Dynamic Career Incentive versus Policy Rent-Seeking in Institutionalized Autocracies
A Long-Run Model of Trade Policy Determination in China

Hans H. Tung
Dept. of Government
Harvard University

June 29, 2011
Outline

1 Motivation
 - Empirical
 - Theoretical

2 Theory

3 Empirical Evidence
 - Measuring Promotion Expectation
 - BEW Index
 - BEW-Plus Index
 - Measurement Errors
 - Additional Indicators
 - Data and Variable Selection
 - Econometric Strategy
 - Findings

4 Conclusions
Outline

1 Motivation
 - Empirical
 - Theoretical

2 Theory

3 Empirical Evidence
 - Measuring Promotion Expectation
 - BEW Index
 - BEW-Plus Index
 - Measurement Errors
 - Additional Indicators
 - Data and Variable Selection
 - Econometric Strategy
 - Findings

4 Conclusions
China’s Aggregate Tariff Rates for the Industrial Sector

<table>
<thead>
<tr>
<th>Year</th>
<th>Tariff Rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>10</td>
</tr>
<tr>
<td>1992</td>
<td>15</td>
</tr>
<tr>
<td>1994</td>
<td>20</td>
</tr>
<tr>
<td>1996</td>
<td>25</td>
</tr>
<tr>
<td>1998</td>
<td>30</td>
</tr>
<tr>
<td>2000</td>
<td>35</td>
</tr>
<tr>
<td>2002</td>
<td>40</td>
</tr>
<tr>
<td>2004</td>
<td>45</td>
</tr>
</tbody>
</table>
A Disaggregated Look: 1992
A Disaggregated Look: 1996

Tariff Rates(%) vs Year

0 10 20 30 40 50 60 70 80 90 100

Sectors

1996 Nominal Tariff Rate (%)
A Disaggregated Look: 2001

Tariff Rates (%)

Year

Tariff Rates (%)

10 15 20 25 30 35 40 45

Sectors

2001 Nominal Tariff Rate (%)

0 10 20 30 40 50 60

Sectors

2001 Nominal Tariff Rate (%)

0 10 20 30 40 50 60

Sectors
Two Perceptions of China

"Whether or not you like the implications for the United States, China has developed a comprehensive energy strategy that addresses both supply and demand - unlike the president’s energy plan and the one before the congressional energy conference committee this week."

The Eurasia Group, *China’s Overseas Investments in Oil and Gas Production*, 2006

"While recent reforms to China’s energy regulation structure will undoubtedly change the dynamics of bureaucratic decision-making, top-level attention to energy issues has not helped the government to overcome turf wars between different ministries, and China’s domestic energy reform, such as liberalizing pricing, remains bogged down by political sensitivities."
Brief Review of the Literature

1. What the current literature on China can tell us
 - Hierarchical Model: Development strategy triumphs.
 - Fragmented Authoritarianism: Bureaucratic bargaining matters

2. What the current literature on China can not tell us
 - Dynamic Effect of Promotion Expectations
 - Commitment Problem in Autocracies
Brief Review of the Literature

1. What the current literature on China can tell us
 - Hierarchical Model: Development strategy triumphs.
 - Fragmented Authoritarianism: Bureaucratic bargaining matters

2. What the current literature on China can not tell us
 - Dynamic Effect of Promotion Expectations
 - Commitment Problem in Autocracies
Brief Review of the Literature

1. What the current literature on China can tell us
 - Hierarchical Model: Development strategy triumphs.
 - Fragmented Authoritarianism: Bureaucratic bargaining matters

2. What the current literature on China can not tell us
 - Dynamic Effect of Promotion Expectations
 - Commitment Problem in Autocracies
Brief Review of the Literature

1. What the current literature on China can tell us
 - Hierarchical Model: Development strategy triumphs.
 - Fragmented Authoritarianism: Bureaucratic bargaining matters

2. What the current literature on China can not tell us
 - Dynamic Effect of Promotion Expectations
 - Commitment Problem in Autocracies
Brief Review of the Literature

1. What the current literature on China can tell us
 - Hierarchical Model: Development strategy triumphs.
 - Fragmented Authoritarianism: Bureaucratic bargaining matters

2. What the current literature on China can not tell us
 - Dynamic Effect of Promotion Expectations
 - Commitment Problem in Autocracies
Brief Review of the Literature

1. What the current literature on China can tell us
 - Hierarchical Model: Development strategy triumphs.
 - Fragmented Authoritarianism: Bureaucratic bargaining matters

2. What the current literature on China can not tell us
 - Dynamic Effect of Promotion Expectations
 - Commitment Problem in Autocracies
Outline

1 Motivation
 • Empirical
 • Theoretical

2 Theory

3 Empirical Evidence
 • Measuring Promotion Expectation
 • BEW Index
 • BEW-Plus Index
 • Measurement Errors
 • Additional Indicators
 • Data and Variable Selection
 • Econometric Strategy
 • Findings

4 Conclusions
Institutional Background

Political accountability

bureaucratic accountability

Politburo

Standing Committee

Politburo

Non-Standing Committee

Central Committee
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.

- Bureaucratic Activism

- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic

- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
 - Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
 - Key Features of an Inter-Temporal Relational Contract
 Self-Enforcing
 Time Inconsistency
 Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Endogenous Lobby Formation and China’s Trade Policymaking

- Top leaders’ policy preferences are exogenously given.
- Bureaucratic Activism
- Promotion Contract and Career Incentive in a hierarchy
 - Static
 - Dynamic
- Key Features of an Inter-Temporal Relational Contract
 - Self-Enforcing
 - Time Inconsistency
 - Commitment Problem
Fragmented Authoritarianism and the Long-Run Model of China’s Trade Policymaking

Motivation

- Trade Policy Preferences Stage I
- Bureaucratic Affiliations
- Provincial Affiliations
- Promotion Expectations
- Trade Policy Preferences Stage II
- Bureaucratic Activism
- Career Incentives
- Collective Action Problem
- Political Organization
- Trade Policy Outcomes
- Protection Measures
- Endogeneity (Mitra, 1999)
- Agency Slack
- Alternative Sources of Policy Preference
- Societal Actors

FA 1.0

FA 2.0
Common Agency Model with Counter-Lobbying and Market Power

Revised Formulation (Based on Cadot, et al. (2008); Broda, et al. (2008))

\[
\frac{t_i}{1 + t_i} = \tilde{t}_i = \frac{l_i - \alpha_L}{a + \alpha_L} \left(\frac{z_i}{|e_i|} \right) + \frac{1}{|\omega_i|} - \sum_{j=1}^{n} \frac{l_j - \alpha_L}{a + \alpha_L} (1 - \lambda_j) \left(\frac{a_{ij} z_i}{|e_i|} \right)
\]

1. \(t_i = \frac{p^d - p^*}{p^*}\): *ad valorem* tariff rate of sector \(i\)
2. \(\alpha_L\): the sum of shares of specific factor owners in organized sectors.
3. \(a\): weight of social welfare
4. \(a_{ij}\): requirement of good \(i\) to produce one unit of good \(j\)
5. \(\lambda_j\): share of sector \(j\)'s exported output
6. \(z_i = \frac{y_i}{m_i}\): inverse import penetration
7. \(e_i =:\) import demand elasticities
8. \(\omega_i\): export supply elasticities
Common Agency Model with Counter-Lobbying and Market Power

- Top Leader’s Preferences are captured by

1. \(\frac{1}{|e_i|} \): Ramsey Pricing Intuition.
2. \(\frac{1}{|\omega_i|} \): Market Power Consideration.

- Sectoral Bureaucrats choose between getting politically organized or not, or accepting promotion contracts according to the credibility of top’s leader promotion commitments.
Common Agency Model with Counter-Lobbying and Market Power

- Top Leader’s Preferences are captured by
 \[\frac{1}{|e_i|} : \text{Ramsey Pricing Intuition.} \]
 \[\frac{1}{|\omega_i|} : \text{Market Power Consideration.} \]

- Sectoral Bureaucrats choose between getting politically organized or not, or accepting promotion contracts according to the credibility of top’s leader promotion commitments.
Common Agency Model with Counter-Lobbying and Market Power

- Top Leader’s Preferences are captured by
 \[\frac{1}{|e_i|} : \text{Ramsey Pricing Intuition.} \]
 \[\frac{1}{|\omega_i|} : \text{Market Power Consideration.} \]

- Sectoral Bureaucrats choose between getting politically organized or not, or accepting promotion contracts according to the credibility of top’s leader promotion commitments.
Common Agency Model with Counter-Lobbying and Market Power

- Top Leader’s Preferences are captured by
 \[\frac{1}{|e_i|} : \text{Ramsey Pricing Intuition.} \]
 \[\frac{1}{|\omega_i|} : \text{Market Power Consideration.} \]

- Sectoral Bureaucrats choose between getting politically organized or not, or accepting promotion contracts according to the credibility of top’s leader promotion commitments.
The Making of a Composite Index

1. Indicators: Independent or Dependent (Correlated)?
2. Measurement Errors: Random or Systematic?
3. Biases in Regression Analysis
The Making of a Composite Index

1. Indicators: Independent or Dependent (Correlated)?
2. Measurement Errors: Random or Systematic?
3. Biases in Regression Analysis
The Making of a Composite Index

1. Indicators: Independent or Dependent (Correlated)?
2. Measurement Errors: Random or Systematic?
3. Biases in Regression Analysis
Birthplaces

\[B_i = \begin{cases}
1 & \text{when CC member } i \text{ and standing Politburo member } j \\
& \text{share the same birthplace} \\
0 & \text{otherwise}
\end{cases} \] (2)

1. **Jiguan or Chushengdi?**

2. The *Chushengdi* Effect and Work Experience

3. The *Jiguan* Effect and a Weighted Composite Index. Formally, \(BEW_i = E_i + 2W_i + \epsilon_i \) (3)

where \(B_i = W_i + \epsilon_i \) and the effect of \(B_i \) that fails to be captured by \(W_i \) will be left in \(\epsilon_i \).
Birthplaces

\[B_i = \begin{cases}
1 & \text{when CC member } i \text{ and standing Politburo member } j \\
0 & \text{share the same birthplace} \\
0 & \text{otherwise}
\end{cases} \]

(2)

1. *Jiguan or Chushengdi?*

2. The *Chushengdi* Effect and Work Experience

3. The *Jiguan* Effect and a Weighted Composite Index. Formally,

\[BEW_i = E_i + 2W_i + \epsilon_i \]

(3)

where \(B_i = W_i + \epsilon_i \) and the effect of \(B_i \) that fails to be captured by \(W_i \) will be left in \(\epsilon_i \).
Birthplaces

\[B_i = \begin{cases}
1 & \text{when CC member } i \text{ and standing Politburo member } j \\
& \text{share the same birthplace} \\
0 & \text{otherwise}
\end{cases} \] (2)

1. **Jiguan or Chushengdi?**
2. The *Chushengdi* Effect and Work Experience
3. The *Jiguan* Effect and a Weighted Composite Index. Formally,

\[\text{BEW}_i = E_i + 2W_i + \epsilon_i \] (3)

where \(B_i = W_i + \epsilon_i \) and the effect of \(B_i \) that fails to be captured by \(W_i \) will be left in \(\epsilon_i \).
Education

\[
E_i = \begin{cases}
1 & \text{when CC member } i \text{ and standing Politburo member } j \\
& \text{attended the same school} \\
0 & \text{otherwise}
\end{cases}
\] (4)

Secondary or Tertiary?
Work Unit

\[W_i = \begin{cases}
1 & \text{when CC member } i \text{ and standing Politburo member } j \text{ both worked} \\
& (i) \text{ in the same work unit} \\
& (ii) \text{ for over half year and} \\
& (iii) \text{ within two administrative steps} \\
0 & \text{otherwise}
\end{cases} \] (5)
Beyond The BEW Index

1. Statistical Reason: Spatial Proximity and Systematic Measurement Errors

2. Conceptual Differences between Factional Ties and Promotion Expectations
Beyond The BEW Index

1. Statistical Reason: Spatial Proximity and Systematic Measurement Errors
2. Conceptual Differences between Factional Ties and Promotion Expectations
Random versus Systematic Errors

A linear model for measurement errors, ζ_i

$$\text{BEW}_i = P_i + \zeta_i$$

where P_i denotes the true factional tie/promotion expectation of member i

- Random Errors: ζ_i has full support, i.e., $P[\zeta_i = z] > 0$, $\forall z$ where z denotes the set of all possible values ζ_i can take.
- Systematic Errors: Some of the values ζ_i might take have zero probability ($P[\zeta_i = k] = 0$, where $k \in z$).
A linear model for measurement errors, ξ_i

$$\text{BEW}_i = P_i + \xi_i$$ \hspace{1cm} (6)

where P_i denotes the true factional tie/promotion expectation of member i

- Random Errors: ξ_i has **full support**, i.e., $P[\xi_i = z] > 0$, $\forall z$ where z denotes the set of all possible values ξ_i can take.

- Systematic Errors: Some of the values ξ_i might take have zero probability ($P[\xi_i = k] = 0$, where $k \in z$).
A linear model for measurement errors, ζ_i

$$\text{BEW}_i = P_i + \zeta_i$$

where P_i denotes the true factional tie/promotion expectation of member i

- Random Errors: ζ_i has full support, i.e., $P[\zeta_i = z] > 0$, $\forall z$ where z denotes the set of all possible values ζ_i can take.
- Systematic Errors: Some of the values ζ_i might take have zero probability ($P[\zeta_i = k] = 0$, where $k \in z$).
Suppose we have the following regression model

$$Y_i = X\beta + \gamma P_i + \epsilon_i$$ \hspace{1cm} (7)

Random Errors and Regression Analysis

\begin{itemize}
 \item Unbiased: $E[BEW_i] = P_i$
 \item Asymptotic Behavior:
 \begin{equation}
 \hat{\gamma} = \gamma \left(1 + \frac{1}{\sigma^2 P \xi + \sigma^2 \xi \sigma^2 P + 2 \sigma P \xi + \sigma^2 \xi^2}\right) \hspace{1cm} (8)
 \end{equation}
\end{itemize}

Systematic Errors and Regression Analysis

\begin{itemize}
 \item Biased: $E[BEW_i] = P_i + E[\zeta_i]$
 \item Asymptotic Behavior:
 \begin{equation}
 \hat{\gamma} = \gamma \left(1 - \frac{1}{\sigma P \xi + \sigma^2 \xi \sigma^2 P + 2 \sigma P \xi + \sigma^2 \xi^2}\right) \hspace{1cm} (9)
 \end{equation}
\end{itemize}
Suppose we have the following regression model

\[Y_i = X\beta + \gamma P_i + \varepsilon_i \]

Random Errors and Regression Analysis

1. Unbiased: \(E[BEW_i] = P_i \)
2. Asymptotic Behavior:

\[\hat{\gamma} = \gamma \left(\frac{1}{1 + \frac{\sigma_e^2}{\sigma_P^2}} \right) \]

Systematic Errors and Regression Analysis

1. Biased: \(E[BEW_i] = P_i + \varepsilon \)
2. Asymptotic Behavior:

\[\hat{\gamma} = \gamma \left(\frac{1}{\sigma_P^2 + \sigma_e^2} \right) \]
Suppose we have the following regression model

\[Y_i = X \beta + \gamma P_i + \varepsilon_i \]

Random Errors and Regression Analysis

1. Unbiased: \(E[BEW_i] = P_i \)
2. Asymptotic Behavior:

\[\hat{\gamma} = \gamma \left(\frac{1}{1 + \frac{\sigma^2}{\sigma_p^2}} \right) \]

Systematic Errors and Regression Analysis

1. Biased: \(E[BEW_i] = P_i + E[\xi] \)
2. Asymptotic Behavior:

\[\hat{\gamma} = \gamma \left(1 - \frac{\sigma^2 + \sigma_p^2}{\sigma_p^2} \right) \]
Suppose we have the following regression model:

\[Y_i = X\beta + \gamma P_i + \varepsilon_i \] \hspace{1cm} (7)

Random Errors and Regression Analysis

1. **Unbiased:** \(E[BEW_i] = P_i \)
2. **Asymptotic Behavior:**

\[
\hat{\gamma} = \gamma \left(\frac{1}{1 + \frac{\sigma^2_\zeta}{\sigma^2_P}} \right)
\] \hspace{1cm} (8)

Systematic Errors and Regression Analysis

1. **Biased:** \(E[BEW_i] = P_i + E[\zeta] \)
2. **Asymptotic Behavior:**

\[
\hat{\gamma} = \gamma \left(1 - \frac{\sigma^2_\zeta}{\sigma^2_P} \right)
\] \hspace{1cm} (9)
Suppose we have the following regression model

\[Y_i = X\beta + \gamma P_i + \varepsilon_i \]

(7)

Random Errors and Regression Analysis

1. Unbiased: \(E[\text{BEW}_i] = P_i \)
2. Asymptotic Behavior:

\[\hat{\gamma} = \gamma \left(\frac{1}{1 + \frac{\sigma^2_\zeta}{\sigma^2_P}} \right) \]

(8)

Systematic Errors and Regression Analysis

1. Biased: \(E[\text{BEW}_i] = P_i + E[\zeta_i] \)
2. Asymptotic Behavior:

\[\hat{\gamma} = \gamma \left(1 - \frac{\sigma_P\zeta + \sigma^2_\zeta}{\sigma^2_P + 2\sigma_P\zeta + \sigma^2_\zeta} \right) \]

(9)
Suppose we have the following regression model

$$Y_i = X\beta + \gamma P_i + \varepsilon_i$$ \hspace{1cm} (7)

Random Errors and Regression Analysis

1. Unbiased: $E[\text{BEW}_i] = P_i$
2. Asymptotic Behavior:

$$\hat{\gamma} = \gamma \left(\frac{1}{1 + \frac{\sigma_\zeta^2}{\sigma_P^2}} \right)$$ \hspace{1cm} (8)

Systematic Errors and Regression Analysis

1. Biased: $E[\text{BEW}_i] = P_i + E[\zeta_i]$
2. Asymptotic Behavior:

$$\hat{\gamma} = \gamma \left(1 - \frac{\sigma_P \zeta + \sigma_\zeta^2}{\sigma_P^2 + 2\sigma_P \zeta + \sigma_\zeta^2} \right)$$ \hspace{1cm} (9)
Measurement Errors and Regression Analysis

- Suppose we have the following regression model
 \[Y_i = X \beta + \gamma P_i + \varepsilon_i \] \hspace{1cm} (7)

- Random Errors and Regression Analysis
 1. Unbiased: \(E[BEW_i] = P_i \)
 2. Asymptotic Behavior:

 \[\hat{\gamma} = \gamma \left(\frac{1}{1 + \frac{\sigma_\zeta^2}{\sigma_P^2}} \right) \] \hspace{1cm} (8)

- Systematic Errors and Regression Analysis
 1. Biased: \(E[BEW_i] = P_i + E[\zeta_i] \)
 2. Asymptotic Behavior:

 \[\hat{\gamma} = \gamma \left(1 - \frac{\sigma_P \zeta + \sigma_\zeta^2}{\sigma_P^2 + 2\sigma_P \zeta + \sigma_\zeta^2} \right) \] \hspace{1cm} (9)
Hui-Zhang Probability Space

1. Faction Formation without Spatial Proximity: Hui Liangyu and Zhang Dejiang.

2. Empty Hui-Zhang Probability Space: ζ_i^{BEW} no longer has full support.

3. A Possible Solution: More Dimensionalities, i.e.,

$$BEW-\text{plus}_i = B_i + E_i + W_i + N_i + O + \zeta_i^*$$ \hspace{1cm} (10)

where N_i denotes the network effect and ζ_i^* will then be a random measurement errors given N_i and other new indicators, O.

Hui-Zhang Probability Space

1. Faction Formation without Spatial Proximity: Hui Liangyu and Zhang Dejiang.

2. Empty Hui-Zhang Probability Space: ζ_i^{BEW} no longer has full support.

3. A Possible Solution: More Dimensionalities, i.e.,

$$BEW_{\text{plus},i} = B_i + E_i + W_i + N_i + O + \zeta_i^*$$ (10)

where N_i denotes the network effect and ζ_i^* will then be a random measurement errors given N_i and other new indicators, O.
Hui-Zhang Probability Space

1. Faction Formation without Spatial Proximity: Hui Liangyu and Zhang Dejiang.

2. Empty Hui-Zhang Probability Space: ζ_i^{BEW} no longer has full support.

3. A Possible Solution: More Dimensionalities, i.e.,

$$BEW_{-\text{plus}}_i = B_i + E_i + W_i + N_i + O + \zeta_i^*$$

where N_i denotes the network effect and ζ_i^* will then be a random measurement errors given N_i and other new indicators, O.

The Composite Index

Beyond Second-Order Relationship?

1 Beyond Second-Order Relationship?

2 Dubious Effects on Promotion or Policy Outcomes
The Composite Index

1. Beyond Second-Order Relationship?
2. Dubious Effects on Promotion or Policy Outcomes
Age

\[A_i = \begin{cases}
1 & \text{when CC member } i \text{ is under 65 years old when his/her tenure ends} \\
0 & \text{otherwise}
\end{cases} \]

1. Discrete or Continuous?
2. Over-Interpretation
Age

\[A_i = \begin{cases}
1 & \text{when CC member } i \text{ is under 65 years old when his/her tenure ends} \\
0 & \text{otherwise}
\end{cases} \]

1. **Discrete or Continuous?**
2. **Over-Interpretation**
Non-Standing Politburo Members

\[
NP_i = \begin{cases}
1 & \text{when CC member } i \text{ is a non-standing Politburo member} \\
0 & \text{otherwise}
\end{cases}
\]
(12)

1. "Succession Echelon" versus "Plain Vanilla" Central Committee Members

2. Value of Promotion versus Promotion Likelihood
Non-Standing Politburo Members

\[
NP_i = \begin{cases}
1 & \text{when CC member } i \text{ is a non-standing Politburo member} \\
0 & \text{otherwise}
\end{cases}
\] (12)

1. "Succession Echelon" versus "Plain Vanilla" Central Committee Members

2. Value of Promotion versus Promotion Likelihood
Minorities

\[M_i = \begin{cases}
1 & \text{when } \text{CC member } i \text{ belongs to a minority group in ethnicity or gender} \\
0 & \text{otherwise}
\end{cases} \quad (13) \]

1. Minority-Only versus Normal Career Tracks
2. The Tibetans and The Uighurs
Motivation Theory Empirical Evidence Conclusions

Measuring Promotion Expectation Data and Variable Selection Econometric Strategy Findings

Minorities

\[M_i = \begin{cases}
1 & \text{when CC member } i \text{ belongs to a minority group in ethnicity or gender} \\
0 & \text{otherwise}
\end{cases} \] \hspace{1cm} (13)

1. Minority-Only versus Normal Career Tracks
2. The Tibetans and The Uighurs
Princelings

\[
PR_i = \begin{cases}
1 & \text{when CC member } i \text{ is a relative (by birth or by marriage) of a senior official who held rank 13 or beyond.} \\
0 & \text{otherwise}
\end{cases}
\]

(14)

1. The Gaoganzidi / Taizidang Distinction
Motivation Theory Empirical Evidence Conclusions

Measuring Promotion Expectation Data and Variable Selection Econometric Strategy Findings

Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.

- Data Range: 1999-2008 (Panel Data)
- Data Source
 - U.N. Comtrade
 - Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 - Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
 - Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.
- Data Range: 1999-2008 (Panel Data)
- Data Source
 - U.N. Comtrade
 - Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 - Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
 - Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al., 2008)
Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.
- Data Range: 1999-2008 (Panel Data)
- Data Source
 1. U.N. Comtrade
 2. Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 1. Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
 3. Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.
- Data Range: 1999-2008 (Panel Data)
- Data Source
 1. U.N. Comtrade
 2. Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 - Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
 - Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.
- Data Range: 1999-2008 (Panel Data)
- Data Source
 1. U.N. Comtrade
 2. Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 1. Inverse Import Demand Elasticities: We instrument this variable according to Broda et al. (2008) to avoid endogeneity issue.
 3. Inverse Export Supply Elasticities: Measuring China's market power (Estimates from Broda et al. (2008))
Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.

Data Range: 1999-2008 (Panel Data)

Data Source

1. U.N. Comtrade
2. Chinese Statistical Year Books and Industrial Surveys

Dependent Variable: Tariff Cut Deviation

Covariates in the Tariff Equations:

1. Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
3. Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.
- Data Range: 1999-2008 (Panel Data)
- Data Source
 1. U.N. Comtrade
 2. Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 1. Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
 3. Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.
- Data Range: 1999-2008 (Panel Data)
- Data Source
 1. U.N. Comtrade
 2. Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 1. Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
 3. Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Data and Variable Selection I

- Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.
- Data Range: 1999-2008 (Panel Data)
- Data Source
 1. U.N. Comtrade
 2. Chinese Statistical Year Books and Industrial Surveys
- Dependent Variable: Tariff Cut Deviation
- Covariates in the Tariff Equations:
 1. Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
 3. Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Level of Disaggregation: 66 Sector from regrouped 4-digit SITC (Standard International Trade Classification) codes according to China’s 1994 and 2002 National Economy Classifications.

Data Range: 1999-2008 (Panel Data)

Data Source

1. U.N. Comtrade
2. Chinese Statistical Year Books and Industrial Surveys

Dependent Variable: Tariff Cut Deviation

Covariates in the Tariff Equations:

1. Inverse Import Demand Elasticities: We instrument this variable according to Broda, et al. (2008) to avoid endogeneity issue.
3. Inverse Export Supply Elasticities: Measuring China’s market power. (Estimates from Broda, et al. (2008))
Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_{1i} - \tilde{t}_{2i}) \eta \)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: *China Data On-line* (Based on China’s Statistical Yearbooks)

5. Tax Payable: *China Data On-line* (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: *China Data On-line* (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_1 - \tilde{t}_2)\eta\)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: China Data On-line (Based on China’s Statistical Yearbooks)

5. Tax Payable: China Data On-line (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: China Data On-line (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_1 - \tilde{t}_2) \eta \)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: *China Data On-line* (Based on China’s Statistical Yearbooks)

5. Tax Payable: *China Data On-line* (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: *China Data On-line* (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_{1i} - \tilde{t}_{2i})\eta\)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: *China Data On-line* (Based on China’s Statistical Yearbooks)

5. Tax Payable: *China Data On-line* (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: *China Data On-line* (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Data and Variable Selection II

Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_1i - \tilde{t}_2i)\eta\)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: China Data On-line (Based on China’s Statistical Yearbooks)

5. Tax Payable: : China Data On-line (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: : China Data On-line (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Data and Variable Selection II

Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_{1i} - \tilde{t}_{2i})\eta\)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: China Data On-line (Based on China’s Statistical Yearbooks)

5. Tax Payable: China Data On-line (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: China Data On-line (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_1 - \tilde{t}_2)\eta\)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: *China Data On-line* (Based on China’s Statistical Yearbooks)

5. Tax Payable: *China Data On-line* (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: *China Data On-line* (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Covariates in the Selection Equation

1. \(\ln \left(\frac{z_i}{e_i} \right) \) from \((\tilde{t}_1 - \tilde{t}_2)\eta\)

3. Foreign Pressure: A sector dummy from coding USTR’s annual reports of trade policy agenda.

4. Ownership Structure: China Data On-line (Based on China’s Statistical Yearbooks)

5. Tax Payable: China Data On-line (Based on China’s Statistical Yearbooks)

6. Share of Industrial Value-Added: China Data On-line (Based on China’s Statistical Yearbooks)

7. WTO: A year dummy.
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation

 A GEE (Generalized Estimating Equations) Approach
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 - A GEE (Generalized Estimating Equations) Approach
 - Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 - A GEE (Generalized Estimating Equations) Approach
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity

Panel Data Estimation
- Sources of Correlation
 - Compensation Effect
 - Cluster Effect
- A GEE (Generalized Estimating Equations) Approach:
 - Marginal Approach versus Cluster-Specific Approach
 - Consistency: The regression coefficients are fairly robust against misspecified correlation matrix
 - The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_i on $Pr(Y_i)$
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 1. Compensation Effect
 2. Cluster Effect
 - A GEE (Generalized Estimating Equations) Approach:
 - Marginal Approach versus Cluster-Specific Approach
 - Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
 - The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_i on $Pr(Y)$.
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 - Compensation Effect
 - Cluster Effect
 - A GEE (Generalized Estimating Equations) Approach:
 - Marginal Approach versus Cluster-Specific Approach
 - Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
 - The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_i on $Pr(Y_i)$.
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 1. Compensation Effect
 2. Cluster Effect
 - A GEE (Generalized Estimating Equations) Approach:
 1. Marginal Approach versus Cluster-Specific Approach
 2. Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
 3. The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_i on $Pr(Y_i)$.
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 1. Compensation Effect
 2. Cluster Effect
 - A GEE (Generalized Estimating Equations) Approach:
 1. Marginal Approach versus Cluster-Specific Approach
 2. Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
 3. The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_{it} on $Pr(Y_{it})$.
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 1. Compensation Effect
 2. Cluster Effect
 - A GEE (Generalized Estimating Equations) Approach:
 1. Marginal Approach versus Cluster-Specific Approach
 2. Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
 3. The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_{it} on $Pr(Y_{it})$.

β_M represents the average effect across the entire population, of a one-unit shift in X_{it} on $Pr(Y_{it})$.

Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 1. Compensation Effect
 2. Cluster Effect
 - A GEE (Generalized Estimating Equations) Approach:
 1. Marginal Approach versus Cluster-Specific Approach
 2. Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
 3. The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_{it} on $Pr(Y_{it})$.
Panel Data Endogenous Switching Regression Model with Unknown Sample Separation

- Political Organization as Treatment Effect
- Heterogeneity and varying coefficients
- Selectivity
- Panel Data Estimation
 - Sources of Correlation
 1. Compensation Effect
 2. Cluster Effect
 - A GEE (Generalized Estimating Equations) Approach:
 1. Marginal Approach versus Cluster-Specific Approach
 2. Consistency: The regression coefficients are fairly robust against misspecified correlation matrix.
 3. The population-average coefficient β_M represents the average effect across the entire population, of a one-unit shift in X_{it} on $Pr(Y_{it})$.
Regime Equations

<table>
<thead>
<tr>
<th>Tariff Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{t}{1it} = X'{it} \gamma_1 + u_{1it}$ if $l_{it} = 1$ (15)</td>
</tr>
<tr>
<td>$\tilde{t}{2it} = X'{it} \gamma_2 + u_{2it}$ if $l_{it} = 0$ (16)</td>
</tr>
</tbody>
</table>

where and $u_{jit} \sim \mathcal{N}(0, \sigma^2_{jt})$ and X'_{it} is a row vector.
Selection Equation

- Latent Variable Formulation
 \[S^* = (\tilde{t}_{1it} - \tilde{t}_{2it})\eta + W_{it}'\delta - \nu_{it} = X_{it}'(\gamma_1 - \gamma_2)\eta + W_{it}'\delta - \zeta_{it} = K_{it}'\nu - \zeta_{it} \]
 where \(\zeta_{it} \sim N(0, 1) \)

- Indicator Variable
 \[\tilde{t}_{it} = \begin{cases} \tilde{t}_{1it} & \text{if } S^* > 0 \\ \tilde{t}_{2it} & \text{if } S^* \leq 0 \end{cases} \]
 which can also be alternatively given in terms of \(I_{it} \):
 \[I_{it} = \begin{cases} 1 & \text{if } S^* > 0 \\ 0 & \text{if } S^* \leq 0 \end{cases} \]

- This formulation allows us to run a Probit model
 \[\begin{cases} P(\tilde{I}_{it} = 1) = P(S^* > 0) = P(K_{it}'\nu - \zeta_{it} > 0) = \Phi(K_{it}'\nu) \\ P(\tilde{I}_{it} = 0) = P(S^* \leq 0) = 1 - \Phi(K_{it}'\nu) = \Phi(-K_{it}'\nu) \end{cases} \]
Selection Equation

- **Latent Variable Formulation**
 \[
 S^* = (\tilde{t}_{1it} - \tilde{t}_{2it}) \eta + W_{it}' \delta - \nu_{it} = X_{it}' (\gamma_1 - \gamma_2) \eta + W_{it}' \delta - \zeta_{it} = K_{it}' \nu - \zeta_{it}
 \]
 \hspace{1cm} (17)
 where \(\zeta_{it} \sim \mathcal{N}(0, 1) \)

- **Indicator Variable**
 \[
 \tilde{t}_{it} = \begin{cases}
 \tilde{t}_{1it} & \text{if } S^* > 0 \\
 \tilde{t}_{2it} & \text{if } S^* \leq 0
 \end{cases}
 \]
 \hspace{1cm} (18)
 which can also be alternatively given in terms of \(I_{it} \):
 \[
 I_{it} = \begin{cases}
 1 & \text{if } S^* > 0 \\
 0 & \text{if } S^* \leq 0
 \end{cases}
 \]
 \hspace{1cm} (19)

- **This formulation allows us to run a Probit model**
 \[
 \begin{aligned}
 P(\tilde{I}_{it} = 1) &= P(S^* > 0) = P(K_{it}' \nu - \zeta_{it} > 0) = \Phi(K_{it}' \nu) \\
 P(\tilde{I}_{it} = 0) &= P(S^* \leq 0) = 1 - \Phi(K_{it}' \nu) = \Phi(-K_{it}' \nu)
 \end{aligned}
 \]
 \hspace{1cm} (20)
Selection Equation

- Latent Variable Formulation
\[S^* = (\tilde{t}_{1it} - \tilde{t}_{2it})\eta + W'_{it}\delta - \nu_{it} = X'_it(\gamma_1 - \gamma_2)\eta + W'_{it}\delta - \zeta_{it} = K'_{it}\nu - \zeta_{it} \] (17)

where \(\zeta_{it} \sim N(0, 1) \)

- Indicator Variable
\[\tilde{t}_{it} = \begin{cases} \tilde{t}_{1it} & \text{if } S^* > 0 \\ \tilde{t}_{2it} & \text{if } S^* \leq 0 \end{cases} \] (18)

which can also be alternatively given in terms of \(I_{it} \):
\[I_{it} = \begin{cases} 1 & \text{if } S^* > 0 \\ 0 & \text{if } S^* \leq 0 \end{cases} \] (19)

- This formulation allows us to run a Probit model
\[P(\tilde{I}_{it} = 1) = P(S^* > 0) = P(K'_{it}\nu - \zeta_{it} > 0) = \Phi(K'_{it}\nu) \]
\[P(\tilde{I}_{it} = 0) = P(S^* \leq 0) = 1 - \Phi(K'_{it}\nu) = \Phi(-K'_{it}\nu) \] (20)
Deriving Political Dummy

1. First of all, an arbitrary initial cutoff for splitting the sample is set and \tilde{l}_i is retrieved from it. First estimate with (6) $l_{it} = 0$ then

$$\tilde{l}_{it} = \begin{cases} 1 & \text{if } \hat{\epsilon}_{it} \geq \lambda \sigma_{\epsilon} \\ 0 & \text{otherwise} \end{cases} \quad (21)$$

2. Initial Values from the Probit (20) and the following OLS estimation

$$\begin{align*}
\tilde{t}_{1it} &= X'_{it} \gamma_1 + \sigma_{1\zeta} \left[\frac{\phi(K'_i \nu)}{\Phi(K'_i \nu)} \right] + \xi_{1it} \\
\tilde{t}_{2it} &= X'_{it} \gamma_2 + \sigma_{2\zeta} \left[\frac{\phi(K'_i \nu)}{1 - \Phi(K'_i \nu)} \right] + \xi_{2it}
\end{align*} \quad (22)$$

3. Maximization of the complete data log-likelihood function

4. Repeat the steps until the maximum likelihood is reached.
First of all, an arbitrary initial cutoff for splitting the sample is set and \tilde{l}_i is retrieved from it. First estimate with (6) $l_{it} = 0$ then

$$\tilde{l}_{it} = \begin{cases} 1 & \text{if } \hat{\epsilon}_{it} \geq \lambda \sigma_{\epsilon} \\ 0 & \text{otherwise} \end{cases} \tag{21}$$

Initial Values from the Probit (20) and the following OLS estimation

$$\begin{align*}
\tilde{t}_{1it} &= X_{it}' \gamma_1 + \sigma_1 \zeta + \phi(K_i' \nu) \left[\frac{1}{\Phi(K_i' \nu)} \right] + \xi_{1it} \\
\tilde{t}_{2it} &= X_{it}' \gamma_2 + \sigma_2 \zeta + \phi(K_i' \nu) \left[\frac{1}{1 - \Phi(K_i' \nu)} \right] + \xi_{2it} \tag{22}
\end{align*}$$

Maximization of the complete data log-likelihood function

Repeat the steps until the maximum likelihood is reached.
Deriving Political Dummy

1. First of all, an arbitrary initial cutoff for splitting the sample is set and \tilde{I}_i is retrieved from it. First estimate with (6) $I_{it} = 0$ then

$$\tilde{I}_{it} = \begin{cases} 1 & \text{if } \hat{\eta}_{it} \geq \lambda \sigma_{\eta} \\ 0 & \text{otherwise} \end{cases}$$

(21)

2. Initial Values from the Probit (20) and the following OLS estimation

$$\begin{align*}
\tilde{t}_{1it} &= X'_{it} \gamma_1 + \sigma_1 \zeta_1 \\
&= X'_{it} \gamma_1 + \sigma_1 \left[\frac{\phi(K_i' \nu)}{\Phi(K_i' \nu)} \right] + \xi_{1it} \\
\tilde{t}_{2it} &= X'_{it} \gamma_2 + \sigma_2 \zeta_2 \\
&= X'_{it} \gamma_2 + \sigma_2 \left[\frac{\phi(K_i' \nu)}{1 - \Phi(K_i' \nu)} \right] + \xi_{2it}
\end{align*}$$

(22)

3. Maximization of the complete data log-likelihood function

4. Repeat the steps until the maximum likelihood is reached.
Deriving Political Dummy

1 First of all, an arbitrary initial cutoff for splitting the sample is set and \tilde{I}_i is retrieved from it. First estimate with (6) $l_{it} = 0$ then

$$\tilde{I}_{it} = \begin{cases} 1 & \text{if } \hat{\epsilon}_{it} \geq \lambda\sigma_\epsilon \\ 0 & \text{otherwise} \end{cases} \quad (21)$$

2 Initial Values from the Probit (20) and the following OLS estimation

$$\begin{align*}
\tilde{t}_{1it} &= X'_{it}\gamma_1 + \sigma_1\zeta + \frac{\phi(K'_i\nu)}{\Phi(K'_i\nu)} + \xi_{1it} \\
\tilde{t}_{2it} &= X'_{it}\gamma_2 + \sigma_2\zeta + \frac{\phi(K'_i\nu)}{1 - \Phi(K'_i\nu)} + \xi_{2it} \quad (22)
\end{align*}$$

3 Maximization of the complete data log-likelihood function

4 Repeat the steps until the maximum likelihood is reached.
Regression Results

Table 2: Endogenous Switching Regression Model

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Regime Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Organized</td>
</tr>
<tr>
<td>Constant</td>
<td>0.531***</td>
</tr>
<tr>
<td></td>
<td>(0.0089)</td>
</tr>
<tr>
<td>(\ln \left(\frac{\text{INVIMPNTR}}{\text{IMDE}} \right))</td>
<td>1.39*</td>
</tr>
<tr>
<td></td>
<td>(0.0089)</td>
</tr>
<tr>
<td>(\ln \left(\frac{1}{\text{EXSE}} \right))</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>(0.73)</td>
</tr>
<tr>
<td>APE</td>
<td>–</td>
</tr>
<tr>
<td>OWNSTR</td>
<td>–</td>
</tr>
<tr>
<td>FP</td>
<td>–</td>
</tr>
<tr>
<td>VA</td>
<td>–</td>
</tr>
<tr>
<td>SOELOSS</td>
<td>–</td>
</tr>
<tr>
<td>WTO</td>
<td>–</td>
</tr>
<tr>
<td>Estimated (\rho_1)</td>
<td>0.919223</td>
</tr>
<tr>
<td></td>
<td>(0.075891)</td>
</tr>
<tr>
<td>Estimated (\rho_2)</td>
<td>0.922636</td>
</tr>
<tr>
<td></td>
<td>(0.070006)</td>
</tr>
<tr>
<td>Observations</td>
<td>660</td>
</tr>
</tbody>
</table>
Outline

1 Motivation
 • Empirical
 • Theoretical

2 Theory

3 Empirical Evidence
 • Measuring Promotion Expectation
 • BEW Index
 • BEW-Plus Index
 • Measurement Errors
 • Additional Indicators
 • Data and Variable Selection
 • Econometric Strategy
 • Findings

4 Conclusions
Summary of Findings

1. Special interest politics in authoritarian countries
2. Authoritarian institutional resources affect sectoral stakeholders’ policy preferences.
3. The degree of policy coordination in an institutionalized autocracy is determined by leader’s commitment ability to the selectorate.
4. Factional nature of the Chinese politics
Summary of Findings

1. Special interest politics in authoritarian countries
2. Authoritarian institutional resources affect sectoral stakeholders’ policy preferences.
3. The degree of policy coordination in an institutionalized autocracy is determined by leader’s commitment ability to the selectorate.
4. Factional nature of the Chinese politics
Summary of Findings

1. Special interest politics in authoritarian countries
2. Authoritarian institutional resources affect sectoral stakeholders’ policy preferences.
3. The degree of policy coordination in an institutionalized autocracy is determined by leader’s commitment ability to the selectorate.
4. Factional nature of the Chinese politics
Summary of Findings

1. Special interest politics in authoritarian countries
2. Authoritarian institutional resources affect sectoral stakeholders’ policy preferences.
3. The degree of policy coordination in an institutionalized autocracy is determined by leader’s commitment ability to the selectorate.
4. Factional nature of the Chinese politics
Thank you!