elementary operations on H A -

*̂ The matrix would appear as 

Go = [ G : G J . 

The next section shows some numerical examples of the general procedure, including a case in which 
A is rectangular. 
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A", the desired g inverse. In general, A" will not be unique.^^ However, the matrix JA in 
Hermite form is unique for a given matrix A. 

Before proceeding with the computation of A", three additional properties of matrices 
in Hermite form are of interest to note: 

1. The Hermite form J^ of A has the same rank as A. 
2. If A, of order n xn,is nonsingular, then J^ is the n xn identity matrix I. 
3. The rank of A is equal to the number of diagonal elements of JA that are equal to 

unity. 

With the foregoing comments as background, a general procedure can now be stated for 
finding A": 

1. If A is rectangular, make it square by appending columns (or rows) of zeros. 
2. Via elementary row operations reduce A to echelon form and then to Hermite 

form. At the same time, perform the same operations on I, the associated n xn identity 
matrix. 

3. If A is nonsingular, then its Hermite form is I and A" = A~^ 
4. If A is singular, then I will be transformed to G = A" as A is being reduced to JA , 

its Hermite form. And A" will be the g inverse of interest. 

1 

2 

3 

4 

5 

6 

2~ 

3 

5 

; 1 = 

B.4.2 Some Numerical Examples 

Let us now consider some illustrations of finding A" by means of the method 
presented above. First, let us take a nonsingular matrix A and its companion identity 
matrix: 

" l 0 0 

0 1 0 

0 0 1 

As outlined earher, the task is to reduce A to echelon form H^ and then into Hermite 
form JA via a series of elementary row operations. Each elementary row operation that is 
performed on A is also performed concurrently on the associated starting identity matrix 
I. As A is reduced to Hermite form JA , I is transformed to A~, the desired g inverse. 

The reader should note the similarity of this procedure to that followed in 
Section B.2. In the present case J^, the Hermite form of A, takes on the role of the 
identity submatrix computed from the echelon matrix in Section 3.2. 

We can now start the row operations, bearing in mind that these, in general, are not 
unique. We first subtract twice row 1 from row 2 and subtract 3 times row 1 from row 3: 

" 1 0 0 

- 2 1 0 

^-3 0 1 

^̂  The reason why A" (=G) is not unique is simply because, in general, there are different sets of 
elementary row operations (summarized in G) that can lead to J A - a s a matter of fact, an infinity of 
such sets. 

1 

0 

0 

4 

- 3 

- 6 

2 

- 1 

- 1 

; 
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Subtract twice row 2 from row 3: 

1 

0 

0 

4 

- 3 

0 

2 

- 1 

1 

; 

1 

•2 

1 

0 0 

1 0 

- 2 1 

Multiply row 2 by —1/3: 

HA = 

1 4 

0 1 

0 0 

2 

1/3 

1 

1 

:/3 

1 

0 

-1 /3 

- 2 

0 

0 

1 

At this point we note that A is in echelon form H^ and that r(A) = 3. The next task is to 
reduce H^ to Hermite form J^ • To do this, subtract 4 times row 2 from row 1: 

1 0 2/3" 

0 1 1/3 

0 0 1 

; 

-5/3 

2/3 

1 

4/3 0 

-1/3 0 

- 2 1 

Subtract 2/3 of row 3 from row 1 and subtract 1/3 of row 3 from row 2: 

JA =1 = 

The reader can then check to see that 

1 0 0 

0 1 0 

0 0 1 

; 

-7/3 8/3 -2/3 

1/3 1/3 -1/3 

1 - 2 1 

= G = A" = A"' 

AA- = AA - I _ 

Note also that the Hermite form J^ of a nonsingular matrix A is an identity matrix of the 
same order. 

Next, we consider the case where A is square but not of full rank. In Section B.2.1 we 
encountered a matrix of this type: 

1 0 0 

0 1 0 

0 0 1 

1 1 3 

1 2 6 

0 1 3 

; 1 = 

If we subtract the first row from the second, we get 

\ 1 3~ 

0 1 3 

0 1 3 

; 

1 0 0 

- 1 1 0 

0 0 1 
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Next we subtract the second row from the third: 

HA 

and note that we have the echelon form of A, H^, in which r(A) = 2. Next, we subtract 
the second row from the first: 

1 1 3 

0 1 3 

0 0 0 

5 

1 

1 

1 

0 0 

1 0 

- 1 1 

= A-

1 0 0 2 - 1 0 

J A = I O 1 3 ; - 1 1 0 

0 0 o j [ 1 - 1 1 

to obtain J^, the Hermite form of A. We find A" as well and note that 

JA 

as it should, since J^ is idempotent. 
We then solve for x as 

JA - JA 

x = A-b 

where, from Section B.2.1, b' = (8, 14, 6), so that 

2 

1 

1 

A" 

- 1 0 

1 0 

- 1 1 

b 

r s' 
14 

L ^ 

= 

2 

6 

0 

X = 

However, as noted earUer, when the rank of A is less than the number of unknowns, there 
is an infinite number of solutions. Hence, we express x in the general form: 

x = A-b+(I-A-A)y 

where y is an arbitrary vector. Specifically, we have 

X = 

A-b 

2 

6 

0 

I 

1 0 0~ 

0 1 0 

0 0 1 

-

A A 

1 0 0 

0 1 3 

0 0 0 

7 

7i 

72 

73 

~2"" 

6 

0 

+ 

o ' 

-373 

73 

= 

~ 2 ~ 

6-373 

73 

where 73 is considered as an arbitrary parameter. Note that this is the same result as 
found in Section B.2.1. 
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Finally, let us consider the case where A is rectangular. As an illustration, we again 
return to Section B.2.2 and consider the 4 x 3 vertical matrix 

A = 

1 

1 

0 

2 

1 

2 

1 

3 

3 

6 

3 

9 

After appending a column vector of zeros to make A square, we have 

Ao^ 

1 1 3 

1 2 6 

0 1 3 

2 3 9 

0 

0 

0 

0 

; io = 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

Note that the associated identity matrix \Q has an extra row added. Reduction of AQ to 
echelon form (with concurrent elementary row operations on IQ) gives us first the 
echelon form: 

H. 

1 1 3 

0 1 3 

0 0 0 

0 0 0 

0 

0 

0 

0 

1 

- 1 

1 

- 1 

0 0 0 

1 0 0 

- 1 1 0 

- 1 0 1 

and a further elementary row operation that subtracts row 2 from row 1 leads to 

JA = 

1 0 0 

0 1 3 

0 0 0 

0 0 0 

2 

- 1 

1 

- 1 0 0 

1 0 0 

- 1 1 0 

- 1 - 1 0 1 

= Go 

We then write A by dropping the fourth row of the transformed identity matrix to 
get the 3 x 4 matrix 

G = A- = 

2 

1 

1 

- 1 0 0 

1 0 0 

- 1 1 0 
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Having found A , the g inverse, we can go on to solve for x in terms of the vector b' = (8, 
14,6, 22), as from Section B.2.2: 

x = 

2 

1 

1 

A" 

-1 0 O] 

1 0 0 

- 1 1 0 

b 

8 

14 

6 

22 

= 

2 

6 

0 

Since the rank of A is only two, we have an infinite number of solutions, written in 
general form as 

x = 

A'b 

2 

6 

0 

+ s 

I 

1 0 0 

0 1 0 

0 0 1 

A-A 

1 0 O" 

0 1 3 

0 0 0 

T 

7i 

72 

73 

r2~ 
6 

0 

+ 
~ 0 ~ 

- 373 

73 

= 

~ 2 ~ 

6-73 

73 J 

as was also obtained in Section B.2.2. 
We observe, in passing, that the fourth row in A is redundant with the others, since it 

is the sum of the first two rows. 
The procedure just outlined is quite general and can be applied to square or 

rectangular coefficients matrices, using the modification (to make A square) that was just 
illustrated. Of course, if one or more rows of zeros are appended to make A square, then 
the resulting additional columns of the transformed identity matrix are dropped in 
finding A"; Otherwise, the method is the same. In brief, the present method of 
computing g inverses is fully consistent with the echelon procedure of Section B.2. Thus, 
the echelon procedure (and consequent reduction of A to an identity submatrix) of 
Section B.2 is a general method for solving a specific set of linear equations. 

The present method of solving for A" is also fully general for finding a g inverse and 
then solving the system 

x = A-b + (I-A-A)T 

for any desired b of constants. If A is nonsingular, then A" = A~^ and the second term on 
the right drops out. If A is singular, then A" will still exist (as long as the equations are 
consistent, a test that can be made via the procedure of Section B.2). 

Generalized inverses, of various types, are playing increasingly important roles in 
multivariate analysis. For more extensive discussion of the topic, the reader is referred to 
books by Pringle and Rayner (1971) and Rao and Mitra (1971). 
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B.5 SUMMARY 

The role of generalized inverses in solving sets of linear equations has been the main 
subject of this appendix. GeneraUzed inverses provide a counterpart role to regular 
inverses in cases where the coefficients matrix is singular. We started the discussion by 
reviewing a general procedure, involving reduction of either a coefficients or an 
augmented matrix to echelon form, for determining whether a set of simultaneous 
equations had (a) none, (b) exactly one, or (c) infinitely many solutions. 

A general solution procedure, employing elementary row operations, was described 
and illustrated numerically. After reducing the augmented matrix M or the coefficients 
matrix A to echelon form, Hĵ  or H^, additional elementary row operations were 
employed to reduce H^ (or H^ ) to an identity submatrix. Illustrations were provided for 
both nonhomogeneous and homogeneous sets of equations. 

We then turned to a discussion of generalized inverses. The Penrose conditions were 
introduced, and the Moore-Penrose inverse A"̂  was described in the context of basic 
structure. The related concepts of left and right pseudoinverses were also illustrated, and 
properties of the (unique) Moore-Penrose were listed. 

The appendix was concluded with a companion discussion of the g inverse A". This 
(nonunique) generalized inverse need satisfy only the first Penrose condition. In general, 
A" is easier to compute than A"*" and, furthermore, plays a central role in solving sets of 
simultaneous equations. Several numerical illustrations of one procedure, involving 
reduction of a square coefficients matrix to Hermite form, were presented and tied in 
with the general procedure (of Section B.2) that was based on matrix reduction to 
echelon form. 

REVIEW QUESTIONS 

1. By means of reduction to echelon form, find the rank of 

c. 

1 

3 

1 

3 

1 

3 

4 

2 

2 

6 

r 
7 

4 

12 

b. 

d. 

B = 

D = 

2. Reduce the following matrices to identity submatrices: 

1 

1 

2 

2 

2 

4 

3 

5 

8 

1 2 0 - 1 

3 4 1 2 

-2 3 2 5 

b. 0 2 3 4 

2 3 5 4 

4 8 13 12 
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3. Using elementary row operations on A and I, simultaneously, find the inverse of 

a. 
A = 

b. 

A = 

4. Find a left pseudoinverse of 

A = 

5. Consider the system of equations 

Xi + 3^2—2^3—X4 + 2^5 = 1 

2x 1 + 6x2 — 4:x:3 — 2x4 + 4^5 = 2 

Xi + 3x2 —2:JC3 + X4 

2xi + 6x2 +X3—X4 

= -1 

= 4 

Reduce the augmented matrix M to echelon form and find x. 
6. Consider the matrix 

^1 3 

A = 2 1 

3 2 

(a) Find the Moore-Penrose inverse A"*". 
(b) Find a g inverse A" via reduction of A to Hermite form. 


