
CHAPTER 2 

Vector and Matrix Operations 
for Multivariate Analysis 

2.1 INTRODUCTION 

Facility in the arithmetic of vectors and matrices, just like skill in applying ordinary 
arithmetic to daily affairs, is essential in multivariate analysis. In this chapter our purpose 
is to review the fundamentals of vector and matrix operations and the concept of the 
determinant of a matrix. The emphasis here is on defining vector and matrix operations 
and illustrating the mechanics of their appHcation. 

We begin the chapter with a description of vectors as ordered Ai-tuples of numbers that 
are subject to certain manipulative rules. Selected arithmetic operations on vectors are 
defined and illustrated numerically. A number of special-purpose vectors, such as the null 
vector, unit vector, and sign vector, are also described. 

Matrices are then introduced and discussed from the same kind of viewpoint. Also, we 
describe various kinds of special matrices, such as symmetric, diagonal, scalar, and 
identity matrices and illustrate their appHcation via small numerical examples. 

The determinant of a matrix plays an important role in more advanced topics, such as 
matrix inversion, rank, and quadratic forms, that are introduced in later chapters. For this 
reason it seems appropriate to discuss determinants and some of their numerical 
properties at an early stage, and we do so in this section of the chapter. 

We conclude the chapter with a discussion of certain matrices of particular interest to 
multivariate analysis, namely mean-corrected sums of squares and cross product (SSCP) 
matrices, covariance matrices, and correlation matrices. Computation of these major 
types of statistical matrices is carried out as a demonstration of how concise the matrix 
formulation of various arithmetic operations can be. 

A word on notation: boldface lowercase letters, a, b, c, etc., will be used to denote 
vectors and boldface capitals. A, B, C, etc., will be used for matrices. The determinant of 
a matrix A will be expressed as |A|. A prime, for example, d! or A', will denote the 
transpose of a vector or matrix, respectively. (The concept of transpose is taken up later 
in the chapter.) 

The material of this chapter is presented rather crisply since our purpose here is to 
provide only the mechanics of vector and matrix operations before introducing the more 
conceptually oriented material of later chapters. However, sufficient numerical examples 
are presented to illustrate the computational aspects in some detail. 

26 
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2.2 VECTOR REPRESENTATION 

Multivariate analysis makes liberal use of vector concepts from linear algebra. Vectors 
can be defined in four major ways: (a) as strictly abstract entities on which certain 
relations and operations are specified, (b) as directed line segments in a geometric space, 
(c) as coordinate representations of points in a geometric space, or (d) as ordered ^-tuples 
of numbers. We adopt the last viewpoint in this chapter in order to demonstrate the kinds 
of operations that can be performed on vectors. The geometric representations of (b) and 
(c), which can be illustrated graphically if two or three dimensions are involved, are 
discussed in Chapters 3-5. 

2.3 BASIC DEFINITIONS AND OPERATIONS ON VECTORS 

A vector a of order n x 1 is an ordered set of n real ̂  numbers (called scalars), which 
we can write as 

ai 

The a\ denote real numbers and are called components, elements, or entries of a. The 
form above is called a column vector and consists of n rows and 1 column of elements 
(from which the designation « x 1 derives). Alternatively we can write a vectora' of order 
1 X n as 

a =(ai,fl2,. . . ,««) 

and call this a row vector, consisting of 1 row and n columns of elements. 
We shall use the notation a to denote a column vector and the notation a', which is 

called the transpose of a, to denote a row vector. By vector transpose, generally, is meant 
that a column vector of order n by 1 becomes a row vector, involving the same ordered 
set of entries, but now of order 1 by n. Similarly, the transpose of a row vector of 1 by « 
is a column vector, involving the same ordered set of entries, but now of order ^ by 1. 

Examples of column vectors are 

3 

1 
J 

"4 

2.6 

5 

-0 . 

; 

2.718 

5 

1 

3 

"18" 

21 

0 

_ 0. 

; X = 

X i 

X2 

^ 3 

Examples of row vectors are 

(3,1); (18,42,6); (V^, 13,0,5.2); (0,0,2,7); \! = {t,,t^) 

* Throughout the book we shall always assume that the scalars are drawn from the set of real (as 
opposed to complex) numbers. 
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We can transpose the 3 x 1 column vector 

^l" 

2 

to get the 1 X 3 row vector 

a =(1,2,3) 

Similarly, we can then find the transpose of the 1 >̂  3 row vector a' = (1,2, 3) as follows: 

l" 

(ay = a = 

and note that we are back where we started, that is, where a is a 3 x 1 column vector. 

2.3.1 Null, Unit, Sign, and Zero-One Vectors 

If all components of a vector are zero, we shall call this a null or zero vector, denoted 
as 0. This should not be confused with the scalar 0. If all components of a vector are 1, 
this type of vector is called a unit vector, denoted as 1. If the components consist of 
either I's or — I's (with at least one of each type present), this is called a sign vector. If 
the components consist of either I's or O's (with at least one of each type present), this is 
called a zero-one vector. To illustrate: 

Column vectors Row vectors 

Null vectors 

Unit vectors 

r 

Sign vectors 

L 

Zero-one vectors 

ro'' 
0 

Lo-

rr 
Ll. 

- 1 

1 

- 1 . 

0" 

1 

_1_ 

(0,0,0,0) 

(1,1,1) 

(1 , -1) 

(0,0,1,1,0) 

As will be shown in subsequent chapters, the zero vector frequently plays a role that is 
analogous to the scalar 0 in ordinary arithmetic. The unit vector is useful in certain kinds 
of summations, as is illustrated in Section 2.8. Sign and zero-one vectors are also useful 
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in various kinds of operations involving either algebraic sums or the isolation of rows, 
columns, or elements of an array of numbers. 

2.3.2 Vector Equality 

Two vectors of the same order (either both n x 1 or both 1 xn) are equal if they are 
equal component by component. Let 

Then 

a = and b = 

bi 

b2 

For example. 

But 

1 a = b 
if and only if 

ai = bi ( / = 1 , 2 , . . •,n)\ 

'3' 

0 

_4_ 

= b = 

• 3 " 

0 

A-

i ^ C = 

i ^ e = 

•3 

0 

2 

3 

4 

LO 

2i^d = 

a ^ a ' = (3,0,4) 

In the last case a and a' are not of the same order, since the first is a column vector and 
the second is a row vector. 

Throughout most of this chapter, we shall present definitions in terms of column 
vectors, although our remarks will also hold true for row vectors.^ Moreover, in discussing 
various operations on vectors, it will be assumed, unless otherwise specified, that the 
vectors are of common order—either all are « x 1 or all are I xn. 

^ When row vectors are employed as numerical examples, emphasis is primarily on conserving 
space. The reader should remember that we could just as appropriately describe the operations in 
terms of column vectors. 
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2.3.3 Vector Addition and Subtraction 

Two or more vectors of the same order can he added by adding correspondent 
components. That is 

a + b = 

a^ -^b„ 

Examples are 

b = a + b = 

c =(1,3); d' = (4,13); 

4 | 

2 

_23_ 

c' + d' = (5,16) 

But we cannot add 

4 

2 

13 

to f = or g = to h' = (6,3,0,2) 

since in each case the order differs. 
The difference between two vectors a and b, of the same order, is defined to be that 

vector, a - b, which, when added to b, yields the vector a. Again, subtraction is 
performed componentwise.^ That is, 

a - b = 

a\-b\ ~ 

a2 — b2 

_an-bn_ 

Examples are 

b = 

c' = (l ,3); d' = (4,13); 

- 2 

a - b = 2 

L _̂ 

c ' - d ' = ( -3 , -10) 

^ A more rigorous presentation would first define multiplication of a vector by a scalar 
(specifically multiplication by -1) , followed by vector addition. Here, however, we follow the more 
natural presentation order of traditional arithmetic in which subtraction follows addition. 
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But we cannot subtract 

e = 

4 

2 

13 

from f - or g = from h '= (6,3,0,2) 

since in each case the order differs. 
The operation of vector addition—of either column or row vectors-possesses the 

following properties: 

1. The sum of two vectors a and b is a unique third vector c. 

Let a = 

Then a + b = c = 

and 

3 

7 

b = 

IS unique. 

2. Vector addition is commutative. 

a + b b + 

T 

_3_ 
+ 

"21 

4^ 
= 

~2" 

A^ 
+ 

1 

_3_ 
= 

3. Vector addition is associative. 

(a + b) + d = a + (b + d) 

Let d = Then 

a + b b + d 

"3" 

L7_ 
+ 

"3" 

_5_ 
= 

[1] 
+ 

_3J 

'5" 

_9_ 
= 

" 6" 

.12-

4. There exists a null or zero vector 0 having the property a + 0 = a for any vector a. 

3 

1 

_ 3 j 
+ 

0" 

_0j 
= 

5. Each vector a has a counterpart negative vector —a so that a + —a = 0. 

= 0 

We shall have occasion to refer to one or more of these properties quite frequently in 
subsequent dicussions. 

'V 

_3_ 
r-1 

+ 
L-3_ 

= 
or 

_oj 



32 2. VECTOR AND MATRIX OPERATIONS FOR MULTIVARIATE ANALYSIS 

2.3.4 Scalar Multiplication of a Vector 

Assume we have some real number k. As pointed out earlier, this is called a scalar in 
vector algebra. Scalar multiplication of a vector involves multiplying each component of 
the vector by the scalar. 

\k2i = k 

di 

an 

an 

= 

'kax' 

ka2 

_kan_ 

To illustrate the scalar multiplication of vectors, assume 

r 
a = and k = 3 

Then 

1 

2 

^3_ 

= 

' 3x 1 

3 x 2 

3 x 3 

~3^ 

6 

9 

/:a = 3 

Next, let b' = (4, 5, 6). Then 

A:b' = 3(4,5,6) = (3 X 4,3 X 5,3 X 6) = (12,15,18) 

As in the case for vector addition, scalar multipHcation of vectors exhibits a number of 
useful properties."* 

1. If a is a vector and A: is a scalar, the product /:a is a uniquely defined vector. 

Let 

Then 

a = 

2 

rr 
_3 

r i i 

L3j 

[21 
= 

L6j 

and k = 2 

is unique. 

2. Scalar multiplication is associative. For example, for two scalars ki and k2, it is 
the case that ki(k22[) = {kik2)^. 

k2^ a 

Let ki = 2 and k2 = 3 . Then 
"3 

L9_ 
= 6 

"1 

L3_ 
__ " 6' 

Lisj 

"* These properties and the properties listed in Section 2.3.3 collectively define a vector space for 
all vectors a, b, c, etc., and all scalars (real numbers) k^, k^y etc. 
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3. Scalar multiplication is distributive. For example, k(a + b) = ka-^kb. Also, 
(ki + A:2)a = kin + A:2a. 

a + b a b 

Let b = Then 
3 

L7J 
= 2 

1 

_3j 
+ 2 

2 

-4] 
— ' 6' 

_14j 

1 

3 
= 2 

1 

3 
+ 3 

1 

3 
_ 5 

15 
Also 

4. For any vector a, we have the products 0 - a = 0; la = a and —la = —a. For 
example, 

rr 
L3j 

= 
roi 

LoJ 
; 1 

r i 

L3J 
rr = 
L3j 

; - 1 
[11 

j \ 
= 

[-11 

_-3j 
We can now consider an operation that generalizes both vector addition and scalar 
multiplication of vectors. 

2.3.5 Linear Combinations of Vectors 

Most of our comments about vector addition and scalar multipHcation in Sections 
2.3.3 and 2.3.4 can be succinctly summarized in terms of the concept of a hnear 
combination of a set of vectors. Let ai, aa,. . . , a^ denote a set of m vectors (each of 
order n x 1) and letA:i, 2̂» • • •, /̂ y„ denote a set of m scalars.^l linear combination of a set 
of vectors is defined as 

Vi = ^ i a i + A:2a2 + "*' ^m ^m 

If we take another (arbitrary) linear combination involving another set of m scalars 
^ l * j ^ 2 '^m*»wehave 

V2 = ^ i * a i + A:2*a2 + •*" ^ m ^m 

Next, suppose we add the two linear combinations. If so, it will be the case that the 
following properties hold: 

1. vi + V2 = (/:i + /:i*)ai + (^2 + A:2*)a2 + * * * + (A:̂  + A:^*)a^ 

2. Moreover, if c denotes still another scalar, then cvi = (c^i)ai +{ck2)2i2 + • • • 
yyi is also a linear combination of ai , a2, . . . , 2irn • 

What this means is that linear combinations of vectors can be added together (such as 
Vi + V2) or can be multiplied by a scalar (such as cvi), resulting in new vectors that bear 
simple relationships to the old. 
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To illustrate, let 

Ki ~ i.j K2 ~ -^j 

ai = 

k3 

~l' 

2 

= 1 

; a2 = 

it,* = 

' 0 ' 

3 

_2_ 

= 0; 

; a j = 

k2* = 

T 
4 

_2_ 

4; fcs* c = 2 

Tlien, v̂ e can first write Vi and V2 as 

Vi =ki2Li + ^232 + ^333 

= 2 

T 

2 

3 

+ 3 

"0" 

3 

2 

+ 1 
r 
4 

2 

= 

" 3 

17 

14 

V2 = /:i*ai + A:2*a2 + A:3*a3 

= 0 

~r 
2 

3 

+ 4 

rol 

3 

2 

+ 5 

" f 

4 

2 

= 

' 5' 

32 

18 

The first property above can now be illustrated as 

Vi + V2 

3 

17 

14 

+ 

5 

32 

18 

= 2 

1 

2 

3 

+ 7 

0 

3 

2 

+ 6 

1 

4 

2 

2 

4 

6 

+ 

0 

21 

14 

+ 

6 

24 

12 

= 

8 

49 

32 

The second property above can now be illustrated as 

CVi = 

e' 
34 

_28 

= 4 

1 

2 

3 

+ 6 

0 

3 

2 

+ 2 

1 

4 

2 

4 

8 

12 

+ 

0 

18 

12 

+ 

2 

8 

4 

= 

6 

34 

28 

The concept of a linear combination of a set of vectors is one of the most important 
aspects of vector algebra. We shall retum to this topic in the next chapter deaUng with the 
geometric aspects of vectors. 
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2.3.6 The Scalar Product of Two Vectors 

The last operation involving vectors to be discussed in Section 2.3 is that of the scalar 
product (sometimes called inner product, or dot product) of two vectors. As is well 
known, when we multiply two numbers (scalars) together, we obtain another element of 
the same kind, namely, a number that represents their product. However, in vector 
algebra, multipUcation of two vectors need not lead to a vector. For example, one way of 
multiplying two vectors (of the same order of course) yields a number rather than a 
vector. This number is called their scalar product. To illustrate the scalar product of two 
vectors, consider the column vectors 

and b = 
b2 

bn 

Their scalar product is defined as 

a'b = aibi + ̂ 2̂ )2 + * * * + a^bj^ + • • * + a„Z?„ 

n 

= ^ (^kbk 
k = l 

Notice that the first vector is treated as a row vector and the second vector is treated as a 
column vector. However, either one can serve as the first (row) vector. To illustrate. 

a = 

T 
4 

0 

3 

; b = 

~o~ 
2 

7 

4 j 

Hence 

a'b = b'a = (1 x 0) + (4 x 2) + (0 x 7) + (3 x 4) 
= (0 X 1) + (2 X 4) + (7 X 0) + (4 X 3) 
= 20 

We might now check to see if the associative and distributive laws are valid for scalar 
products. As it turns out, the associative law, illustrated by (a'b)c is not valid because 
the scalar product of a scalar, that results from a'b, and a vector c has not been defined. 
That is, the scalar product idea is limited to the product of a row and column vector. Of 
course, we earlier defined the operation of multiplying a vector by a scalar, but this is not 
a scalar product. 
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However, the distributive laws for the scalar product, with respect to addition, are 
valid: 

a (b + c) = (a b) + (a'c) 

Also, 

(a + byc = (a'c) + (b'c) 

To illustrate the distributive laws, let. 

Then 

Also, 

r 
2 

_3_ 

b = 

~A~ 

0 

1 

c = 

"3~ 

2 

_2_ 

a'(b + c) = (a'b) + (a'c) 

(1,2,3) 

7~ 

2 

3_ 

2C 

= (1,2,3) 

) = 7 + 13 

'4" 

0 

1 

+ (1,2,3) 

3 

2 

_2 

(a + b)'c = (a'c) + (b'c) 

(5,2,4) 

3" 

2 

2 

27 

= (1,2,3) 

= 13+14 

^3" 

2 

2 

+ (4,0,1) 

3 

2 

2 

2.3.7 Some Special Cases of the Scalar Product 

In the definition of scalar product given above, no requirement was made that a had to 
differ from b. That is, one can legitimately compute the scalar product of a vector with 
itself. To illustrate. 

If a = then a'a= 1 + 4 + 9 = 14 

Notice, then, that one obtains a sum of squares if one takes the scalar product of a vector 
with itself. And a'a > 0 unless, of course, a = 0. 
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Consider now the unit vector 1' = (1, 1, 1) and the vector 

f 
a = 

37 

Their scalar product is 

l ' a = l +2 + 3 = 6 

Thus, the scalar product of the unit vector and a given vector results in the sum of the 
entries in the given vector. If the vector is a sign vector, then the algebraic sum is taken. 
For example. 

( -1 ,1 , -1 ) = - 2 

Finally, consider the relationships d!{kh) = (ka)h = k(ah), w ĥere /: is a scalar. To 
demonstrate that these relations hold, let 

a = 

rr 
2 

3 

; b = 

4' 

0 

1^ 

k = 2 

Then 
a'(kh) = (A:a')b 

(1,2,3) (2,4,6) = 14 

Also 

(1,2,3) 

a'(A:b) = A:(a'b) 

8" 

0 2(1,2,3) = 14 

We can sum up this part of the discussion by recapitulating the following properties of 
scalar products, as illustrated above: 

1. a'(b + c) = a'b + a'c 

2. (a + b)'c = a'c + b'c 

3. a'(/tb) = (A:a')b = A:(a'b) 
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We shall have more to say about the utility of scalar product multiplication in the 
concluding section of the chapter, which deals with the computation of various matrices 
derived from statistical data. 

Finally, it should be mentioned that two types of vector-by-vector multipUcation are 
not defined in matrix algebra. That is, 

1. a row vector cannot be multiplied by a row vector; 
2. a column vector cannot be multipUed by a column vector. 

The remaining case—that of multiplying a column vector by a row vector— is covered in 
our discussion of matrices since in this instance their product is a matrix, not a scalar. 

2.3.8 Some More Examples 

To help review the vector operations described in this section, consider the following: 

a = 0 , 2 , 3 ) ; b^ b' = (0,2,5) 

A:i = 2; A:2 = 3 

We can now illustrate the following operations. 

Transpose of Vector We recall that the transpose of the 3 x 1 column vector 

f 
a = | 2 

^3 

is the 1x3 row vector, written as 

a = 0 , 2 , 3 ) 

Moreover, were we to take the transpose of a', we would have 

rr 
(a')' = a = 2 

[3 
That is, the transpose of a transpose equals the original vector. Similarly, we can fmd 

((a'yy = a =0,2,3) 

Addition and Subtraction The sum and difference of a' and b', respectively, are 
simply 

a + b' = (1 + 0, 2 + 2, 3 + 5) = 0 ,4 ,8 ) 

a - b ' = 0 - 0 , 2 - 2 , 3 - 5 ) = (1,0,-2) 
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Scalar Multiplication of a Vector Some illustrations of scalar multiplication of a 
vector are 

A:ia'=(2x 1 , 2 x 2 , 2 x 3 ) ; 

= (2,4,6) Oa = 

Ox f 

0 x 2 

_0x3 

= 

~0 

0 

_0_ 

= 0 

= 6(1,2,3) A:2b = 3 | 

= (6,12,18) 

Linear Combinations of Vectors Illustrations of linear combinations of vectors are 

V i = / : i a + /:2b ; V2' = ^ i b ' —/:2a' 

~o' 
2 

_5_ 

= 

"0^ 

6 

_15_ 

= 2 

rr 
2 

3 

+ 3 

"0" 

2 

5 

= 

' 2" 

10 

21 
_ -J 

= 2(0,2,5)-3(1,2,3) 

= (0,4 ,10)-(3,6 ,9) 

= ( -3 , -2 ,1 ) 

If c = 4, then 
CV2' =cfcib'-cA;2a' 

= 8(0,2,5)-12(1,2,3) 

= (0,16,40)-(12,24,36) 

= ( -12 , -8 ,4 ) 

The Scalar Product Some scalar products of interest are 

0 

a'b = ( l ,2,3) 

= (1 X 0) + (2 X 2) + (3 X 5) 

= 19 

b'b = (0,2,5) 

a'l =(1,2,3) 

= 6 

= 29; 0'b = (0,0,0) 

a'(l+b) = ( l ,2,3) 

= 0 

1 

1 

1 

+ (1,2,3) 

0 

2 

5 

= 6+19 

= 25 
Additional examples appear at the end of the chapter. 
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2.4 MATRIX REPRESENTATION 

As in our introduction to vector arithmetic, our purpose here is to describe various 
operations involving matrices as they relate to subsequent discussion of multivariate 
procedures. Again, we attempt no definitive treatment of the topic but, rather, select 
those aspects of particular relevance to subsequent chapters. 

We first present a discussion of elementary relations and operations on matrices and 
then turn to a description of special types of matrices. More advanced topics in matrix 
algebra are relegated to subsequent chapters and the appendixes. 

2.5 BASIC DEFINITIONS AND OPERATIONS 
ON MATRICES 

A matrix A of order m by n, and with general entry (atj), consists of a rectangular 
array of real numbers (scalars) arranged in m rows and n columns. 

an «12 

fl22 

^1/ 

^2/ ain 

an ai2 
\flij /mxn 

^m2 • • • "m/ 

For example, a 4 x 5 matrix would be explicitly written, in brackets, as 

dw (1x2 ^13 ^14 fllS 

^21 ^22 ^23 ^24 ^25 

^31 ^32 ^33 ^34 ^35 

J 4 I 042 ^43 ^44 ^45 

where / = 1, 2, 3,4 and / = 1, 2, 3, 4, 5. As is the case for vectors, matrices will appear in 
boldfaced type, such as A, B, C, etc. 

A matrix can exhibit any relation between m, the number of rows, and n, the number 
of columns. For example, if either m > n or n > m, y/e have a rectangular matrix. (The 
former is often called a vertical matrix, while the latter is often called a horizontal 
matrix.) 

If m = n, the matrix is called square. To illustrate, 

bn bi2 bi3 

B 3 x 3 Z)2l ^22 ^ 2 3 

^31 ^32 ^ 3 3 

file:///flij


2.5. BASIC DEFINITIONS AND OPERATIONS ON MATRICES 41 

The set of elements on the diagonal, from upper left to lower right, 

{^11,^22,^33} 

is called the main or principal diagonal of the square matrix B. Square matrices occur 
quite frequently as derived matrices in multivariate analysis. For example, a correlation 
matrix, to be described later in the chapter, is a square matrix. 

In either the rectangular or square matrix case, the order or "dimensionality" specifies 
the number of rows and columns of the matrix. Sometimes this order is made expUcit in 
the form of subscripts: 

^ 2 x 3 

In other cases, the order is inferred from context, such as 

" 1 2 7 9 3" 
D = 

0 4 3 1 1. 

While we note that no subscript appears on D, it is clear that this matrix is of order 2 x 5 . 
If m = 1, the matrix is equivalent to a row vector. lfn= 1, the matrix is equivalent to a 

column vector. If m = « = 1, we have a 1 x 1 matrix.^ 
A column vector, written as 

can now be viewed as an m by 1 matrix and a row vector a' = (ATI, ^̂ 2, • - •, ^w) can now 
be viewed as a 1 by w matrix. 

As will be shown later, analogous to earlier discussion of vectors, various kinds of 
special matrices can be defined. For the moment, however, we define the matrix that is a 
generalization of the 0 vector. This matrix, called a null matrix, and denoted^^, consists 
of entries that are all zeros. 

Illustrations of null matrices of various orders are 

0 0 0 

0 0 0. 

Notice that each of the above null matrices is made up entirely of 0 vectors and all entries 
are O's. 

; ^ = 

"0 0" 

_o o_ ; 4> = 

0 0 

0 0 

0 0 

0 0 

^ It is often convenient to consider a scalar as a 1 x 1 matrix. 
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2.5.1 Matrix Transpose 

Consider the 2 by 3 matrix: 

- 1 4 3 ' 

0 5 2 

Suppose we write the elements of each row of ^ as columns and obtain 

f - l O' 

A' = 4 5 

3 2 

Note that this new matrix A' is a 3 by 2 matrix in which the entries of the first row of A' 
denote, in the same order, the first column of A. This is also true of the elements in the 
second and third rows of A' compared, respectively, to the second and third columns of 
A. 

The new matrix A' represents the transpose of the original matrix A. A transpose 
of 

m xn ^^ ^ matrix obtained from A by interchanging rows and columns so 
that 

To illustrate, 

If 

^m xn (f^ij)m xn \^ji)nxm 

A = 

1 4 

2 5 

3 6 

then A = 
1 2 3 

4 5 6 

If B = 

1 4 7 9 

3 1 0 2 

4 2 1 3 

then 

1 3 4 

4 1 2 

7 0 1 

9 2 3 

If 

"0 

0 

0 

0" 

0 

0 

then <t>' = 
0 0 0 

0 0 0. 

Next, we can use the operation of matrix transpose to describe a symmetric matrix. A 
square matrix A is called symmetric if 

A = (a,;) = A' = {aji) 
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That is, a symmetric matrix equals its transpose. To illustrate, 

A = 

Finally, it should also be evident that the transpose of the transpose of a given matrix is 
the original matrix itself. That is, 

1 

2 

T 

3 
; A' = 

"1 2 

L2 3 

To illustrate, 

A = 

1 5 

2 6 

3 7 

(A')' = A 

1 2 3 

.5 6 7. 
(A')' 

1 5 

2 6 

3 7 

2.5.2 Matrix Equality, Addition, Scalar Multiplication, 
and Subtraction 

Tvjo matrices A and B are equal if and only if they are of the same order and each 
entry of the first is equal to the corresponding entry of the second. That is, 

for 

A = B 

if and only if 

{an) = (Pij) 

i= 1,2,... ,m; / = 1, 2 , . . .,n\ 

To illustrate, 

A = 
1 4 3" 

0 5 2j 
= B = 

-1 4 3 

0 5 2. 

since they are of the same order and aij= bip entry by entry. 
In matrix addition each entry of a sum matrix is the sum of the corresponding entries 

of the two matrices being added, again assuming they are of the same order. 
That is, we define the matrix C, denoting the result of adding A to B as 

for 

C = A + B 

if and only if 

(Q/) = fe/) + (M 
/= 1 ,2 , . . . ,m; 7= 1,2, ,« 
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To illustrate, 

A = 
- 1 

0 

4 

5 
B 

0 

--1 

2 1 

4 3. 
A + B = C = 

- 1 

L-1 

6 

9 

Next, we can consider the case of the transpose of the sum of two matrices. 
/ / A and B are of common order and z/C = A + B, then 

C' = A' + B' 

To illustrate. 
2 

5 

3 

6 

B = 

C' = 

9 

6 

9 

= 

A' 

1 4 

2 5 

3 6^ 

+ 

B' 

0 5 

1 1 

1 3 

Matrices can also be multiplied by a number (scalar), and this is called scalar 
multiplication of the matrix. The procedure is simple: One merely multiplies each entry 
of the matrix by the scalar k. That is. 

for 

E = A:A 

if and only if 

{eij) = kiatj) 

/= 1,2,. . . ,m; / = 1,2,. .,n 

For example, if we wish to multiply A by 3, we have 

3A = 3 
1 2 3 

4 5 6 

3 

12 

6 

15 

9 

18 

Subtraction of matrices is now defined as involving the case in which the matrix being 
subtracted is first multiplied by -1 and then the two matrices are added. That is 

for 

C = A-B 

if and only if 

(Cif) = (aij)-{bij) 

i= 1,2,. . . ,mi /•= 1,2,.. . ,n 

To illustrate. 

A = 
1 4 3 

0 5 2 j 
; B = 

0 2 1 

- 1 4 3 
A - B = C = 

- 1 2 2 

1 1 - 1 
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2.5.3 Properties of Matrix Addition and 
Scalar Multiplication 

Some of the properties exhibited by matrix addition^ and scalar multiplication are 
hsted below for future use: 

1. Matrix addition is commutative: 

A + B = B + A 

2. Matrix addition is associative: 

A + (B + C) = A + B + C = (A + B) + C 

3. Scalar multiplication of a matrix is commutative: 

A(A:B) = (A:A)B 

4. Scalar multiplication is associative: 

k^{k2X) = {kik2)X 

5. Scalar multipHcation is distributive: 

(^i + A:2)A = A:iA + ^2A 

6. There exists a null matrix (already defined) <j) with the property that 

A + ^ = A 

7. Every matrix A has a counterpart matrix —A such that 

A + ( - A ) = 0 

Not surprisingly, the preceding rules are similar to the ones discussed for vector 
operations in Sections 2.3.3 and 2.3.4 and could be numerically illustrated in similar 
fashion. 

2.5.4 Matrix Multiplication 

In discussing the multipHcation of two (or more) matrices, conformability should first 
be pointed out. Similar to the previous discussion of matrix equality, addition, and 
subtraction, in which the matrices were assumed to be of common order before the 
relation or operation was meaningful, in multiplication the matrices must be con
formable. If we wish to multiply A by B, they must exhibit commonality of interior 
dimensions. 

For example, if A is of order m rows by n columns, it can be written as A^ xw • Next, 
suppose we have a second matrix B of order n rows by p columns, written as B„ xp • Using 
this form, we have 

^m xn "nxp ^m xp 

* It should be noted, however, that matrix subtraction is neither commutative nor associative. 
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Note that A, called the prefactor, has n columns. This is the "interior" dimension. If A 
has an interior dimension of n columns, then B, called the postfactor, must have an 
interior dimension of n rows. This is the condition of conformability and is necessary for 
matrix multiplication. Note that their product C, then, is of order m by p. These are the 
"exterior" dimensions of A and B, respectively. 

A simple way to find the order of the matrix product is shown below: 

*^fn xn B/1 xp 
, t 

= C m xp 

Note that the interior dimensions are the same (n columns of A and n rows of B) and that 
the exterior dimensions are obtained from the "outer" dimensions of A and B, 
respectively. 

This same idea holds for more than two matrices, again assuming that all are 
conformable. For example, with three matrices, we have 

^m xn 
t 

B n xp 

X 

•'P xr ^m xr 

z=^ LJ 

Note further that the interior dimensions of the matrices conform. 
Matrix multiplication follows a row-by-column rule, equivalent to the scalar product 

(Section 2.3.6) of each row of the first matrix with each column of the second. That is, 
we take the entries of each row of the prefactor, and these are multiplied by the 
corresponding entries of each column of the postfactor and then summed. If we use the 
first row of A and the first column of B, then the first element in C (i.e., Cn) will be the 
result of the preceding operation. The second element of C (i.e., Ci2 ) is found by using 
the first row of A and the second column of B, and so on. 

This can be summarized as follows: 

for 

C = AB 

is defined as 

n 

k = \ 

/= 1,2,. . . ,m; 7=1,2 , 

To illustrate, we let 

^ 2 x 3 

-1 3 2 

2 0 1 
and >3x2 

2 3 

1 4 

1 2 
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Then 

C = AB 

'(-1 x2 + 3xl+2xl) (-1x3 + 3x4 + 2x2) 

(2x2 + 0x1 + 1x1) (2x3 + 0x4+1x2) J 

"3 13 
' 2 x 2 

Now, let us reverse the order of multiplication. In this case we can do so since B is of 
order 3 by 2 and A is of order 2 by 3. In other instances, however (e.g., if A were of order 
3 by 3), we could not multiply B by A since they would then not be conformable. 

If we now multiply BA = D, we obtain the following: 

D - B 3 x 2 A 2 x 3 ~ 

2 3 

1 4 

1 2 

- 1 3 2 

2 0 1 

^ 3 X 3 = 

4 6 7 

7 3 6 

3 3 4 

Notice that D 9̂  C and, as a matter of fact, they are not even of the same order. Even if 
two matrices are conformable, in general, A B ^ BA. That is, matrix multipHcation, in 
general, is noncommutative. Hence, in discussing matrix multipHcation we should refer 
explicitly to the order in which they multiply. For example, the matrix product AB can 
be described as "A is postmultiplied by B," or "B is premultipHed by A." Altematively, 
we could use the terms "prefactor" and "postfactor" as mentioned earlier. 

2.5,4.1 Multiplication of a Vector and a Matrix In some cases of interest we shall 
want to postmultiply some vector a by a matrix B. To illustrate, suppose we have the 
following: 

a =(1,0,3); B = 

2 3 

1 2 

0 1 

where a' is a row vector of order 1 by 3. Note that a' and B are conformable, and we have 

(1,0,3) 

2 3 

1 2 

0 1 

(2,6) 
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where their product displays the order of the exterior dimensions of a' and B, namely, a 
1 x 2 row vector. Alternatively, suppose we have the column vector c = [2]- Then we can 
find the product B as 

"2 3] 

1 2 

_ 0 1 J 

rr 
L2_ 

= 

~8~ 

5 

2 

where their product is a 3 x 1 column vector. As can be seen, no new rules are involved 
for either of these cases. 

2.5,4,2 Matrix Product of Two Vectors We now might ask what happens when two 
vectors are multiplied. As shown in Section 2.3.6, the scalar product of two vectors 
results in a single number (scalar) if row vector times column vector multipUcation is 
performed. However, one might have the case of a column vector multiplying a row 
vector. In this case the results are quite different, and we consider it next. 

To illustrate, assume we have the column vector 

'2 

1 

and the row vector (1, 1,2). Their matrix (or outer) product is obtained as 

'2 

1 

.3 J 

(1,1,2) = 

(2x1 ) (2x1) (2x2) 

(1x1 ) (1x1) (1x2) 

(3x1) (3x1) (3x2) 

= 

2 2 4 

1 1 2 

3 3 6 

which is a 3 by 3 matrix. Note in this case that each row of the first "matrix" has only a 
single element, as does each column of the second. Thus, the row-by-column rule is not 
violated in this special case. 

2.5.4.3 Triple Product -Vector, Matrix, Vector Multiplication To round out the 
discussion we might wish to consider the triple product of 

a =(1,1,2); 

That is, we desire to find the product a'Bc. If so, we can proceed in stages. We first find 
the vector by matrix product: 

1 2 3" 

0 1 2 

3 0 1 

c = 

'2 

1 

3 

aB = (1,1,2) 

1 2 3 

0 1 2 

3 0 1 

= (7,3,7) 
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Next, we find the scalar product: 

a Be = (7,3,7) = 38 

Hence, we see that the result of all this is a scalar. Note, of course, that it is of "order 
1 X 1" and, thus, is in agreement with the order of the exterior dimensions of a' and c. 

A special case of vector, matrix, vector multipHcation takes the form of a'Ba. This can 
be illustrated by 

a =(1,1,2); 

3~ 

2 

1 

; a = 

"r 
1 

_2_ 

Then 

a'B = ( l , l , 2 ) 

2 

1 

0 

= (7,3,7) 

and 

a'Ba = (7,3,7) = 24 

As noted, the result is also a scalar. Both of these cases are relevant to multivariate 
analysis and are discussed in later chapters. 

2.5.5 Some Properties of Matrix Multiplication 

We have already pointed out that matrix multipHcation, in general, is noncommu-
tative. However, matrix multiplication does obey certain other properties. 

1. Associativity—assuming all matrices to be conformable we can state that 

(AB)C = A(BC) 

2. Distributivity—again assuming conformable matrices we can state that 

A(B + C) = AB + AC; left distributive law 

(B + C)A = BA + CA; right distributive law 

3. If/: is a scalar, then we have the associativity property: 

A:(AB) = (A:A)B 
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Finally, it is of interest to point out the rule involving the transpose of the product of 
two (or more) matrices. In the case of two matrices, the rule is 

(AB)' = B'A' 

That is, the transpose of the product of two (or more) matrices is equal to the product of 
their respective transposes, multiplied in reverse order. To illustrate. 

Then 

A = 
1 3 

L2 4J 
; B = 

1 3 

_2 l\ 

1 2 

3 4. 
B' 

AB = 

(AB)' = 

1 

L3 

"7 10" 

_9 14_ 

Fl 3" 

_2 2_ 

= B'A' 
1 

3 

' 7 

_10 

21 

2j 

9 

14_ 

[1 
13 

2 

4_ 
__ 7 10 

_9 14_ 

2.5.6 Some Differences between Scalar and Matrix Arithmetic 

Probably the most difficult temptation to suppress in working with matrix 
multiplication involves attributing properties to matrices that we associate with ordinary 
scalars. Table 2.1 shows some of the pitfalls that one should be wary of in doing 

TABLE 2.1 

Some Differences between Scalar and Matrix Relations 

Scalars Matrices 

1. ab - ba 

2. If ab = ac and c ¥= 0, then b - c. 

3. If ab = 0, then either a = 0, or 6 = 0, or 
both fl, Z? = 0. 

4. Ifflft = 0, then6fl = 0. 

1. AB =7̂  BA, in general 

2. If AB = AC and A =?̂  0, then it is not necessary 
that B equals C. 

3. If AB = 0, then it is not necessarily the case 
that either A = 0, B = 0, or both A, B = 0. 

4. If AB = 0, then BA does not necessarily 
equal 0. 

arithmetic with matrices. As shown in the table, some marked differences exist. Not only 
does commutativity fail to hold in general for matrix multipHcation, but other 
characteristics involving products equal to zero also do not hold generally. For example, 
if some matrix product AB equals the null matrix 0, we note that neither A, the 
prefactor, nor B, the postfactor, need to be equal to ^. 
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2.5.7 The Problem of Matrix Division 

Up to this point we have discussed addition, subtraction, and multiplication of 
matrices, but division has been conspicuous by its absence. And for good reason: division, 
as we know it in scalar arithmetic, is not defined in matrix algebra. 

What is defined is something more analogous to multiplication by a reciprocal. For 
example, in ordinary arithmetic, instead of dividing some number by 5, we could 
multiply the number by the reciprocal of 5: 

1/5 = (5)-' 

assuming that the divisor is not equal to zero. 
The analogous operation in matrix algebra is called matrix inversion. This operation is 

so special (and considerably more complex) that we defer discussion of it until Chapter 4. 
What can be said for now is that the inverse of a matrix A, if said inverse exists, is 
analogous to multipHcation of A by a reciprocal in ordinary algebra. As such, in matrix 
algebra there is an analogy to the scalar relation: 

axa 1 

Needless to say, we shall spend a considerable amount of time on the topic of matrix 
inversion in subsequent chapters. 

2.5.8 Some More Examples of Matrix Operations 

To facilitate the review of matrix operations described in Section 2.5, consider the 
following: 

"2 4 ' 
"1 2 3~ 

A = 
2 1 4 

B = 2 5 

L3 6_ 

5 

2 k = 3', a = ( 2 , l ) ; b = 

Matrix Transpose The transpose of A is 

A = 

"1 2 

2 1 

3 4 

and the transpose of B is 

B' = 
"2 2 3' 

4 5 6 
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Addition of Matrices Addition of matrices is illustrated by 

C = A + B' = 
1 2 3" 

2 1 4_ 
+ 

2 2 3" 

4 5 6 

"3 4 6 

6 6 10 

Subtraction of Matrices Matrix subtraction is illustrated by 

C = A - B 
" 1 2 3 

2 1 4 

2 2 3" 

4 5 6 

-1 0 0 

-2 - 4 - 2 

Scalar Multiplication of a Matrix 

C = kA = 3 

Varieties of Multiplication 

1 2 3 

.2 1 4_ 

C = AB = 

C' = (AB)' = B'A' = 

D = A:AB = 3 

1 2 3" 

2 1 4_ 

"2 2 3' 

4 5 6 

"15 32' 

18 37_ 

E = a'Ab = (2, l) 
1 2 3 

2 1 4 

"3 6 9 

.6 3 12 

2 4 

2 5 

3 6J 

"1 2 

2 1 

3 4 

45 96 

54 l l l j 

5̂ 

2 

3 

ri5 
Ll8 

"15 

_32 

32 

37 

18 

37 

= 60 

F = b'B(a'y = (5,2,3) 

2 4' 

2 5 

3 6 

= 94 

Additional examples appear at the end of the chapter. 

2.6 SOME SPECIAL MATRICES 

So far we have been dealing mainly with arbitrary rectangular matrices. In a few cases 
we have used square matrices for illustrative purposes. In matrix algebra there are a 
number of special matrices that are encountered in multivariate analysis. We consider 
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some of these here, particularly those that are frequently utilized in multivariate 
procedures. 

2.6.1 Symmetric Matrices 

Figure 2.1 shows, in schematic form, various special matrices of interest to 
multivariate analysis. The first property for categorizing types of matrices concerns 
\\iiether they are square (m = n) or rectangular. In turn, rectangular matrices can be either 
vertical (m > n) or horizontal (m < n). 

As we shall show in later chapters, square matrices play an important role in 
multivariate analysis. In particular, the notion of matrix symmetry is important. EarHer, a 
symmetric matrix was defined as a square matrix that satisfies the relation 

A = A' or,equivalently, («//) = (^/i) 

TTiat is, a symmetric matrix is a square matrix that is equal to its transpose. For example, 

A = 

3 

2 

4 

2 

0 

- 5 

4 

- 5 

1 

; A' = 

3 

2 

4 

2 

0 

- 5 

4 

- 5 

1 

Square Rectangular 
(m = n) (mi^n) 

Vertical Horizontal 
(m>n) (m<n) 

Symmetric Nonsymmetric 

Diagonal Other 

Scalar Sign Other 

Identity Other 

Fig. 2.1 Various types of matrices. 

file:////iiether


54 2. VECTOR AND MATRIX OPERATIONS FOR MULTIVARIATE ANALYSIS 

Symmetric matrices, such as correlation matrices and covariance matrices, are quite 
common in multivariate analysis, and we shall come across them repeatedly in later 
chapters.^ 

A few properties related to symmetry in matrices are of interest to point out: 

1. The product of any (not necessarily symmetric) matrix and its transpose is 
symmetric; that is, both A A' and A'A are symmetric matrices. 

2. If A is any square (not necessarily symmetric) matrix, then A + A' is symmetric. 
3. If A is symmetric and /: is a scalar, then kA is a symmetric matrix. 
4. The sum of any number of symmetric matrices is also symmetric. 
5. The product of two symmetric matrices is not necessarily symmetric. 

Later chapters will discuss still other characteristics of symmetric matrices and the special 
role that they play in such topics as matrix eigenstructures and quadratic forms. 

2 0 0 

0 3 0 

0 0 1_ 

; B = 

- 1 0 0 

0 0 0 

0 0 3_ 
; c = 

1 0 

_0 5_ 

2.6.2 Diagonal, Scalar, Sign, and Identity Matrices 

A special case of a symmetric matrix is a diagonal matrix. A diagonal matrix is defined 
as a square matrix in which all off diagonal entries are zero, (Note that a diagonal matrix 
is necessarily symmetric.) Entries on the main diagonal may or may not be zero. 

Examples of diagonal matrices are 

A = 

If all entries on the main diagonal are equal scalars, then the diagonal matrix is called a 
scalar matrix. 

Examples of scalar matrices are 

3 0 O' 

A = | 0 3 0 

_0 0 3_ 

If some of the entries on the main diagonal are - 1 and the rest are +1, the diagonal 
matrix is called a sign matrix. Examples of sign matrices are 

-1 0 0^ 

B = 
2 0 

_0 2_ ; c = 
'-4 

0 

0 

-4_ 

A = 0 1 0 

0 0 1 

B = 
'\ 

_0 

0 

- 1 ^ 
; c = 

- 1 O" 

0 1_ 

"̂  While we do not go into detail here, a skew symmetric matrix A is a square matrix in which all 
main diagonal elements an are zero and/I = -A'. For example, 

If A = 

0 - 3 1' 

3 0 2 

1 - 2 0. 

then — A' = 

0 - 3 - 1 

3 0 2 

1 - 2 0. 

is skew symmetric. 
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If the entries on the diagonal of a scalar matrix are each equal to unity, then this type of 
scalar matrix is called an identity matrix, denoted I. Examples are 

"l 0 0 ' 

0 1 0 

0 0 1 

; 1 = 
"1 0 

_o i_ 

A number of useful properties are associated with diagonal matrices and, hence, the 
special cases of scalar, sign, and identity matrices. 

1. The transpose of a diagonal matrix is equal to the original matrix. 
2. Sums and differences of diagonal matrices are also diagonal matrices. 
3. PremultipUcation of a matrix A by a diagonal matrix D results in a matrix in 

which each entry in a given row is the product of the original entry in A corresponding to 
that row and the diagonal element in the corresponding row of the diagonal matrix. To 
illustrate, 

D 

fs 0 o1 
0 2 0 

0̂ 0 ij 

A 

fl 2 3 4^ 

2 1 4 3 

[3 2 1 1_ 

= 

DA 

"3 6 9 

4 2 8 

_3 2 1 

12" 

6 

1 

4. Postmultiplication of a matrix A by a diagonal matrix D results in a matrix in 
which each entry in a given column is the product of the original entry in A 
corresponding to that column and the diagonal element in the corresponding column of 
the diagonal matrix. To illustrate, 

AD 

3 4 3" 

6 2 2 

9 8 1 

12 6 1 

A 
" l 2 3l 

2 1 2 

3 4 1 

4 3 i j 

D 

[3 0 Ol 

0 2 0 

0 0 1_ 

= 

5. Pre- and postmultiplication of a matrix A by diagonal matrices Di and D2 result 
in a matrix whose z/th entry is the product of the /th entry in the diagonal of the 
premultipHer, the z/th entry of A, and the /th entry of the postmultiplier. For example, 

Di 

'2 0 0~] 

0 1 0 

LO 0 3J 

A 

n 31 

2 2 

[4 il 

D j 

ri 0' 
Lo 3J — 

D1AD2 

" 2 18 

2 6 

12 9 
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6. The product of any number of diagonal matrices is a diagonal matrix, each of 
whose entries is the product of the corresponding diagonal entries of the matrices. For 
example, 

Di D2 D3 D1D2D3 

1 o"i \i 01 r4 on fs 0 
0 3j Lo 2JL0 - i j Lo -( 

7. Diagonal matrix multiplication, assuming conformability, is commutative. 
8. Powers of diagonal matrices are found simply by raising each diagonal entry to the 

power in question.* (Roots are found analogously.) 
9. Pre- or postmultipHcation of a matrix A by a scalar matrix multipUes all entries of 

A by the constant entry in the scalar matrix. It is equivalent to scalar multiplication of 
the matrix, by that scalar appearing on the diagonal. 

10. As a special case, pre- or postmultipHcation of a matrix A by I, the identity 
matrix, leaves the original matrix unchanged. 

11. Powers of an identity matrix equal the original matrix. 

While the above properties are by no means exhaustive of the characteristics of diagonal 
matrices, or the special cases of scalar, sign, and identity matrices, they do represent the 
main properties of interest to applied researchers. 

2.6.3 Some Additional Examples 

As an aid to integrating some of the discussion of this section, consider the following: 

A = 

' 1 4 1 

2 5 1 

3 6 2 

; Di = 

["3 
0 

|_0 

Premultiplication by a Diagonal 

DiA = 

~3 0 0I 

0 2 0 

0 0 1J 

[1 
2 

[3 

PostmultipHcation by a Diagonal 

ADi = 

"1 4 1I 

2 5 1 

3 6 2] 

[3 
0 

[o 

0 

2 

0 

4 

5 

6 

0 

2 

0 

0 

0 5 

. J 

1" 

1 

2 

= 

[3 
4 

_3 

0~ 

0 

1 

= 

"3 

6 

9 

D2 = 

"2 0 0" 

0 2 0 

0 0 2 

12 3~ 

10 2 

6 2 

8 1~ 

10 1 

12 2_ 

* In general, a square matrix A can be raised to any power n that is a positive whole number by 
multiplying it by itself n times, denoted as A". Roots can also be found for certain square matrices 
(not restricted to being diagonal). If a square matrix A has an «th root, then the matrix A^/", when 
multiplied by itself n times, equals A. The topic of powers and roots of (square) matrices is covered in 
Chapter 5. 
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Pre- and Postmultiplication by Diagonals 

D2AD1 = 

Scalar Matrix Multiplication 

2 0 0I 

0 2 0 

_0 0 2J 

fl 4 l l 

2 5 1 

L3 6 2] 

[ 3 0 0 

0 2 0 

[o 0 1 

= 

~i 4 r 

2 5 1 

3 6 2 

= 

"3 0 0I 

0 3 0 

0 0 3J 

fl 4 f 

2 5 1 

[3 6 2 

= 

6 16 2 

12 20 2 

18 24 4 

3 12 3 

6 15 3 

9 18 6 

Powers and Roots of a Diagonal with Positive Entries 

w = 
"3 0 0] 

0 2 0 

0 0 i j 

[3 0 o~ 

0 2 0 

[0 0 1 

= 

"9 0 0" 

0 4 0 

0 0 Ij 

W^ = 
~2 0 0" 

0 2 0 

0 0 2 

1/2 

= 

1.414 0 0 

0 1.414 0 

0 0 1.414 

Identity and Sign Matrices 

lA = AI = 

Let 

Then 

"1 4 1] 

2 5 1 

_3 6 2 1 

[1 0 0" 

0 1 0 

[0 0 1 

= 

'\ 4 r 
2 5 1 

3 6 2_ 

AF = 

F = 

-1 

0 

0 

0 0 

-1 0 

0 1 

6 2 

1 

0 

0 

0 0' 

-1 0 

0 1 

= 

= A 

- 1 - 4 1 

- 2 - 5 1 

- 3 - 6 2 

Additional examples appear at the end of the chapter. 
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2.7 DETERMINANTS OF MATRICES 

The determinant of a matrix plays an important role in more advanced matrix 
concepts such as matrix inversion and matrix rank, as well as in multivariate analysis 
involving generalized measures of variance. Only square matrices have determinants. The 
determinant of a square matrix is a scalar function of the entries of the matrix. We denote 
the determinant of a matrix A by the symbol |A| and reiterate that the value of the 
determinant is expressed as a single number (scalar). 

The early development of determinants was intimately connected with procedures for 
solving simultaneous equations. As historical background, and motivational interest, 
consider the two linear equations: 

ax -^ by = c 

dx + ey=f 

These equations could be expressed in matrix times vector form as 

~a bl 

_d ej 
1 "̂  = 

c 

_/_ 

Note that the left-hand side of the equations is simply the product of a 2 x 2 matrix times 
a 2 X 1 vector while the right-hand side is another 2 x 1 vector. 

As may be recalled from elementary algebra, this system of equations can be solved, 
for, say, JC by the formula 

ce- fb 
X = 

ae-db 

assuming that the denominator of the above ratio is not equal to zero. 
We can consider the right-hand side of the above equation in the context of 

determinants by expressing both numerator and denominator of the ratio as 

X —-

c b\ 

f A 
a b\ 
d e 

In the simple case shown here, the determinants of [/ *] and [§ 
That is 

'] are easy to defme. 

= ce-fb and b\ -ae-db 

these are called second-order determinants. The unknown quantity x is the ratio of two 
determinants (scalars). 

Historically, determinants were employed widely in the solution of simultaneous 
equations. With the advent of newer solution methods, however, their application in this 
context has diminished. Still, it is important to have some grasp of the rudiments of 
determinants, if only as a precursor to other procedures for solving equations that are 
developed in subsequent chapters. 
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2.7.1 Operational Definition of a Determinant 

The theoretical definition of a determinant for matrices of larger order than 2 x 2 is 
rather cumbersome and, therefore, as in the 2 x 2 case, we shall define it operationally as 
a series of computational steps. Assuming a square matrix A of order mxm with general 
entry (aij), the determinant of that matrix is found by carrying out the following 
sequence: 

1. Form all possible products of m factors each, such that each factor is an entry of 
A and no two factors are drawn from the same row or column of A. There are ml (m 
factorial) products of this type. For example, if A is of order 3 x 3, we have 3! or six 
products: 

(i) an «22 ^33 0 0 «12 ^23 ^31 (iii) ai3 a2i 3̂2 

(iv) ai3 a22 «3i (v) an ^23 3̂2 (vi) an a2i ^33 

We note that each of the subscripts (1, 2, or 3) appears just once as a row subscript and 
just once as a column subscript in each of the six triple products. The connections shown 
below illustrate these six products. 

First three products Second three products 

2. Within each separate triple product arrange the factors so that row subscripts are 
in their natural order; this has been done above. Then count the number of inversions or 
transpositions involving column subscripts. In this case an inversion takes place when a 
larger column subscript precedes a smaller one. For the six triple products above, we have 
the following frequencies of inversions: 

(i) 0 inversion (ii) 2 inversions (iii) 2 inversions 

(iv) 3 inversions (v) 1 inversion (vi) 1 inversion 

For example in case (ii), involving the product 1̂2̂ 23̂ 315 we note that column subscripts 
1 and 2 need to be interchanged, followed by the interchange of column subscripts 3 and 
2, in order to obtain the natural order. 

3. Having done this for all ml products, multiply each product that has an odd 
number of inversions by —1. If zero or an even number of inversions is involved, multiply 
by +1; that is, leave the product as is. In the above case the first three products 
(associated with an incidence of even-type inversions of 0, 2, and 2) will not be changed 
in sign, while the last three products will. 

(0 
(iv) 

1(^11^22^33) 

1(^13^22^31) 

(ii) 

(v) 

1(^12^23^31) 

-l(^ll«23«32) 

(iii) 1(^13^21^32) 

(vi) -1(^12^21^33) 
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4. Add the products (observing sign) together. This sum is the determinant. 

I AI = +(^11^22^33) + (̂ 12^^23^31) + (̂ 13^21^^32) 

- ( ^ 1 3 ^ 2 2 ^ 3 1 ) - ( ^ l l « 2 3 ^ 3 2 ) - (flf 12^21^^33) 

5. Notice, then, that three steps are involved in finding a determinant. The first step 
is to form all possible products that can be obtained by taking one element out of one 
row and column, another out of another row and column, and so on. A matrix of order 
mxm will yield m\ such products, each composed of m elements. The second step is to 
affix an algebraic sign to each product via the rule proposed above. The third step is to 
sum the ml signed products. 

6. The procedure can now be formalized by defining the determinant of A^ x m ^s 
the sum of all ml products (each with m factors) in A of the form 

( - l ^ l / i f l 2 / 2 '"^m/^ 

where the sum is understood to be taken over all permutations of the second subscripts. 
The exponent t denotes the number of inversions required to bring the second subscripts 
into their natural sequence ( 1 , 2 , . . . , m). 

Now let us illustrate the computation of determinants for two simple cases. 

The 2x2 Case 

A = 
1̂1 an 

_fl21 ^22_ 

= 
~1 

3 

2 

4 

I A\=(~lfana22 + (-1)^^12^21 = ̂ 11^22-^12^21 = (1 x 4 ) - ( 2 x 3) = - 2 

The3x3 Case 

^11 ^12 ^13 I 1 2 3 

A = fl21 ^22 ^23 p 2 —1 4 

\_a31 Ciyi ^33 J |_2 1 1_ 

I A I = (-1)^^11^22^33 + (-1)^^12^23^31 + (-1)^^13^21^32 

+ (-I)^^13fl22flf31 + (-I)^flfllflf23flf32 + ( " 1 ) ^ ^ 1 2 ^ 2 1 ^ 3 3 

= (1 x - 1 X l) + ( 2 x 4 x 2 ) + ( 3 x 2 x l ) - ( 3 x - l x 2 ) - ( l x 4 x l ) - ( 2 x 2 x 1) 

= - 1 +16 + 6 + 6 - 4 - 4 

JA|= 19 

2.7.2 Expansion of Determinants by Cofactors 

Even on the basis of the step-by-step demonstration shown above, the evaluation of a 
determinant (i.e., the process of finding the numerical value of the determinant) is rather 
complicated and prone to error. Understandably, we might seek some easier procedure in 
which the arithmetic is simpler and the computations more straightforward. Expansion 
by cofactors is one such method. 

file:///_a31
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As shown above, a particularly simple determinant can be computed for the case of a 
2 x 2 matrix: 

~an (i\2^ 

In this case |A| = anUn - ai\a\i. 
We can take advantage of this simple 2 x 2 case in attempting to evaluate high-order 

determinants (i.e., those of matrices of order 3 x 3 and higher). 
To do this, we first define the minor of an entry (uij) of a square matrix A = (aij) as 

the determinant of a submatrix obtained by deleting the ith row and jth column of A. 
For example, the minor of the entry ^23 in the matrix. 

A = 

a\\ ai2 ^13 

«21 ^22 ^23 

^31 ^32 ^33 

is 

minor (̂ 23) = 
an an 

^31 ^32 

Notice that this entails omitting those entries in the shaded area: 

\//A 

Similarly, we could find the minors of each of the other eight entries in A. 
The CO factor of an entry a^ of a square matrix A = {aij) is the product of the minor 

of (aij) and (-1)' "̂  L The cofactor is also called a signed minor and is denoted by Â y. In 
the above case. 

^ 2 3 = ( - i y 2+3 dn an 

^31 ^32 
[ ( ^ 1 1 ^ 3 2 ) - ( ^ 3 1 ^ 1 2 ) ] 

Notice that the placement of signs follows an alternating pattern: 

+ - + 

_ + -

+ - + 

- + -

- + 

+ -
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Similarly, we could develop a cofactor (or a signed minor) for each of the eight remaining 
entries in A. However, to evaluate |A|, it tums out that we need only develop cofactors 
for any single ro\^, or any single column, of the original matrix (rather than one each for 
all nine entries in, for example, the 3 x 3 matrix above). 

To see why this is so, we can rearrange the entries in |A| so that those in the second 
row appear first. 

I A | =^22(^11^33)+^23(^12^31)+^2l(^13^32)-^22(^13^3l)-^23(flll^32)-^2l(«12^33) 

We then simpUfy as follows: 

I A I = fl2i(«i3«32 - ^12^33) + ^22(^11^33 - ^13^31) + ^23(^12^31 - ^11^32) 

However, since the cofactor ^23 has already been defined as 

^ 1 2 I 
^23=(-iy 2+3 

^31 ^32 
[(^11^32-^12^31)] =(^12^31 -^11^^32) 

we can substitute the cofactor for the last term on the right in the above expression for 
|A|. Similarly, we can substitute the other two cofactors: A^i and >l22 involving the 
second row of A. 
These are 

^ 2 1 = ( - 1 ) 

^ 2 2 = ( - ! ) • 

2 + 1 

2 + 2 

a i 2 

^32 

^11 

« 3 1 

^ 1 3 

« 3 3 

^ 1 3 

« 3 3 

[(fll2flf33 - "13^32)] = (^13^32 - ^12^33) 

-(^11^33-^13^31) 

Having done all this, we can evaluate |A| via cofactor expansion as 

1^1 =^21^21+^22^22+^23^23 

Alternatively, we can evaluate |A| by expanding along the first or third rows, or along any 
of the three columns of A. 

In summary, in computing a determinant of a matrix of order m, expansion by 
cofactors transforms the problem into evaluating m determinants of order m-\ and 
forming a linear combination of these. This procedure is continued along successive stages 
until second-order determinants are reached. For high-order matrices (e.g., m > 4), 
expansion by cofactors provides a simple stage wise, if still tedious, way to compute 
determinants by hand, ultimately arriving at computations involving second-order 
determinants. 

Let us now illustrate the evaluation of determinants through cofactor expansion for 
the 3 x 3 and 4 x 4 cases: 

A = 

1 2 3 

2 - 1 4 

2 1 1 
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We can now apply cofactor expansion using, illustratively, the second row of A: 

^2. = ( - l ) ' " ' 

^22= ( - 1 ) ' " ' 

(-ly 2+3 

2 

1 

1 

2 

1 

2 

3 

1 

3 

1 

2 

1 

= 1 

= - 5 

= 3 

Then, by continued expansion we get 

| ^ | = 2 ( l ) - l ( - 5 ) + 4(3)=19 

The same principle, illustrated above, applies in the case of fourth- or higher-ordered 
determinants. To illustrate, suppose we expand the determinant around the first column 
of the matrix 

^ 1 2 3 5' 

0 1 3 3 

2 1 0 1 

0 1 2 2 

As noted, the entries of the first column of A are 1, 0, 2, and 0. (By choosing a column 
with several zeros in it, the computations are simplified.) 
We first find 

A| = i ( - iy 

1 

1 

1 

3 

0 

2 

3 

1 

2 

+ 0 + 2 (-1)'^^ 

2 

1 

1 

3 

3 

2 

5 

3 

2 

+ 0 

We now continue to expand around the first column of each of the two 3 x 3 minors of 
A, above. 

| A | = 1 l ( - l ) ( i - i ) 

+ 2^2(-l)( i+i) 

0 1 

2 2 

3 3 

2 2 

+ 1(_1)(2+1) 

+ 1(_1)(2 + I) 

3 3 

2 2 

3 5 

2 2 

+ 1(_1)(3+1) 

+ 1(_1)(3 + 1) 

3 3 

0 1 

3 5 

3 3 

= l ( - 2 - 0 + 3) + 2(0 + 4 - 6 ) 

| A | = - 3 

While we stop our illustrations with the case of fourth-order determinants, the same 
principles can be applied to fifth and higher-ordered determinants. Fortunately, the 
availability of computer programs takes the labor out of finding determinants in problems 
of realistic size. 
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2.7.3 Some Properties of Determinants 

A number of useful properties are associated with determinants. The most important 
of these are listed below: 

1. If a matrix B is formed from a matrix A by interchanging a pair of rows (or a pair 
of columns), then |AI = —|B|. 

2. If all entries of some row or column of A are zero, then lAl = 0. 
3. If two rows (or two columns) of A are equal, then lAl = 0. 
4. The determinant of A equals that of its transpose A'; that is, lAl = IA'|. 
5. The determinant of the product of two (square) matrices of the same order equals 

the product of the determinants of the two matrices; that is, |AB| = |A| |B|. 
6. If every entry of a row (or column) of A is multiplied by a scalar k, then the value 

of the determinant is k\A\. 
7. If the entries of a row (or column) of A are multiplied by a scalar and the results 

added or subtracted from the corresponding entries of another row (or column, 
respectively), then the determinant is unchanged. 

Illustrations of these various properties follow: 

Property 1 

A = 
'3 r 
.2 4^ 

; B = 
"1 3 ' 

_4 2. 

A = - B =10 

Property 2 

A = 
0 1 

0 4 
| A | = 0 

Property 3 

A = 
3 3" 

2 2 
| A | = 0 

Property 4 

A = 
"3 r 
_2 4_ 

| A | = | A > 1 0 

A' = 
3 2' 

1 4 

Property 5 

A = 
3 1 

.2 4. 

A| = 10; 

; B = 

B |=14; 

"4 2" 

3 5 
AB = 

15 11 

20 24 

AB| = | A l | B | = 140 
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Property 6 

A = 

|Ah 

3 r 
-2 4_ 

10; 

; A: = 3; B = 

| B | = 3 |A | = 30 

9 1 

6 4 

Property 7 

"3 1 
A= ; fc = 3; b = 3 

L2 4J 

C = 
~3 r 

-2 4_ 
— 

"0 9" 

-0 6_ 
= 

' 3 - 8 1 

_2 - 2 J 

1 '̂ 
L2. 

= 
"9" 

.6_ 

| A | = | C | = 10 

In addition to the above (selected) properties of a determinant, we state two very 
important aspects of determinants that are relevant for discussion in subsequent chapters. 

1. A (square) matrix A is said to be singular if |A| = 0. / / |A|9^0, it is said to be 
nonsingular. This aspect of determinants will figure quite prominently in our future 
discussion of the regular inverse of a square matrix. 

2. The rank of a matrix is the order of the largest square submatrix whose 
determinant does not equal zero. 

To illustrate the characteristics of these definitions, consider the matrix: 

1 2 3 ' 

A = 1 2 

4 6 

Assume that we wish to find its determinant by cofactor expansion. We expand along the 
first column. 

A| = i ( - i y ^ i 

iA| = 0 

1 2 

4 6 
+ 0 + 2 ( - l ) 1 + 3 

2 3 

1 2 
= - 2 + 0 + 2 

We see that lAl = 0 and, according to the definition above, A is singular. In this case we 
note that the entries of the third row of A are precisely twice their counterparts in the 
first row of A In general, if a particular row (or column) can be perfectly predicted from 
a linear combination of the other rows (columns), the matrix is said to be singular. 

Proceeding to the next topic (i.e., the rank of A), we check to see if a 2 x 2 submatrix 
exists whose determinant does not equal zero. 

i 21 
minor (aii) = = - 2 
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Note that we need go no further, since we have found a 2 x 2 submatrix whose 
determinant does not equal zero. 

Notice, also, that even though the matrix is of order 3 x 3, the rank of A cannot be 3, 
since |A| = 0. However, it does turn out that at least one submatrix of order 2 x 2, as 
illustrated above, has a nonzero determinant. Hence, the rank of A, in this case, is 2. 

2.7.4 The Pivotal Method of Evaluating Detenninants 

In relatively large matrices, such as those of fourth and higher order, the evaluation of 
determinants even by cofactor expansion, becomes time consuming. Over the years 
mathematicians have developed a wide variety of numerical methods for evaluating 
determinants. One of these techniques, the pivotal method (Rao, 1952), has been chosen 
to illustrate this class of procedures. While we illustrate the method in the context of 
evaluating determinants, much more is obtained, as will be demonstrated in Chapter 4. 

The easiest way to describe the pivotal method is by a numerical example. For 
illustrative purposes let us evaluate the determinant of a fourth-order matrix: 

2 3 1 2 ' 

4 2 3 4 

1 4 2 2 

3 1 0 1 

Evaluating the determinant of A proceeds in a step-by-step fashion, with the aid of a 
work sheet similar to that appearing in Table 2.2. 

The top, left-hand portion of Table 2.2 shows the original matrix A, whose 
determinant we wish to evaluate. To the right of this matrix is shown an identity matrix 
of the same order (4 x 4) as the matrix A. The last column (column 9) is a check sum 
column, each entry of which represents the algebraic sum of the specific row of interest. 
(Other than for arithmetic checking purposes, column 9 plays no role in the 
computations.) 

The objective behind the pivotal method is to reduce the columnar entries in A 
successively so that for each column of interest we have only one entry and this single 
entry is unity. Specifically, the boxed entry in row 01 (the number 2) serves as the first 
pivot. Row 10 is obtained from row 01 by dividing each entry in row 01 by 2, the pivot 
item. Note that all entries in row 01 are divided by the pivot, including the entries under 
the identity matrix and the check sum column. Dividing 2 by itself, of course, produces 
the desired entry of unity in the first column of row 10. 

Row 11 is obtained from the results of two operations. First, we multiply each entry 
of row 10 by 4, the first entry in row 02. This particular step is not shown in the work 
sheet, but the nine products are 

4; 6; 2; 4; 2; 0; 0; 0; 18 

These are then subtracted from their counterpart entries in row 02, so as to obtain row 
11. 
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TABLE 2.2 

Evaluating a Determinant by the Pivotal Method 

Row 
No. 

0 

01 

02 
03 
04 

10 

11 

12 
13 

20 

21 

22 

30 

31 

40 
30* 
20* 
10* 

Original matrix 

1 

0 
4 
1 
3 

1 

2 

3 

2 
4 
1 

1.5 

0 
2.5 

-3.5 

1 

1 
1 

3 4 

1 2 

3 4 
2 2 
0 1 

0.5 1 

1 0 

1.5 1 
-1.5 - 2 

-0.25 

2.125 

-2.375 

0 

1 

- 2 

1 0.471 

-0 .88l | 

1 
1 

\ 

5 

1 

0 
0 
0 

0.5 

- 2 

-0.5 
-1.5 

0.5 

-1.75 

0.25 

-0.824 

-1.707 

1.938 
-1.737 

0.066 
-0.668 

Identity matrix 

6 

0 

1 
0 
0 

0 

1 

0 
0 

-0.25 

0.625 

-0.875 

0.294 

-0.177 

0.201 
0.199 

-0.200 
-0.001 

7 

0 

0 
1 
0 

0 

0 

1 
0 

0 

1 

0 

0.471 

1.119 

-1.270 
1.069 
0.267 
0.334 

8 

0 

0 
0 
1 

0 

0 

0 
1 

0 

0 

1 

0 

1 

-1.135 
0.534 
0.134 
0.667 

Check 
sum 

column 
9 

9 

14 
10 
6 

4.5 

- 4 

5.5 
-7.5 

1 

3.0 

-4.0 

1.412 

-0.646 

0.733 

1.267 
1.332 

I AI = (2)(-4)(2.125)(-0.881) = 15 

Note, particularly, that this subtraction has the desired effect of producing a zero 
(shown as a blank) in the first entry of row 11. Note further that the entries of row 11 
add up to —4, the row check sum in the last column; the check sum column is provided 
for all rows and serves as an arithmetic check on the computations. 

Row 12 is obtained in an analogous way; here, since the first element in row 03 is 1, 
we multiply row 10 by unity and then subtract the row 10 elements from their 
counterparts in row 03. Row 13 is also obtained in the same way. First, the row 10 
entries are multiplied by 3, the first entry in row 04. Then these entries are subtracted 
from their counterparts in row 04. Finally, we see that in rows 10 through 13, all entries 
in column 1 are zero (and represented by blanks) except the first entry which is unity. 

At the next stage in the computations, the first element in row 11 becomes the pivot. 
All entries in row 11 are divided by —4, the new pivot, and the results are shown in row 
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20. Row 20 now becomes the reference row. For example, row 21 is found in a way 
analogous to row 11. First, we multiply all entries of row 20 by 2.5, the first entry of row 
12. Although not shown in the work sheet, these are 

2.5; -0.625; 0; 1.25; -0.625; 0; 0; 2.5 

These elements are then subtracted from their counterparts in row 12 and the results 
appear in row 21. 

The procedure is then repeated by multiplying row 20 by -3 .5 , the leading element in 
row 13 and subtracting these new entries from their counterparts in row 13. Note that in 
rows 20 through 22, entries in columns 1 and 2 are all zero, except for the leading 
element of 1 in row 20. 

The third pivot item is the entry 2.125 in row 21. All entries in row 21 are divided by 
2.125 and the results listed in row 30. Finally, the entries of row 30 are multiplied by 
—2.375, the leading entry in row 22. Although not shown in the work sheet, these entries 
are 

-2.375; -1.119; 1.957; -0.698; -1.119; 0; -3.353 

These entries are subtracted from their counterparts in row 22, providing row 31. The last 
pivot item is —0.881 and appears in row 31. 

Finally, the four pivots are multiplied together, leading to the determinant 

I AI = (2)(-4)(2.125)(-0.881) = 15 

At this point the reader may well wonder what is the role played by the various changes 
being made in the identity matrix as the pivot procedure is applied. Moreover, we have 
not discussed the various calculations appearing in rows 40 through 10*. 

As it tums out, the pivotal method is much more versatile and useful than illustrated 
here. While the determinant of the matrix is, indeed, obtained, the pivotal method can be 
employed for three important purposes: 

1. computing determinants (as the product of pivot elements);^ 
2. solving a set of simultaneous equations; 
3. finding the inverse of a matrix. 

Here we have only described the first objective. Later on (in Chapter 4) we review the 
pivotal method in terms of all three of the above objectives and, in the process, discuss 
the remaining computations in Table 2.2. 

The reader may also have wondered about what happens when a candidate pivot is 
zero (which, fortunately, did not happen in the preceding example). Clearly, we cannot 
divide the other entries of that row by zero. It tums out, however, that there is a 
straightforward way of dealing with this problem. We shall illustrate it in the continued 
discussion of this method in the context of matrix inversion in Chapter 4. 

' In general, the determinant of an upper triangular matrix (i.e., a square matrix, all of whose 
elements below the main diagonal are zero) is given by the product of its main diagonal elements. 
Similar remarks pertain to the determinant of a lower triangular matrix (Le., a square matrix, all of 
whose elements above the main diagonal are zero). The pivot procedure produces a derived triangular 
matrix via transformation. 
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In summary, our discussion of determinants does not end here. Since determinants 
figure quite prominently in other topics such as matrix inversion and matrix rank, we 
shall retum to further discussion of them in subsequent chapters. 

2.8 APPLYING MATRIX OPERATIONS TO STATISTICAL 
DATA 

Much of the foregoing discussion has been introduced for a specific purpose, namely, 
to describe matrix and vector operations that are relevant for multivariate procedures. 
One of the main virtues of matrix algebra is its conciseness, that is, the succinct way in 
w îich many statistical operations can be described. 

To illustrate the compactness of matrix formulation, consider the artificial data of 
Table 2.3. For ease of comparison these are the same data that appeared in the sample 
problem of Table 1.2 in Chapter 1. That is, Y denotes the employee's number of days 

TABLE 2.3 

Computing Various Types of Cross-Product Matrices from Sample Data 

Employee 

a 
b 
c 
d 
e 
f 

g 
h 
i 

J 
k 
1 

Y 

B = X, 

X^ 

Y 

c = x. 
X, 

Raw 

Y 

"823 

702 

_542 

Y 

1 
0 
1 
4 
3 
2 
5 
6 
9 

13 
15 
16 

75 

Y" 

1 
0 
1 

16 
9 
4 

25 
36 
81 

169 
255 
256 

823 

X, 

1 
2 
2 
3 
5 
5 
6 
7 

10 
11 
11 
12 

75 

cross-product matrix 

X, 

702 

639 

497 

X, 

542" 

497 

397 _ 

Covariance matrix 

Y X, X, 

"29.52 19.44 14.44" 

19.44 14.19 10.69 

_ 14.44 10.69 8.91_ 

X,-

1 
4 
4 
9 

25 
25 
36 
49 

100 
121 
121 
144 

639 

X, 

1 
1 
2 
2 
4 
6 
5 
4 
8 
7 
9 

10 

59 

Y 

S = ^ i j 

x,\ 

Y 

K = X^ 

X, 

X,' 

1 
1 
4 
4 

16 
36 
25 
16 
64 
49 
81 

100 

397 

SSCP matrix 

Y X, 

YX, 

1 
0 
2 

12 
15 
10 
30 
42 
90 

143 
165 
192 

702 

YX^ 

1 
0 
2 
8 

12 
12 
25 
24 
11 
91 

135 
160 

542 

X, 

"354.25 233.25 ] 

233.25 170.25 ] 

_173.25 128.25 ] 

Correlation matrix 

Y X, 

ri.OO 0.95 

0.95 1.00 

L0.89 0.95 

X, 

0.89" 

0.95 

1.00_ 

L73.25~ 

128.25 

L 06.92. 

X,X^ 

1 
2 
4 
6 

20 
30 
30 
28 
80 
11 
99 

120 

497 
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absent during the past year; Xi denotes his attitude rating (the higher the score the less 
favorable his attitude toward the firm); and X2 denotes the number of years he has been 
employed by the firm. 

As recalled from Chapter 1, this miniature data bank will be used later on in the book 
to demonstrate several multivariate techniques, including multiple regression, princip^ 
components analysis, and multiple discriminant analysis. For the moment, however, let us 
consider the role of matrix algebra in the development of data summaries prior to 
employing specific analytical techniques. 

The computation of means, variances, covariances, correlations, etc., is a necessary 
preliminary to subsequent multivariate analyses in addition to being useful in its own 
right as a way to summarize aspects of variation in the data. 

2.8.1 Sums, Sums of Squares, and Cross Products 

To demonstrate the compactness of matrix notation, suppose we are concerned with 
computing the usual sums, sums of squares, and sums of cross products of the "raw" 
scores involving, for example, Y and Xi in Table 2.3: 

27 ; 2X1; 2 7 ^ SXi^ 1:YXI 

In scalar products form, the first two expressions are simply 

i : r = l V = 75; SXi = l ' x i=75 

where 1' is a 1 x 12 unit vector, with all entries unity, and y and Xi are the Y and X 
observations expressed as vectors. Notice in each case that a scalar product of two vectors 
is involved. 

Similarly, the scalar product notion can be employed to compute three other 
quantities involving Y and Xi: 

2^2 = y'y = 823 ZXi^ = X 1X1 = 639 Z r ^ i = y'xi = 702 

Table 2.3 lists the numerical values for all of these products and, in addition, the products 
involving X2 as well. 

As a matter of fact, if we designate the matrix A to be the 12 x 3 matrix of original 
data involving variables Y, Xi, and X2, the following expression 

B=A'A 

which is often called the minor product moment (of A), will yield a symmetric matrix B 
of order 3 x 3 . The diagonal entries of the matrix B denote the raw sums of squares of 
each variable, and the off-diagonal elements denote the raw sums of cross products as 
shown in Table 2.3. 

2.8.2 Mean-Corrected (SSCP) Matrix 

We can also express the sums of squares and cross products as deviations about the 
means of Y, Xi, and X2. The mean-corrected sums of squares and cross-products matrix 
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is often more simply called the SSCP (sums of squares and cross products) matrix and is 
expressed in matrix notation as 

S = A ' A - - ( A ' l ) ( r A ) 
m 

v^ere 1 denotes a 12 x 1 unit vector and m denotes the number of observations; m = 12. 
The last term on the right-hand side of the equation represents the correction term and is 
a generalization of the usual scalar formula for computing sums of squares about the 
mean: 

Sx^ = SX^ - {^xf 
m 

where x=X - X\ that is, where x denotes deviation-from-mean form. Alternatively, if the 
columnar means are subtracted out of A to begin with, yielding the mean-corrected 
matrix A^, then 

S=AyA d ^d 

For example, the mean-corrected sums of squares and cross products for FandXi are 

V = 27^ -(sry 
m 

= 823-

2xi^ = 2 Z i ^ - (zxô  = 639-
m 

12 

(75)^ 
12 

= 354.25 

= 170.25 

^y., = ^YX.J^XHLK 702 - < Z i ^ ) = 233.25 
m 12 

The SSCP matrix for all three variables appears in Table 2.3. 

2.8.3 Covariance and Correlation Matrices 

The covariance matrix, shown in Table 2.3, is obtained from the (mean-corrected) 
SSCP matrix by simply dividing each entry of S by the scalar m, the sample size. That is. 

C = - S 
m 

In summational form the off-diagonal elements of C can be illustrated for the variables Y 
and Xi by the notation 

cov(rXi) = i:yxilm = 233.25/12 = 19.44 

Note that a covariance, then, is merely an averaged cross product of mean-corrected 
scores. The diagonals of C are, of course, variances; for example, 

Xy^'/m 
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(In some applications we may wisli to obtain an unbiased estimate of the population 
covariance matrix; if so, we use the divisor m - 1 instead of m). 

The correlation between two variables, y and Xi, is often obtained as 

where y and Xi are each expressed in deviation-from-mean form (as noted above). 
Not surprisingly, R the correlation matrix is related to S, the SSCP matrix, and C, the 

covariance matrix. For example, let us return to S. The entries on the main diagonal of S 
represent mean-corrected sums of squares of the three variables Y, Xi, and X2. 

If we take the square roots of these three entries and enter the reciprocals of these 
square roots in a diagonal matrix, we have 

D = 

0 

0 

1/V^^ 

Then, by pre- and post multiplying S by D we can obtain the correlation matrix R. 

R=DSD 

s / V W V W V W V w V s ^ 
^yx2 DX1X2 2X2 

^ V z ^ ^ V^^vS? VsVv^^ 
The above matrix is the derived matrix of correlations between each pair of variables and 
is also shown in Table 2.3 

Ordinarily, we could then go on and use R in further calculation, for example, to find 
the regression of Y on Xi and X2. Since our purpose here is only to show the conciseness 
of matrix notation, we defer these additional steps until later. In future chapters we shall 
have occasion to discuss all four of the preceding matrices: (a) the raw sums and 
cross-products matrix, (b) the (mean-corrected) SSCP matrix, (c) the covariance matrix, 
and (d) the correlation matrix. 

At this point, however, we should note that they are all variations on a common 
theme: All involve computing the minor product moment of some matrix. 

1. Raw sums of squares and cross-products matrix: 

B = AA 
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2. The (mean-corrected) SSCP matrix: 

S = Ad'Ad 

where A^ is the matrix of deviation-from-mean scores; that is, each column of A(j sums to 
zero since each columnar mean has been subtracted from each datum. 

3. The covariance matrix 

C = 1/mAd'Ad 

4. The correlation matrix 

R= 1/mAs'As 

where A^ is the matrix of standardized scores. 

As can be found from Table 1.2, in which the sample problem data first appear, both 
deviation-from-mean and standardized scores are shown along with the original scores. 

Finally, the matrices Ad of mean-corrected scores and As of standardized scores are 
derived from A, the matrix of original scores, in the following way. We first find 

Ad = A — la' 

where 1 is a 12 x 1 unit column vector and a' is a 1 x 3 row vector of variable means. The 
vector of means is, itself, obtained from 

a' = I'A/m 

where 1' is now a 1 x 12 row vector. Next, we find the matrix of standardized scores 
from Ad as follows: 

As=AdD 

\\iiere D is a diagonal matrix whose entries along the main diagonal are the reciprocals of 
the standard deviations of the variables in A. 

The standard deviation of any column of Ad, say Ed/, is simply 

5«d/"^ad/ad//m 

In summary, any of the operations needed to find various cross-product matrices are 
readily expressible in matrix format. In so doing we arrive at a very compact and graceful 
way to portray some otherwise cumbersome operations. 

2.9 SUMMARY 

The purpose of this chapter has been to introduce the reader to relations and 
operations on vectors and matrices. Our emphasis has been on defining various operations 
and describing the mechanics by which one manipulates vectors and matrices. Such 
elementary operations as addition and subtraction, multiplication of vectors and matrices 
by scalars, the scalar product of two vectors, vector times matrix multiplication, etc., 
were described and illustrated numerically. Various properties of these operations were 
also described. 

file:////iiere
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Special kinds of vectors (e.g., null, sign, unit) and special kinds of matrices (e.g., 
diagonal, scalar, identity) were also defined and illustrated numerically. We then turned 
to an introductory discussion of determinants of (square) matrices. Evaluation of 
determinants via expansion by cofactors and the pivotal method was described and 
illustrated. 

We concluded the chapter with a demonstration of how matrix algebra can be used to 
provide concise descriptions of various statistical operations that are preparatory to 
specific multivariate analyses. These matrix operations are particularly amenable to 
computer programming and are used extensively in programs that deal with multivariate 
procedures. 

REVIEW QUESTIONS 

1. Write the following equations in matrix form: 

a. 4x + y - z = 0 

3x-4y-\-2z= \ 

5x- y -2z = l 

Given the matrices 

"1 2 
A = 

4 0 

find 

- 3 

1 

a. A + B 

d. A - ( B + C) 

b. 2x + 3y+ z=\\ 

x+ y + lz = 24 

3x+ 5y + 4z = 25 

b. (A + C) + B 

e. -(A + B) 

C = 
0 

- 2 

c. A + (B + C) 

f. (A - B) + C 

3. Given the vectors 

a = 

[l 
2 

4 

b = 

1 

3 

4 

and the scalars 

ki 

find 

a. b b b. —ki2L c. k2h' d. a'b e. kik2isLa) 

4. Given the matrices, vectors, and scalars of Problems 2 and 3, find 

a. a'A' b. kiB c. (AB' ) ' d. kiC e. k2BA'C 

f. ^^(ba) 

f. ab 
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5. Examine the relationships among (DE)', D ' E ' , and E ' D ' under the following two sets 
of conditions. 

Let: 

a. D = 

Let: 

6. Given the matrices 

- 1 

F = 

b. D = 

a b 

c d_ 

"1 3 

0 2 

and E = 

and E = 

e f 

3 4" 

0 2 

3 5 

1 - 3 - 5 

- 1 3 5 

and G = 

2 - 3 - 5 

- 1 4 5 

1 - 3 - 4 

demonstrate that 

a. FG = <̂  does not imply that either F = ^ or G = 0. 
b. Find GF. Is this product equal to <j>1 

7. Given the matrices and vectors in Problems 3 and 6, find the products: 

a. a'Fb b. b'Gb c. a'FGa d. b'FGa 

8. Consider the diagonal matrices 

4 0 0 

Hi and Ho 0 3 0 

0 0 1 

and the vectors and matrices of Problems 3 and 6. Find 

a. a'(HiF) b. b'(HiGH2) c. a'(HiH2)b 

9. In ordinary algebra, we have the relationship 

1 0 0 

0 0 0 

0 0 2 

d. a(FGH2) 

x - 2 = ( x + l ) ( x - 2 ) 

In matrix algebra, if 

see if the following holds: 

10. If 

a b 

c d 
and 

1 0 

0 1 

X - 2 I = (X + I ) ( X - 2 I ) 

Find 

a. y 

1 i 

2 3 

b. K^ 

and 

c. (JK)^ 

K = 
2 0 

0 3 

d. (KJ)^+(JKy 
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11. Evaluate the determinants of the following 2 x 2 matrices: 

a. L, = 

L3 = 

~ l /2 

1/4 

X 

x^\ 
1/3-, 

1/6 

b. 

d. 

L2 = 

L4 = 

- 1 

1 

a 

b 

o] 

oj 
-b' 

a 

12. By means of cofactor expansion, evaluate the determinants of 

4 -12 - 4 ' 

Mo ~ 

c. M3 = 

2 

L-1 

0 

2 

4 

1 

3 

2 

4 

1 

- 3 

3 5" 

3 

2J 

13. Evaluate the determinant of the fourth-order matrix used in Section 2.7.4 via 
cofactor expansion and check to see that it equals the value of the determinant found 
from the pivotal method. 
14. Apply the pivotal method to matrix M3 in Problem 12 and check your answer with 
that found by cofactor expansion. 
15. Assume the following data bank: 

a 

b 

c 

d 

e 

f 

Find, via matrix methods, 

a. Sr; Ji; SrXj; 2A^3^-(SA^a) Vm 

b. the 4 x 4 (mean-corrected) SSCP matrix S 

c. the covariance matrix C d. the correlation matrix R 

e. the matrix of mean-corrected scores 

f. show that the sum of the deviations about the mean equals zero for the first 
colunm Y-

Y 

2 

4 

3 

7 

8 

9 

X, 

1 

2 

5 

3 

7 

8 

X2 

0 

3 

2 

4 

7 

7 

^ 3 

9 

8 

4 

5 

2 

1 


